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We study the gap generation in Weyl semimetals in a model with local four-fermion interac-
tion. It is shown that there exists a critical value of coupling constant separating the symmetric
and broken symmetry phases, and the corresponding phase diagram is described. The gap gen-
eration in a more general class of Weyl materials with small bare gap is studied, and the
quasiparticle energy spectrum is determined. It is found that, in this case, the dynamically
generated gap leads to the additional splitting of the quasiparticle energy bands.
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1. Introduction

The discovery of new materials with unique quantum-
mechanical properties is crucial for the progress in
condensed matter physics. Recently, such new mate-
rials as topological insulators, Dirac semimetals, and
Weyl semimetals attracted the attention of the con-
densed matter community and moved at the forefront
of theoretical and experimental studies [1–3]. Remar-
kable properties of these two-dimensional (2D) and
3D materials are connected with the unusual prop-
erties of their low energy quasiparticle excitations,
which are described by the Dirac or Weyl equa-
tion. Since 3D massless Dirac fermions can be rep-
resented as two copies of Weyl fermions of opposite
chirality, Weyl fermions can be considered as the most
elementary building blocks of these 3D materials. It
is important to note that while two Weyl nodes for
every particle (except neutrinos, which are perhaps
only left-handed fermions) in the elementary parti-
cle physics are located at k = 0 forming thus a Dirac
fermion, Weyl nodes in condensed matter physics are,
in general, located at different points in the momen-
tum space.
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As is well known, graphene is a 2D Dirac semi-
metal. Consequently, 3D Dirac semimetals may be
considered as 3D analogs of graphene. The first his-
torically known 3D Dirac material is bismuth [4–7],
whose electron states near the L point in the Brillouin
zone are described by the 3D Dirac massive equation
with sufficiently large Dirac mass. It is possible to de-
crease the Dirac mass by doping Bi with antimony.
As the antimony concentration reaches 𝑥 ≈ 0.03, al-
loy Bi1−𝑥Sb𝑥 transforms into a Dirac semimetal with
massless Dirac point, realizing thus a 3D analog of
graphene. Using the ab initio calculations and the ef-
fective model analysis, it was further theoretically
suggested in Refs. [8, 9] that Na3Bi, K3Bi, Rb3Bi,
and Cd3As2 are 3D Dirac semimetals. By investigat-
ing the electronic structure with angle resolved pho-
toemission spectroscopy, 3D Dirac fermions were ex-
perimentally discovered in Na3Bi in Ref. [10] and
Cd3As2 in Refs. [11, 12]. As to the Weyl semimetals,
the recent observation of negative magnetoresistiv-
ity in Bi0.97Sb0.03 provided an experimental evidence
for the existence of Weyl fermions Ref. [13]. To ob-
tain a Weyl semimetal from a Dirac semimetal, one
must break either the time reversal or inversion sym-
metry. This can be done, for example, by applying
an external magnetic field. As a result, the 3D Dirac
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point splits into two Weyl nodes of opposite chiral-
ities. A good example of the dynamical transforma-
tion of a Dirac semimetal into a Weyl one is given by
the dynamical generation of the chiral shift parameter
considered in Ref. [14].

Since the Coulomb interaction is not screened in
Weyl semimetals due to the vanishing of the density
of states at the Fermi surface, the electron-electron in-
teractions in these materials are very important and
may lead to the dynamical chiral symmetry breaking,
which is connected with the dynamical gap generation
due to the pairing of electrons and holes with differ-
ent chiralities. In this paper, we consider the dynami-
cal chiral symmetry breaking in Weyl semimetals in a
model with local four-fermion interaction with regard
for a small bare gap for quasiparticles. The gap gen-
eration in Weyl semimetals in the absence of a bare
gap was previously studied in Refs. [15–17].

This paper is organized as follows. In Section 2, we
introduce the model and set up the notation. The gap
equation for the case of the zero bare gap is derived
and solved. The dependence of the gap on the interac-
tion strength and the momentum space separation be-
tween the Weyl nodes is determined in Section 3. The
more general case of a nonzero bare gap is considered
in Section 4. Using perturbation theory, we derived
and solved gap equations. The energy spectrum was
obtained and described. The results are summarized,
and the conclusions are given in Section 5. For con-
venience, throughout this paper, we set ~ = 1.

2. Model

We begin our study by considering the following low-
energy Hamiltonian (see, Ref. [14]):

𝐻(W) = 𝐻
(W)
0 +𝐻int, (1)

where

𝐻
(W)
0 = −

∫︁
𝑑3𝑟𝜓†(r)×

×
(︂
𝑣F𝜎(𝑖∇+ b0) Δ0

Δ0 𝑣F𝜎(−𝑖∇+ b0)

)︂
𝜓(r) (2)

is the Hamiltonian of the free theory, and Δ0 is the
bare gap parameter. This Hamiltonian describes two
Weyl nodes of opposite chiralities separated by the
vector 2b0 in the momentum space. The opposite chi-
ralities of Weyl nodes are required by the Nielsen–Ni-
nomiya theorem [18]. Following Refs. [14, 19, 20], we
call b0 the bare chiral shift parameter. Other nota-
tions: 𝑣F is the Fermi velocity, and 𝜎=(𝜎𝑥, 𝜎𝑦, 𝜎𝑧)

are Pauli matrices associated with the band degrees
of freedom [14, 21]. In the general case, the interac-
tion Hamiltonian 𝐻int describes the Coulomb interac-
tion, i.e.,

𝐻int=
1

2

∫︁
𝑑3𝑟𝑑3𝑟′ 𝜓†(r)𝜓(r)𝑈(r− r′)𝜓†(r′)𝜓(r′). (3)

In order to simplify our calculations, we will use a
model with a contact four-fermion interaction

𝑈(r) =
𝑒2

𝜅|r|
→ 𝑔 𝛿3(r), (4)

where 𝑔 is a dimensionless coupling constant. As we
will see, this model interaction should be sufficient for
the general qualitative description of the gap gener-
ation in Weyl semimetals. Before proceeding further
with the analysis, it is convenient to introduce the
four-dimensional Dirac matrices in the chiral repre-
sentation:

𝛾0 =
(︁
0 − 𝐼
−𝐼 0

)︁
, 𝛾 =

(︁
0 𝜎
−𝜎 0

)︁
,

𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3 =
(︁
𝐼 0
0 −𝐼

)︁
,

(5)

where 𝐼 is the two-dimensional unit matrix. Using the
Eq. (4) and Eq. (5), we can rewrite the full Hamilto-
nian Eq. (1) as follows:

𝐻(W) =

∫︁
𝑑3𝑟𝜓†(r) (−𝑖𝑣F𝛾0(𝛾∇)+

+ 𝑣F𝛾0𝛾5(𝛾b0) + 𝛾0Δ)𝜓(r)+

+
𝑔

2

∫︁
𝑑3𝑟 𝜓†(r)𝜓(r)𝜓†(r)𝜓(r). (6)

3. Gap Equation in Weyl
Semimetals without Bare Gap

3.1. Derivation of the gap equation

In this section, we derive the gap equation in Weyl
semimetals using the Cornwall–Jackiw–Tomboulis
formalism [22]. The Cornwall–Jackiw–Tomboulis ef-
fective action in the first order of perturbation theory
takes the form:

Γ(𝐺) = −𝑖Tr[Ln𝐺−1 + 𝑆−1𝐺− 1]+

+
𝑔

2

∫︁
𝑑4𝑟

(︀
tr
[︀
𝐺(𝑟, 𝑟)𝐺(𝑟, 𝑟)

]︀
−

− tr
[︀
𝐺(𝑟, 𝑟)

]︀
tr
[︀
𝐺(𝑟, 𝑟)

]︀)︀
, (7)
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where 𝐺 is the full fermion propagator, and 𝑆 is
the free fermion propagator. The trace and the loga-
rithm in the first term on the right-hand side of the
above equation are taken in the functional sense. The
Schwinger-Dyson equation for the fermion propa-
gator determines extrema of the Cornwall–Jackiw–
Tombolulis effective action and is given by

𝐺−1(𝑟, 𝑟′) = 𝑆−1(𝑟, 𝑟′)+ 𝑖𝑔𝛿(4)(𝑟−𝑟′)(𝐺− tr[𝐺]), (8)

where the trace is taken over spinor indices. The in-
verse free fermion propagator is given by

𝑖𝑆−1(𝑟, 𝑟′) = (𝑖𝜕𝑡 + 𝑖𝑣F𝛾0(𝛾 ·∇)−

− 𝑣F𝛾0𝛾5(𝛾 · b0)) 𝛿
4(𝑟 − 𝑟′), (9)

and the ansatz for the inverse full fermion propagator
is given by

𝑖𝐺−1(𝑟, 𝑟′) = (𝑖𝜕𝑡 + 𝑖𝑣F𝛾0(𝛾 ·∇)− 𝑣F𝛾0𝛾5(𝛾 · b)−

− 𝛾0Δ𝑒
−2𝑖(b′·r)𝛾5)𝛿4(𝑟 − 𝑟′), (10)

where b is a renormalized chiral shift, and
Δ𝑒−2𝑖(b′·r)𝛾5 is the general form of the gap term,
which can be understood as the chiral charge density
wave order parameter. This form of the chiral conden-
sation, where fermions (electrons) and antifermions
(holes) are paired in a state with total momentum
2b′, is reminiscent of the Larkin–Ovchinnikov–Fulde–
Ferrell (LOFF) [23, 24] state of pairing between elec-
trons with nonzero total momentum in the theory of
superconductivity. Obviously, this phase can be elim-
inated by the chiral transformation

𝑖𝐺−1(𝑟, 𝑟′) = 𝑒𝑖(b
′·r)𝛾5𝑖�̄�−1(𝑟, 𝑟′)𝑒−𝑖(b′·r′)𝛾5 , (11)

where

𝑖�̄�−1(𝑟, 𝑟′) =
(︀
𝑖𝜕𝑡 + 𝑖𝑣F𝛾0(𝛾 ·∇)− 𝑣F𝛾0𝛾5(𝛾 · b̄)−

− 𝛾0Δ) 𝛿4(𝑟 − 𝑟′) (12)

is the inverse fermion propagator with conventional
Dirac mass without chiral phase and b̄ = b − b′. In
the momentum space, Eq. (12) takes the form

𝑖�̄�−1(𝜔,k) =

=

(︂
𝜔 − 𝑣F𝜎 · (k− b̄) Δ

Δ 𝜔 + 𝑣F𝜎 · (k+ b̄)

)︂
. (13)

Multiplying the Schwinger–Dyson equation (8) by
𝑒−𝑖(b′·r)𝛾5 from the left and 𝑒𝑖(b

′·r′)𝛾5 from the right,
we obtain the equation

𝑖�̄�−1(𝜔,k) = 𝑖𝑆−1(𝜔,k)− 𝑔(�̄�− tr[�̄�]), (14)

where 𝑆−1(𝜔,k) coincides with the inverse free prop-
agator with b0 replaced by the relative chiral shift
b̄0 = b0 − b′. Multiplying Eq. (14) by 𝛾0𝛾5𝛾 and
taking trace, we obtain the following equation for the
chiral shift parameter:

b̄ = b̄0 +
𝑔

4𝑣F
tr
[︀
𝛾0𝛾5𝛾�̄�

]︀
. (15)

Further, multiplying Eq. (14) by 𝛾0 and taking trace,
we find the gap equation

Δ =
𝑔

4
tr
[︀
𝛾0𝐺

]︀
. (16)

Inverting Eq. (13), we obtain the full fermion propa-
gator

𝑖�̄�(𝜔,k)𝑁 = 𝜔𝐾0 + 𝑣F
(︀
𝐾0k− 2𝑣2F(k · b̄)b̄

)︀
𝛾0𝛾+

+ 𝑣F
[︀
2𝑣2F(k · b̄)k− (𝐾0 − 2Δ2)b̄

]︀
𝛾5𝛾0𝛾+

+2𝑣2F(k · b̄)𝜔𝛾5 +Δ
(︀
𝐾0 − 2𝑣2Fb̄

2
)︀
𝛾0 +

+2𝑖𝑣2FΔ([b̄× k] · 𝛾)− 2𝜔Δ𝑣F𝛾
5(𝛾 · b̄), (17)

where 𝐾0 = 𝑣2F
(︀
k2 + b̄2

)︀
+ Δ2 − 𝜔2 and 𝑁 = 𝐾2

0 −
− 4𝑣2F

(︀
Δ2b̄2 + 𝑣2F(k · b̄)2

)︀
. We can integrate over the

frequency on the right-hand side of Eqs. (15) and
(16). These integrals have a similar structure and can
be easily calculated∫︁
𝑑𝜔

𝐴1 +𝐴2𝜔
2

(𝜔2 +𝑊1)(𝜔2 +𝑊2)
=

=
𝜋√

𝑊1 +
√
𝑊2

(︂
𝐴2 +

𝐴1√
𝑊1𝑊2

)︂
, (18)

where 𝑊1,2 =
(︀
Δ2 + 𝑣2F(k

2 + b̄2)
)︀
∓
√︀
𝐾2

0 −𝑁 .
Thus, we obtain the following system of equations:

1 = 𝑔

∫︁
𝑑3k

(2𝜋)4
𝜋√

𝑊1 +
√
𝑊2

×

×
(︂
1 +

𝑣2F(k
2 − b̄2) + Δ2

√
𝑊1𝑊2

)︂
, (19)

b̄ = b̄0 − 𝑔

∫︁
𝑑3k

(2𝜋)4
𝜋√

𝑊1 +
√
𝑊2

×

×

(︃
b̄+

b̄
(︀
𝑣2F(b̄

2 + k2)−Δ2
)︀
− 2k𝑣2F(b̄ · k)

√
𝑊1𝑊2

)︃
. (20)
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3.2. Solution with chiral phase

In this case, fermions and antifermions are paired
with non-zero total momentum. One can easily prove
that b̄ = 0 if we choose b′ = b0, which leads to
b̄0 = 0. Then Eq. (19) equals

1 = 𝑔

∫︁
𝑑3k

(2𝜋)4
𝜋√︀

Δ2 + 𝑣2F𝑘
2
=

= 4𝑔𝜋2

Λ∫︁
0

𝑘2𝑑𝑘

(2𝜋)4
1√︀

Δ2 + 𝑣2F𝑘
2
=

=
𝑔Λ2

8𝑣F𝜋2

⎛⎝√︃(︂ Δ

𝑣FΛ

)︂2
+ 1−

−
(︂

Δ

𝑣FΛ

)︂2
arcsinh

(︂
𝑣FΛ

Δ

)︂)︃
, (21)

where Λ = 𝜋
𝑎 is a momentum cutoff, and 𝑎 is the lat-

tice spacing. Assuming that Δ
𝑣FΛ

≪ 1, Eq. (21) sim-
plifies to the following one:

1

𝑔
− 1

𝑔cr
≈ Δ2

16𝑣3F𝜋
2

(︂
1 + 2 ln

(︂
Δ

2𝑣FΛ

)︂)︂
,

𝑔cr =
8𝜋2𝑣F
Λ2

,

(22)

where 𝑔cr is the critical value of coupling constant.
One can see from Eq. (22) and Fig. 1 that the cou-

pling constant 𝑔 must exceed a critical value 𝑔cr in or-
der to produce a non-trivial gap Δ. Of course, there is
also the trivial solution Δ = 0. To determine the solu-
tion with the lowest energy, we will calculate the value
of Cornwall–Jackiw–Tomboulis effective action at its
extrema, which gives the energy of the system. After
some calculations (for more details, see Appendix)),
we find the energy density of the system

ℰ = −Λ4𝑣F
8𝜋2

⎡⎣√︃(︂ Δ

𝑣FΛ

)︂2
+ 1

(︃
2−

(︂
Δ

𝑣FΛ

)︂2)︃
+

+

(︂
Δ

𝑣FΛ

)︂4
arcsinh

(︂
𝑣FΛ

Δ

)︂]︃
. (23)

Since ℰ(Δ ̸= 0) − ℰ(Δ = 0) < 0 for Δ
𝑣FΛ

< 1, a non-
trivial solution is always more favorable as soon as
it exists. Our results coincide with those obtained in
Refs. [15–17].

3.3. Phase diagram

In this subsection, we compare three different phases
that can exist in the system. The solution with the
chiral phase was studied in the previous subsec-
tion. In the case of the Dirac phase, fermions and
antifermions are paired with zero total momentum
that means b′ = 0. Thus, we have the usual Dirac
mass term 𝛾0Δ in Eq. (10), and there is no need in
the chiral transformation (11). Moreover, there is the
normal phase, where Δ = 0. For both normal and
Dirac phases, Eqs. (19) and (20) retain their forms,
but with the replacement b̄ → b. Without any loss of
generality, we can assume that b0 and b point in the
+𝑧 direction. Equations (19) and (20) were solved nu-
merically by using Mathematica and the iteration pro-
cedure with the following values of constants: 𝑣F =
= 3.5 × 105 m/s, Λ = 𝜋

𝑎 = 2.65 × 109 m−1 (accord-
ing to Ref. [25], for Bi0.88Sb0.12, 𝑎 = 1.18 nm). The
domain of existence of the Dirac phase is plotted
in Fig. 2, where the Dirac phase exists to the right
from the critical line separating the symmetric nor-
mal phase and the Dirac phase with broken sym-
metry.

To obtain the full phase diagram, it is important to
compare the energy density of the chiral (or LOFF-
like) phase ℰ(𝑏′ ̸= 0,Δ ̸= 0), with the energy density
of the normal ℰ(Δ = 0) and Dirac ℰ(𝑏′ = 0,Δ ̸= 0),
phases, using the expression for the energy density
given by Eq. (A10) in Appendix. In this subsection,
we will use 𝑔 = 1.05𝑔cr. Using Eqs. (A10) and (17),
we calculate the energy densities of these phases as
functions of 𝑏0. The difference of the energy densities
of the normal and chiral phases and the difference of
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Fig. 1. Gap as a function of 𝑔cr/𝑔
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Fig. 2. Domain of existence of the Dirac phase
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Fig. 3. Difference of the energy densities ℰNormal −ℰChiral as
a function of 𝑏0

the energy densities of the Dirac and chiral phases are
plotted in Figs. 3 and 4, respectively.

We found that the phase diagram of the system is
simple. For 𝑔 > 𝑔cr, the chiral phase has a lower ener-
gy compared to that of the normal and Dirac phases.
The phase diagram of the system is plotted in Fig. 5.

4. Gap Equation in Weyl
Semimetals with Bare Gap Δ0

4.1. Derivation of the gap equation

Let us consider a more general case of Weyl se-
mimetal-like materials with bare gap Δ0. This case
is of interest from the theoretical and experimental
viewpoints. For example, quasiparticle excitations in
Bi1−𝑥Sb𝑥 are described by massless Dirac fermions
only at one point 𝑥 = 0.03; otherwise, a non-ze-
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Fig. 4. Difference of the energy densities ℰDirac −ℰChiral as a
function of 𝑏0
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Fig. 5. Phase diagram of the system

ro mass for Dirac quasiparticles is present. Using
Eq. (6), it is easy to obtain the inverse free propa-
gator

𝑖𝑆−1(𝑟, 𝑟′) = (𝑖𝜕𝑡 + 𝑖𝑣F𝛾0(𝛾 ·∇−

− 𝑣F𝛾0𝛾5(𝛾 · b0)− 𝛾0Δ0) 𝛿
4(𝑟 − 𝑟′). (24)

As to the inverse full fermion propagator, the general-
ization of ansatz (13) to the case under consideration
is given by

𝑖𝐺−1
1 (𝑟, 𝑟′) = (𝑖𝜕𝑡 + 𝑖𝑣F𝛾0(𝛾 ·∇)− 𝑣F𝛾0𝛾5(𝛾 · b)−

− 𝛾0(Δ1 +Δ𝑒−2𝑖(b′·r)𝛾5))𝛿4(𝑟 − 𝑟′). (25)

To proceed further with the Schwinger–Dyson equa-
tion (8), we must calculate the fermion propaga-
tor. However, due to Δ0 and Δ1 terms in the in-
verse full fermion propagator (25), the chiral phase
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factor 𝑒−2𝑖(b′·r)𝛾5 cannot be removed by the chiral
transformation (11). Therefore, we cannot proceed
as straightforwardly as in Section 3. Since we assume
that Δ0 is small, and Δ1 is proportional to Δ0, we
use perturbation theory in Δ1. We have

𝐺1(𝑟, 𝑟
′) = 𝐺(𝑟, 𝑟′) + Δ1𝐹 (𝑟, 𝑟

′), (26)

where 𝐺(𝑟, 𝑟′) is the fermion propagator, which cor-
responds to the case Δ1 = 0. To find 𝐹 (𝑟, 𝑟′), we use
the equation∫︁
𝑑4𝑟′𝐺−1

1 (𝑟, 𝑟′)𝐺1(𝑟
′, 𝑟′′) = 𝛿4(𝑟 − 𝑟′′). (27)

In the first order in Δ1, we find

𝛾0𝑖𝐺(𝑟, 𝑟
′′) +

∫︁
𝑑4𝑟′𝐺−1(𝑟, 𝑟′)𝐹 (𝑟′, 𝑟′′) = 0. (28)

It is convenient to factor out the chiral phase in the
inverse full and full fermion propagators

𝐺−1(𝑟, 𝑟′) = 𝑒𝑥�̄�−1(𝑟, 𝑟′)𝑒−𝑥′
,

𝐺(𝑟, 𝑟′) = 𝑒𝑥�̄�(𝑟, 𝑟′)𝑒−𝑥′
,

(29)

where �̄�(𝑟, 𝑟′) is the fermion propagator without the
chiral phase, and 𝑥 ≡ 𝑖(b′ · r)𝛾5, 𝑥′ ≡ 𝑖(b′ · r′)𝛾5.
Multiplying Eq. (28) by −𝑖𝑒𝑥′′′

�̄�(𝑟′′′, 𝑟)𝑒−𝑥 and inte-
grating over 𝑟, we obtain∫︁
𝑑4𝑟𝑒𝑥

′′′
�̄�(𝑟′′′, 𝑟)𝑒−𝑥𝛾0𝑒

𝑥�̄�(𝑟, 𝑟′′)𝑒−𝑥′′
=

= 𝑖𝐹 (𝑟′′′, 𝑟′′). (30)

The Schwinger–Dyson equation (8) takes the follow-
ing form:

𝑖�̄�−1(𝑟, 𝑟′)− 𝛾0Δ1𝛿
(4)(𝑟 − 𝑟′)𝑒2𝑥

′
=

= 𝑒−𝑥𝑖𝑆−1(𝑟, 𝑟′)𝑒𝑥
′
− 𝑔𝛿(4)(𝑟 − 𝑟′)

(︁
�̄�(𝑟, 𝑟′)+

+Δ1𝑒
−𝑥𝐹 (𝑟, 𝑟′)𝑒𝑥

′
− 𝑒−𝑥 tr[𝐺1]𝑒

𝑥′
)︁
. (31)

Multiplying Eq. (31) by 𝛾0 and taking trace, we have

4Δ1 cos 2(b
′ · r) + 4Δ = 4Δ0 cos 2(b

′ · r)+

+ 𝑔 tr[�̄�0(𝑟, 𝑟)𝛾0] + 𝑔Δ1 tr[𝑒−𝑥𝐹 (𝑟, 𝑟)𝑒𝑥𝛾0]. (32)

The equation for Δ is the same as in Section 3 and
can be easily written in the explicit form. Now, we
can proceed with the 𝐹 term:

tr[𝑒−𝑥𝑖𝐹 (𝑟, 𝑟)𝑒𝑥𝛾0] =

= tr
[︁∫︁

𝑑4𝑟′�̄�(𝑟, 𝑟′)𝑒−2𝑥′
𝛾0�̄�(𝑟

′, 𝑟)𝛾0

]︁
. (33)

Expressing �̄�(𝑟, 𝑟′) through its Fourier transform in
the momentum space and integrating over 𝑟, we find

tr[𝑒−𝑥𝑖𝐹 (𝑟, 𝑟)𝑒𝑥𝛾0] = tr
[︂ ∫︁

𝑑𝜔1𝑑
3k1

(2𝜋)4
𝑑𝜔2𝑑

3k2

(2𝜋)4
×

× �̄�(𝜔1,k1)(2𝜋)
4𝛿(𝜔1 − 𝜔2)𝛿(k1 − k2 − 2b′𝛾5)×

× 𝑒𝑖𝑡
′(𝜔1−𝜔2)−𝑖r(k2−k1)𝛾0�̄�(𝜔2,k2)𝛾0

]︂
, (34)

where 𝛿(k1 −k2 +2b′𝛾5) is a matrix 4× 4 which can
be written as:

𝛿(k1 − k2 − 2b′𝛾5) =
1 + 𝛾5

2
𝛿(k1 − k2 − 2b′)+

+
1− 𝛾5

2
𝛿(k1 − k2 + 2b′). (35)

Integrating over 𝜔1 and k1, Eq. (34) can be rewritten
as follows:

tr[𝑒−𝑥𝑖𝐹 (𝑟, 𝑟)𝑒𝑥𝛾0] = tr
[︂ ∫︁

𝑑𝜔2𝑑
3k2

(2𝜋)4
×

×
(︀
�̄�(𝜔2,k2 + 2b′)𝑃+ + �̄�(𝜔2,k2 − 2b′)𝑃−

)︀
×

× 𝑒2𝑥�̄�(𝜔2,−k2)

]︂
, (36)

where 𝑃± = 1±𝛾5

2 . Equation (36) gives contributions
only with the cos 2(b′ · r) and sin 2(b′ · r) terms. The
sine term is approximately by 8 orders smaller than
the leading cosine term and will be neglected. This
term is related to the approximations that were used
in the derivation of the gap equation. Thus, the gap
equation (32) is equivalent to the following system of
equations:

Δ1 = Δ0 +
𝑔

4
Δ1 tr[𝑒−𝑥𝐹 (𝑟, 𝑟)𝑒𝑥𝛾0],

Δ =
𝑖𝑔

4
tr[−𝑖�̄�(𝑟, 𝑟)𝛾0].

(37)

To obtain the equation for the chiral shift parameter,
we multiply Eq. (31) by 𝛾0𝛾5𝛾 and take trace

b̄ = b̄0 +
𝑔

4
tr[𝛾0𝛾5𝛾�̄�0(𝑟, 𝑟)] +

+
𝑔Δ1

4
tr[𝛾0𝛾5𝛾𝑒−𝑥𝐹 (𝑟, 𝑟)𝑒𝑥]. (38)
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Fig. 6. Dependence of Δ1 on the coupling constant and the
chiral shift parameter

Further,

tr[𝛾0𝛾5𝛾𝑒−𝑥′
𝑖𝐹 (𝑟′, 𝑟′)𝑒𝑥

′
] = tr

[︂
𝛾5𝛾

∫︁
𝑑𝜔2𝑑

3k2

(2𝜋)4
×

×
(︀
�̄�(𝜔2,k2 + 2b′)𝑃+ + �̄�(𝜔2,k2 − 2b′)𝑃−

)︀
×

× 𝑒2𝑥
′
�̄�(𝜔2,−k2)

]︂
. (39)

This term also can generate only the sine and cosine
terms. Therefore, in order to be consistent with the
initial ansatz for the fermion propagator Eq. (26), we
should neglect them in the equation for the chiral shift
parameter. So, we have

b̄ = b̄0 +
𝑔

4
tr[𝛾0𝛾5𝛾�̄�(𝑟, 𝑟)], (40)

which is equivalent to Eq. (15). Further, using
Eq. (17) and performing the Wick rotation, we can
obtain the following equation for Δ1:

Δ1 = Δ0 +

∫︁
𝑑𝜔𝐸𝑑

3k

(2𝜋)4
𝑔Δ1 ×

×

(︃
(𝑣2F𝑘

2 + 𝜔2
E)

2 −Δ4

𝐾1(𝜔E,k)𝐾1(𝜔E,k− 2b′)𝐾1(𝜔E,k+ 2b′)
−

−
4𝑏′2𝑧 𝑣

2
F

(︀
𝑘2𝑣2F cos (2𝜃)−𝑊 2 +Δ2

)︀
𝐾1(𝜔E,k)𝐾1(𝜔E,k− 2b′)𝐾1(𝜔E,k+ 2b′)

)︃
. (41)

where 𝐾1(𝜔E,k) = 𝑣2Fk
2 +Δ2 +𝜔2

E. It is worth men-
tioning that the equations for Δ and b given by
Eqs. (37) and (40) coincide with Eqs. (19) and (20).

4.2. Solutions

Equation (41) is solved numerically in the case of
b′ = b0 and b0 = {0, 0, 𝑏0}, by using Mathemat-
ica. Further, we use the following values of constants:
𝑣F = 3.5×105 m/s, Λ = 𝜋

𝑎 = 2.65×109 m−1 (accord-
ing to Ref. [25], for Bi0.88Sb0.12, 𝑎 = 1.18 nm), and
Δ0 = 0.021 eV (according to Ref. [25]). Numerical
solutions of Eq. (41) are plotted in Fig. 6.

4.3. Quasiparticle energy spectrum

In the previous subsection, we have found Δ1 and Δ.
Let us determine the energy spectrum of the system
with the dynamically generated Δ1 and Δ. Assuming
without any loss of generality that b0 points in the
+𝑧 direction and performing the chiral transforma-
tion (11), we can rewrite the Hamiltonian of the sys-
tem as follows:

𝐻 = 𝑣F𝛾0(𝛾𝑥𝑘𝑥 + 𝛾𝑦𝑘𝑦)− 𝑖𝑣F𝛾0𝛾𝑧𝜕𝑧 +

+ 𝛾0Δ+ 𝛾0Δ1𝑒
2𝑖𝑏0𝑧𝛾5 . (42)

The last term is periodic and has a small ampli-
tude, so we have a standard situation similar to
the model of nearly free electron in the solid-state
physics. Thus, the quasiparticle energy zone splits
into additional zones near the boundaries of a new
Brillouin zone. According to Ref. [26], we can write
the quasiparticle energy spectrum in the first order of
perturbation theory (Δ1 ≪ Δ), i.e.,

𝜖0𝑘 = ±
√︁
𝑣2Fk

2
⊥ + 𝑣2F𝑘

2
𝑧 +Δ2,

𝜖±𝑘 =
𝜖0𝑘+ 𝜖0𝑘−𝐾

2
± 1

2

√︁(︀
𝜖0𝑘 − 𝜖0𝑘−𝐾

)︀2
+ 4𝑈𝐾𝑈−𝐾 ,

(43)

where 𝐾 = 2𝑏0 is the inverse lattice vector of a new
Brillouin zone and,

𝑈𝐾 =
𝑏0
𝜋

𝜋
2𝑏0∫︁

− 𝜋
2𝑏0

𝑑𝑧𝑒−𝑖𝐾𝑧𝛾0Δ1𝑒
2𝑖𝑏0𝑧𝛾5 =

=
−4Δ1𝑏0𝛾0

𝜋
sin

(︂
𝐾𝜋

2𝑏0

)︂
×

×
(︂
𝑃+

1

𝐾 − 2𝑏0
+ 𝑃−

1

𝐾 + 2𝑏0

)︂
=

= −2Δ1𝛾0 (𝑃+𝛿𝐾,2𝑏0 + 𝑃−𝛿𝐾,−2𝑏0). (44)
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Fig. 7. Quasiparticle energy spectrum in the first order of perturbation theory for the chiral shift 𝑏0 = 0.6 × Λ as a function
of: (a) 𝑘𝑧 with 𝑘 = 0, (b) 𝑘 with 𝑘𝑧 = 𝑏0. Solid lines correspond to 𝜖+𝑘 , dashed lines to 𝜖−𝑘 , and dotted lines to the zero order of
perturbation theory

To plot the energy spectrum of quasiparticles,
we can use the following numerical values: 𝑣F ≈
≈ 3.5 × 105 m/s, 𝑔 = 1.2𝑔cr, Δ = 0.64 eV. For the
given 𝑔, the gap in Fig. 6 is well fitted by Δ1 =

= 1+𝑐1𝑦
2+𝑐2𝑦

4

𝑐3+𝑐4𝑦2+𝑐5𝑦4 × (Λ𝑣F) with fitting parameters 𝑐1 =
= 7.8, 𝑐2 = 19.1, 𝑐3 = 7.4, 𝑐4 = 106.8, 𝑐5 = 453.2,
and 𝑦 = 𝑏0

Λ . We plot the energy spectrum in Fig. 7.

5. Discussion and Summary

We have studied the gap generation in Weyl semime-
tals, by using a model with local Coulomb interac-
tion. We have showed that there is a critical value of
coupling constant 𝑔cr, which separates the symmet-
ric phase and the phase with broken symmetry. The
phase diagram of the system is displayed in Fig. 5 in
the plane of coupling constant and chiral shift pa-
rameter. Further, the gap generation in Weyl semi-
metals-like materials with small bare gap was stud-
ied. The non-zero bare gap considerably complicates
the analysis, because the chiral phase in the ansatz
for the inverse full fermion propagator cannot be re-
moved by the chiral transformation. The solution in
this case is displayed in Fig. 6. Obviously, the chiral
shift parameter inhibits the gap generation, because
the larger |b0|, the smaller the gap Δ1. Further, the
quasiparticle energy spectrum was determined, and
it is found that the simultaneous presence of gaps Δ1

and Δ𝑒−2𝑖𝑏0𝑧𝛾5 leads to the additional splitting of the
quasiparticle energy bands shown in Fig. 7.

In the present study, we have analyzed a simple
model with two Weyl nodes and a contact four-fer-
mion interaction. In real materials, such as tellurium,
bismuth, and antimony heterostructures, the more re-
alistic Coulomb interaction and the anisotropy should
be taken into account. The corresponding analysis
will be done and reported elsewhere. However, we be-
lieve that our qualitative results will survive in the
case of more realistic models.

The author is grateful to E.V.Gorbar for helpful
discussions.

APPENDIX
Free energy density

In this Appendix, we will focus on the derivation of the free en-
ergy density. Since the Schwinger–Dyson equation (8) implies
that
𝑔

2

∫︁
𝑑4𝑟

(︀
tr
[︀
𝐺(𝑟, 𝑟)𝐺(𝑟, 𝑟)

]︀
− tr

[︀
𝐺(𝑟, 𝑟)

]︀
tr
[︀
𝐺(𝑟, 𝑟)

]︀)︀
=

= −
𝑖

2

(︀
1− 𝑆−1𝐺

)︀
, (A1)

the energy density can be rewritten as follows:

ℰ = 𝑖Tr

(︂
Ln𝐺−1 +

1

2
(𝑆−1𝐺− 1)

)︂
=

= 𝑖

∞∫︁
−∞

𝑑𝜔

2𝜋
Tr

[︂
Ln𝐺−1 +

1

2
(𝑆−1𝐺− 1)

]︂
=

= 𝑖

∞∫︁
−∞

𝑑𝜔

2𝜋
Tr−𝜔

𝜕𝐺−1(𝜔)

𝜕𝜔
𝐺(𝜔)++

1

2
(𝑆−1(𝜔)𝐺(𝜔)−1)

]︂
. (A2)
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Using the relation

𝜕𝑖𝐺−1(𝜔; r, r′)

𝜕𝜔
= 𝛿(r− r′), (A3)

we find

ℰ = 𝑖

∞∫︁
−∞

𝑑𝜔

2𝜋
tr [𝑖𝜔𝐺(𝜔;0)+

+
1

2

∫︁
𝑑3r𝑆−1

0 (𝜔; r)𝐺(𝜔;−r)

]︂
− ℰ0, (A4)

where ℰ is the energy density. It is convenient to perform the
Fourier transformation

ℰ = 𝑖

∫︁
𝑑𝜔𝑑3k

(2𝜋)4
tr

[︂
𝑖𝜔𝐺(𝜔;k) +

1

2
𝑆−1(𝜔;k)𝐺(𝜔;k)

]︂
− ℰ0. (A5)

Using Eq. (17) and assuming that �̄� = 0 and b0 points in the
+𝑧 direction, we obtain

ℰ = 2𝑖

∫︁
𝑑𝜔𝑑3k

(2𝜋)4
𝑣2F𝑘

2 + 𝜔2

𝑣2F𝑘
2 − 𝜔2 +Δ2

− ℰ0 =

= −
Λ4𝑣F

8𝜋2

[︃√︃(︂
Δ

𝑣FΛ

)︂2
+ 1

(︃
2−

(︂
Δ

𝑣FΛ

)︂2)︃
+

+

(︂
Δ

𝑣FΛ

)︂4
arcsinh

(︂
𝑣FΛ

Δ

)︂]︃
− ℰ̃0, (A6)

where the constant ℰ̃0 can be omitted.
In the case �̄� ̸= 0, there are some subtleties in the deter-

mination of the energy density of the system. Performing the
chiral transformation (11), one must be careful with the in-
tegral boundaries. To account for this fact, we can represent
Eq. (A5) in the terms of the left- and right-hand sides:

ℰ = 𝑖

∫︁
𝑑𝜔𝑑3k

(2𝜋)4
tr[(𝑃L + 𝑃R)𝑖𝜔𝐺(𝜔;k)+

+ (𝑃L + 𝑃R)
1

2
𝑆−1(𝜔;k)𝐺(𝜔;k)] = ℰL + ℰR. (A7)

If we perform the chiral transformation (11), then we must
redefine the limits of integration as follows:

ℰL :

Λ∫︁
−Λ

𝑑𝑘𝑧 →
Λ−𝑏0∫︁

−Λ−𝑏0

𝑑𝑘𝑧 , ℰR :

Λ∫︁
−Λ

𝑑𝑘𝑧 →
Λ+𝑏0∫︁

−Λ+𝑏0

𝑑𝑘𝑧 . (A8)

For the integral over 𝜔, one can use Eq. (A7) and Eq. (17). We
have the typical integral∫︁

𝑑𝜔E𝑑
3k

(2𝜋)4
𝜔4
E + 𝜔2

E𝐴2 +𝐴1

(𝜔2
E +𝑊1)(𝜔2

E +𝑊2)
=

=

∫︁
𝑑𝜔E𝑑

3k

(2𝜋)4

(︃
1−

𝜔2
E (𝐴2 −𝑊1 −𝑊2) +𝐴1 −𝑊1𝑊2

(𝜔2
E +𝑊1)(𝜔2

E +𝑊2)

)︃
, (A9)

where 𝐴1 and 𝐴2 some functions of the dynamical parameters
and k (since they are rather cumbersome, we don’t present
them here). As we are interested in the difference of energy
densities, we can neglect the first term in the brackets in

the equation above. Further, using Eq. (18), we can integrate
over 𝜔𝐸

ℰL =

Λ∫︁
0

Λ−𝑏0∫︁
−Λ−𝑏0

𝑘𝑑𝑘 𝑑𝑘𝑧

(2𝜋)2
1

√
𝑊1 +

√
𝑊2

[︂
𝐴2(𝑘𝑧)−

−𝑊1 −𝑊2 +
𝐴1(𝑘𝑧)−𝑊1𝑊2√

𝑊1𝑊2

]︂
,

ℰR =

Λ∫︁
0

Λ+𝑏0∫︁
−Λ+𝑏0

𝑘𝑑𝑘 𝑑𝑘𝑧

(2𝜋)2
1

√
𝑊1 +

√
𝑊2

[︂
𝐴2(−𝑘𝑧)−

−𝑊1 −𝑊2 +
𝐴1(−𝑘𝑧)−𝑊1𝑊2√

𝑊1𝑊2

]︂
, (A10)

where 𝑊1,2 =
(︀
Δ2 + 𝑣2F(k

2 + 𝑏2)
)︀
∓ 2𝑣F𝑏

√︁
Δ2 + 𝑘2𝑧𝑣

2
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П.О.Сухачов

ГЕНЕРАЦIЯ ЩIЛИНИ
У ВЕЙЛIВСЬКИХ НАПIВМЕТАЛАХ З ЛОКАЛЬНОЮ
ЧОТИРЬОХФЕРМIОННОЮ ВЗАЄМОДIЄЮ

Р е з ю м е

Дослiджено генерацiю щiлини у вейлiвських напiвметалах з
локальною чотирьохфермiонною взаємодiєю. Показано, що
iснує критичне значення константи зв’язку, яке вiдокрем-
лює симетричну фазу та фазу з порушеною симетрiєю i
описана вiдповiдна фазова дiаграма. Вивчено генерацiю щi-
лини в бiльш загальному класi вейлiвських напiвметалiв з
малою початковою щiлиною та отримано квазiчастинковий
енергетичний спектр. Показано, що в цьому випадку дина-
мiчно згенерована щiлина може привести до додаткового
розщеплення квазiчастинкових енергетичних зон.
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