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A generalization of quantum-mechanical equations expressed in the hydrodynamic form by in-
troducing terms that involve the diffusion velocity at zero and finite temperatures, as well
as the diffusion pressure energy in a warm vacuum, into the Lagrangian density has been
proposed. It is used as a basis for constructing a system of equations similar to the Euler
equations, but making allowance for quantum-mechanical and thermal effects, for the model of
one-dimensional hydrodynamics. The equations obtained generalize the equations of the Nelson
stochastic mechanics. A numerical analysis of the solutions of this system allowed a conclu-
sion to be drawn about its validity for the description of the relaxation of quantum thermal
fluctuations.
K e yw o r d s: (~, 𝑘)-dynamics, quantum thermostat, cold and warm vacua, effective ac-
tion, self-diffusion, diffusion pressure energy density, drift and diffusion velocities, numerical
analysis.

1. Introduction

Thermal fluctuations in hydrodynamics have been
taken into account for half a century. However, there
is no consistent quantum-mechanical statistical the-
ory till now that would make allowance for quan-
tum-mechanical and thermal effects simultaneously
[1]. In this paper, we describe an approach to the
development of such a theory, by using the hydro-
dynamic form of quantum mechanics as a starting
point. With this aim in view, we propose to gener-
alize the theory by considering the quantum-thermal
diffusion existing at zero and finite Kelvin tempera-
tures, which reflects the stochastic character of the
environmental influence, and the diffusion pressure
energy density. In this case, we will be be based on
the concept of thermal equilibrium generalized to the

c○ O.N. GOLUBJEVA, S.V. SIDOROV,
V.G. BAR’YAKHTAR, 2015

case where the stochastic influence of both the quan-
tum-mechanical and thermal types are taken into ac-
count simultaneously. As a result, a system of hy-
drodynamic equations is obtained in the case of a
one-dimensional model, which is analogous to a sys-
tem of Euler equations, but differs from it by mak-
ing allowance for quantum-mechanical and thermal
effects.

As a rule, the hydrodynamic equations are derived
from either statistical mechanics or kinetics. In both
cases, specific ideas concerning the medium struc-
ture and the interactions between its components are
used. Accordingly, hydrodynamic fluctuations are ac-
counted for by including a random stress tensor, to-
gether with a regular one, into the hydrodynamic
equations. For the former tensor, only a correlator is
given on the basis of fluctuation-dissipation theorem.

At the same time, hydrodynamics is conceptually
similar to the equilibrium thermodynamics, since it
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is also a model-free theory in principle. Therefore, we
propose to consider the theory describing the relax-
ation of quantum thermal fluctuations of the density
and the drift velocity, under the equilibrium condi-
tion with respect to the temperature, as a stochastic
hydrodynamics. Then, the derivation of correspond-
ing equations can be started from a generalization
of the hydrodynamic form of quantum mechanics at
zero temperature as a model-free theory onto the case
where the self-diffusion in cold and warm vacua is
taken into consideration explicitly. This approach al-
lows the hydrodynamic form of quantum mechanics
to be extended, for the first time, to the case of finite
temperatures and makes it possible to include not
only the self-diffusion, but also the diffusion pressure
of a warm vacuum into consideration.

As a result, in the framework of a one-dimensional
model, we will obtain a system of stochastic hydro-
dynamic equations, which is valid at an arbitrary
temperature. Its specific feature consists in that the
quantum and thermal fluctuations are taken into ac-
count nonadditively. Moreover, those equations can
be written down in the form inherent to equations of
the two-velocity hydrodynamics, which is a general-
ization of the Nelson stochastic mechanics.

In this research, we use the results obtained earlier
in work [2] as a basis. In the cited work, the theory
of (~, 𝑘)-dynamics was developed, which made it pos-
sible to introduce a consistent quantum thermal de-
scription of the thermal equilibrium state that differs
from both the standard equilibrium thermodynamics
and the quantum statistical mechanics (QSM).

The idea of (~, 𝑘)-dynamics is based on chang-
ing from the classical thermostat model with the
distribution modulus 𝜃cl = 𝑘B𝑇 to the adequate
quantum-mechanical one (the quantum thermostat or
the “warm” vacuum, which is a set of normal modes
with all frequencies 𝜔) with the distribution modulus
𝜃qu = 𝑘BT. Here, the quantity

T ≡ ~𝜔
2𝑘B

coth
~𝜔

2𝑘B𝑇
= κ coth

(︁
κ
𝜔

𝑇

)︁
(1)

is called the effective temperature, and the notation

κ = ~/2𝑘B

is used for brevity. The advantage of the parameter
T in comparison with the absolute (Kelvin) temper-
ature 𝑇 consists in that the former never becomes

zero. This circumstance makes it possible to consider
a contact of the system with the environment at
𝑇 > 0 from a common position, which is important,
when fluctuations of both quantum-mechanical and
thermal origins occur simultaneously. This quantity
is accepted as a generalized criterion of thermal equi-
librium for an object in contact with the quantum
thermostat.

The main distinction of the (~, 𝑘)-dynamics from
QSM consists in that the state of an object in equi-
librium with a quantum thermostat is not described
by a density matrix, but by a complex wave function
𝜓(𝑞, 𝜔), whose amplitude and phase depend on the
temperature. In the coordinate representation, this
wave function looks like

𝜓(𝑞, 𝜔) =
[︀
2𝜋(Δ𝑞)2

]︀−1/4
exp

{︂
− 𝑞2

4(Δ𝑞)2
(1− 𝑖𝛼)

}︂
, (2)

where (Δ𝑞)2 is the coordinate dispersion, and 𝛼 a
parameter determining the phase.

In the framework of the (~, 𝑘)-dynamics, we simul-
taneously introduce a new macroscopic parameter,
the effective influence exerted by the quantum ther-
mostat on the system, which is calculated as the aver-
age of the quantum thermal influence operator, J = 𝚥:

J =
~
2

√︀
𝛼2 + 1 = J0

√︀
𝛼2 + 1. (3)

Here, J0 = ~/2 is the limiting J-value at the ab-
solute temperature 𝑇 → 0, which corresponds to a
purely quantum influence. In this case, the phase fac-
tor 𝛼 vanishes, which corresponds to the case of a
real-valued wave function 𝜓. In the general case, the
temperature dependence of the effective influence is
contained in the radicand in Eq. (3). Taking into ac-
count that κ = ~/(2𝑘B) and the phase parameter 𝛼
in formula (3) satisfies the equality

𝛼2 ≡ sinh−2
(︁
κ
𝜔

𝑇

)︁
,

Eq. (3) for the effective influence J reads

J =
~
2
coth

(︁
κ
𝜔

𝑇

)︁
=

~
2
coth

~𝜔
2𝑘B𝑇

. (4)

2. Effective Influence as a Universal
Characteristic of Transport
Processes. Self-Diffusion Coefficient

First of all, we note that, in accordance with the re-
sults of work [2], the most important thermodynamic
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parameters in the equilibrium state can be expressed
in terms of the effective influence J. In particular,
these are the effective temperature T,

T =
𝜔

𝑘B
J, (5)

the effective internal energy U,

U = 𝜔J, (6)

and the effective entropy S,

S = −𝑘B
(︂
1 + ln 2

J
~

)︂
.

Introducing the limiting values of S and J as 𝑇 → 0,
namely, S0 = 𝑘B and J0 = ~

2 , which correspond to
a purely quantum influence, the relation between the
effective influence and the effective entropy can be
found:

J = S0
(︂
1 + ln

J
J0

)︂
. (7)

Therefore, it seems natural that the universal con-
stant κ is physically defined as the limit of the ratio
between two fundamental macroscopic quantities, the
effective influence J and the effective entropy S,

κ =
~

2𝑘B
≡ lim

𝑇→0

J
S
=

J0

S0
. (8)

However, this is not the end. As was shown in
work [7], the transport coefficients typical of nonequi-
librium thermodynamics can be expressed in terms
of the effective influence J, which demonstrates their
stochastic origin. For instance, this is evident for the
self-diffusion process in a medium with a nonuniform
density after the equilibrium with respect to the tem-
perature has been established.

Really, as was shown in the theory of Brownian
motion at rather high temperatures (𝑡 ≫ 𝜏) [3], the
uncertainty relation

(Δ𝑝)(Δ𝑞) = 𝑚𝐷𝑇 (9)

is satisfied. Here, 𝐷𝑇 is the coefficient of ther-
mally driven diffusion. In particular, for a free mi-
croparticle, 𝐷𝑇 = 𝑘B𝑇𝜏/𝑚, where 𝜏 is the relax-
ation time, whereas 𝐷𝑇 = 𝑘B𝑇/𝑚𝜔 for a Brow-
nian oscillator [4]. As was shown in work [5], the

momentum–coordinate Heisenberg uncertainty rela-
tion for a quantum oscillator in the state of equilib-
rium with a warm vacuum looks like

(Δ𝑝) (Δ𝑞) = J =
~
2
coth

(︁
κ
𝜔

𝑇

)︁
. (10)

Comparing Eqs. (9) and (10), this relation can be
rewritten in the form

(Δ𝑝)(Δ𝑞) = 𝑚D. (11)

Then the quantity

D =
~
2𝑚

coth
(︁
κ
𝜔

𝑇

)︁
≡ J
𝑚

(12)

is natural to be called the effective self-diffusion co-
efficient. Note that the quantity ~/2𝑚 in the case of
contact with a cold vacuum – or, in other words, in
the absence of a thermal influence from the environ-
ment – was earlier called by Nelson [6] as the quantum
diffusion coefficient ~/2𝑚 = 𝐷qu.

From Eq. (12), it follows that the coefficient D ac-
quires the physical meaning of the effective influence
per mass unit. The limiting D-values at high and low
absolute temperatures equal

D → 𝐷𝑇 =
𝑘B𝑇

𝑚𝜔
at 𝑘B𝑇 ≫ ~𝜔/2,

D → 𝐷qu =
~
2𝑚

at 𝑘B𝑇 ≪ ~𝜔/2.
(13)

As was demonstrated in work [7], the effective influ-
ence J can be used to introduce, on the basis of rela-
tion (12), other effective transport coefficients as well,
such as the coefficients of heat conductivity, shear
viscosity, and so on, which characterize nonequilib-
rium processes. Hence, the majority of transport co-
efficients can be expressed in terms of the effective
self-diffusion coefficient D, which can be, in principle,
measured experimentally.

Concerning the constant κ, it can be expressed in
terms of observed transport coefficients, while ana-
lyzing specific experiments. Namely, relations of the
following type are used:

κ =

(︂
D

S/𝑚

)︂
min

=

(︂
𝜂ef
S/𝑉

)︂
min

= ..., (14)

where S/𝑚 is the effective entropy per mass unit, S/𝑉
the effective entropy per volume unit, and 𝜂ef the
effective coefficient of shear viscosity.
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3. Standard Quantum
Mechanics in the Hydrodynamic Form

The nonrelativistic field form of standard quantum
mechanics (at 𝑇 = 0) can be obtained by nullifying
the variation of action functional [8]

𝒮 =

𝑡2∫︁
𝑡1

𝑑𝑡

∫︁
𝑑𝑞ℒ0[𝜓

*;𝜓]. (15)

Here, ℒ0[𝜓
*;𝜓] is the Lagrangian density for a spin-

less particle at 𝑇 = 0, whereas 𝜓(𝑞, 𝑡) and 𝜓*(𝑞, 𝑡)
are the wave function and its complex conjugate, re-
spectively, which have the meaning of independent
nonrelativistic fields. Below, the consideration is re-
stricted to the one-dimensional case.

It is evident that, in the general case, the functional
ℒ0[𝜓

*;𝜓] has to be chosen in the form

ℒ0[𝜓
*;𝜓] = 𝜓*(𝑞, 𝑡)

(︂
𝑖~
𝜕

𝜕𝑡
+

~2

2𝑚

𝜕2

𝜕𝑞2

)︂
𝜓(𝑞, 𝑡)−

−𝜓*(𝑞, 𝑡)𝑈(𝑞)𝜓(𝑞, 𝑡), (16)

where the parentheses on the right-hand side con-
tain the Klein–Gordon operator in the nonrelativistic
limit, and the potential energy operator 𝑈(𝑞) charac-
terizes the energy of regular influence. The indepen-
dent variation of the action in form (16) with respect
to the field 𝜓* brings about the condition
𝑡2∫︁

𝑡1

𝑑𝑡

∫︁
𝑑𝑞
𝛿ℒ0[𝜓

*;𝜓]

𝛿𝜓
=

=

𝑡2∫︁
𝑡1

𝑑𝑡

∫︁
𝑑𝑞

(︂
𝑖~
𝜕𝜓

𝜕𝑡
+

~2

2𝑚

𝜕2𝜓

𝜕𝑞2
− 𝑈(𝑞)𝜓

)︂
= 0 (17)

that gives rise to the Schrödinger equation

𝑖~
𝜕𝜓

𝜕𝑡
= − ~2

2𝑚

𝜕2𝜓

𝜕𝑞2
+ 𝑈(𝑞)𝜓. (18)

Accordingly, its complex conjugate is obtained by
varying the action in form (16) with respect to 𝜓. The
result differs from formula (18) by the substitutions
of −𝑖 for 𝑖 and 𝜓* for 𝜓. We would like to empha-
size that the Schrödinger equations for the complex
wave functions 𝜓 and 𝜓* have the sense of Euler–
Lagrange equations, with the wave functions being
always complex-valued in the full-scale quantum me-
chanics.

Let us written the wave function in the form

𝜓(𝑞, 𝑡) =
√︀
𝜌(𝑞, 𝑡) exp{𝑖𝜃(𝑞, 𝑡)}, (19)

where 𝜌(𝑞, 𝑡) = |𝜓(𝑞, 𝑡)|2. This expression, as well as
its complex conjugate, can be substituted directly
into the Schrödinger equations for 𝜓 and 𝜓* to ob-
tain a system of equations for the functions 𝜌(𝑞, 𝑡) and
𝜃(𝑞, 𝑡), which has been known long ago in the litera-
ture as quantum mechanics in the hydrodynamic form
[8, 9]. Since we aim at constructing a modified hy-
drodynamics on the basis of the microscopic descrip-
tion, we propose another approach to the problem.
It dictates to develop the theory in the framework
of the Lagrange formulation from the very begin-
ning. Therefore, let us begin from the transformation
of the Lagrangian density ℒ0 to variables that are the
most suitable for the hydrodynamic description. As
the functional arguments of the Lagrangian density,
we select two independent real-valued functions, the
probability density 𝜌 and the phase 𝜃, rather than the
complex wave functions 𝜓 and 𝜓*. In essence, they
are close to the mass density 𝜌𝑚 and the drift velocity
𝑣 ∼ 𝜕𝜃

𝜕𝑞 , which are typical of standard hydrodynamics.
With this purpose in view, let us change the argu-

ments in the Lagrangian density (16) by substituting
expression (19) for 𝜓 and the corresponding expres-
sion for 𝜓*. Then we obtain

ℒ0[𝜓;𝜓
*] = ℒ0[𝜌; 𝜃] =

= −~
𝜕𝜃

𝜕𝑡
𝜌− ~2

2𝑚

(︂
𝜕𝜃

𝜕𝑞

)︂2
𝜌− ~2

8𝑚

(︂
𝜕𝜌

𝜕𝑞

)︂2
1

𝜌
−

−𝑈(𝑞)𝜌+ 𝑖
~
2

𝜕𝜌

𝜕𝑡
+

~2

2𝑚

𝜕

𝜕𝑞

(︂
1

2

𝜕𝜌

𝜕𝑞
+ 𝑖𝜌

𝜕𝜃

𝜕𝑞

)︂
. (20)

Here, the term containing 𝜕𝜌
𝜕𝑡 can be neglected, be-

cause it gives a zero contribution, when the action 𝒮
in form (15) is varied with respect to 𝜃 or 𝜌. The last
term in Eq. (20) is the total derivative with respect to
𝑞, so that it can also be excluded from the definition
of ℒ0[𝜌; 𝜃]. Therefore, the ultimate expression for the
Lagrangian density ℒ0[𝜌; 𝜃] looks like

ℒ0[𝜌; 𝜃] = −~
𝜕𝜃

𝜕𝑡
𝜌− ~2

2𝑚

(︂
𝜕𝜃

𝜕𝑞

)︂2
𝜌−

− ~2

8𝑚

(︂
𝜕𝜌

𝜕𝑞

)︂2
1

𝜌
− 𝑈(𝑞)𝜌. (21)

Varying the action S written in form (15), in which
ℒ0[𝜌; 𝜃] is taken from Eq. (21), with respect to the
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variables 𝜃 and 𝜌, we obtain the following equations
for the real functions 𝜌(𝑞, 𝑡) and 𝜃(𝑞, 𝑡):

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑞

(︂
𝜌
~
𝑚

𝜕𝜃

𝜕𝑞

)︂
= 0, (22)

~
𝜕𝜃

𝜕𝑡
+

~2

2𝑚

(︂
𝜕𝜃

𝜕𝑞

)︂2
+ 𝑈(𝑞)−

− ~2

8𝑚

[︃
1

𝜌2

(︂
𝜕𝜌

𝜕𝑞

)︂2
+ 2

𝜕

𝜕𝑞

(︂
1

𝜌

𝜕𝜌

𝜕𝑞

)︂]︃
= 0. (23)

They coincide with the equations that could be ob-
tained for the functions 𝜌 and 𝜃 directly from the
Schrödinger equations. However, now it is clear that
they have a sense of the Lagrange–Euler equations for
the action S of type (15) written with the use of the
variables 𝜌 and 𝜃.

Equation (22) is conventionally assumed to be a
continuity equation for the function 𝜌(𝑞, 𝑡). At the
same time, taking into account that the quantity
~𝜃(𝑞, 𝑡) has the dimensionality of action, Eq. (23) is
considered as an analog of the Hamilton–Jacobi equa-
tion. In so doing, the term in the brackets in formula
(23) is sometimes interpreted as an additional energy
of the quantum origin, 𝑈qu(𝑞), which vanishes in the
semiclassical limit (~ → 0).

Surely, Eqs. (22) and (23) for 𝜌 and 𝜃, on the one
hand, and the Schrödinger equations for 𝜓 and 𝜓*,
on the other hand, are formally equivalent. However,
the derivation of the quantum mechanical equations
in the hydrodynamic form (Eqs. (22) and (23)) im-
mediately from the least-action principle is physically
more preferable from the viewpoint of constructing
the stochastic hydrodynamics. At the same time, in
order to obtain the sought result, we must solve the
problem of the Lagrangian density form. In our opin-
ion, this form has to involve consistently the stochas-
tic influence of the environment (the quantum ther-
mostat).

4. Quantum Self-Diffusion
in a “Cold” Vacuum

In order to reveal the capabilities of a required gener-
alization for ℒ0[𝜌; 𝜃], let us first consider the case of
cold vacuum. For this purpose, let us determine the
physical meaning of the second and third terms on
the right-hand side of expression (21). In accordance
with the terminology introduced by Kolmogorov for

Markovian processes in the general theory of stochas-
tic processes [10] and used by Nelson in his stochastic
mechanics [6], the quantity

𝑣 ≡ ~
𝑚

𝜕𝜃

𝜕𝑞
(24)

will be called the drift velocity. Accordingly, the
quantity

𝑢 ≡ −𝐷qu
1

𝜌

𝜕𝜌

𝜕𝑞
= − ~

2𝑚

1

𝜌

𝜕𝜌

𝜕𝑞
(25)

will be called the diffusion velocity in a cold vacuum.
We would like to emphasize its stochastic quantum
origin.

In terms of the velocities 𝑣 and 𝑢, formulas (21)–
(23) read

ℒ0[𝜌, 𝜃] = −~
𝜕𝜃

𝜕𝑡
𝜌− 𝑚

2
(𝑣2 + 𝑢2)𝜌− 𝑈𝜌, (21a)

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑞
(𝜌𝑣) = 0, (22a)

~
𝜕𝜃

𝜕𝑡
+
𝑚

2
𝑣2 + 𝑈 − 𝑚

2

[︂
𝑢2 − ~

𝑚

𝜕𝑢

𝜕𝑞

]︂
= 0, (23a)

which makes the generalization possible. From for-
mula (22a), it follows that the standard continuity
equation (22) has a semiclassical character, because
the corresponding probability flux density depends
only on the drift velocity 𝑣, whereas the diffusion ve-
locity 𝑢 generated by the stochastic influence of a cold
vacuum is not taken into account.

In this connection, we recall that the Fokker–
Planck equation

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑞
(𝜌𝑉 ) = 0 (26)

including the total velocity of the probability flux
density

𝑉 = 𝑣 + 𝑢 (27)

is, according to Kolmogorov [10], the most general
form of a continuity equation. We will demonstrate
that this equation makes it possible to describe the
approach to the thermal equilibrium state by means
of the self-diffusion, with the case of cold vacuum
including.

Attention should be focused on the fact that the
combination 𝑚

2 (𝑣
2 + 𝑢2) entering expression (21a)
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for ℒ0[𝜌, 𝜃] is a sum of independent contributions
made by the kinetic energies of drift and diffusion
motions. At the same time, the probability flux de-
pends on the total velocity (27). Hence, the natural
substitution of 𝑣2 + 𝑢2 by 𝑉 2 suggests itself in ex-
pression (21a) in order to obtain the Fokker–Planck
equation. As a result, the total expression for the ki-
netic energy associated with the probability flux will
be taken into consideration. Thus, even the standard
quantum mechanics (at 𝑇 = 0) can be generalized.

Now, let us generalize the Lagrangian density
ℒ0[𝜌, 𝜃] in form (21a) by carrying out the correspond-
ing substitution. Then we obtain

ℒ̃0[𝜌, 𝜃] = −~
𝜕𝜃

𝜕𝑡
𝜌− 𝑚

2
𝑉 2𝜌− 𝑈𝜌 =

= ℒ0[𝜌; 𝜃]−𝑚𝑣𝑢𝜌 = ℒ0[𝜌; 𝜃] +
~2

2𝑚

𝜕𝜃

𝜕𝑞

𝜕𝜌

𝜕𝑞
. (28)

The variation of the action functional 𝒮 in form (15)
with ℒ̃0[𝜌, 𝜃] with respect to 𝜃 automatically brings
us to the Fokker–Planck equation with the quantum
diffusion coefficient 𝐷qu,

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑞
(𝜌𝑉 ) =

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑞

(︂
𝜌
~
𝑚

𝜕𝜃

𝜕𝑞

)︂
−𝐷qu

𝜕2𝜌

𝜕𝑞2
= 0.

(29)

At the same time, the variation of 𝑆 with respect to
𝜌 almost does not change the Hamilton–Jacobi equa-
tion, in which there appears an additional, in com-
parison with Eq. (23a), insignificant term ~

2
𝜕𝑣
𝜕𝑞 . As a

result, the analog of Eq. (23a) looks like

~
𝜕𝜃

𝜕𝑡
+
𝑚

2
𝑣2 +𝑈 − 𝑚

2

(︂
𝑢2 − ~

𝑚

𝜕𝑢

𝜕𝑞

)︂
+

~
2

𝜕𝑣

𝜕𝑞
= 0. (30)

The obtained equations (29) and (30) generalize
Eqs. (22a) and (23a) and allow the quantum stochas-
tic influence of a cold vacuum to be consistently taken
into account.

5. Self-Diffusion in the Quantum
Thermostat at 𝑇 = 0

Let us apply the approach developed above to the
description of the self-diffusion, when the quantum
and thermal effects are taken into account simulta-
neously. For this purpose, let us introduce the tem-
perature-dependent Lagrangian density ℒ̃0[𝜌, 𝜃] and

require that it should transform into the expression
for ℒ̃0[𝜌, 𝜃] of type (28) obtained as 𝑇 → 0. To satisfy
this condition, it is enough to substitute the diffusion
coefficient 𝐷qu in expression (28) for the diffusion ve-
locity by D in form (8) and to introduce an additional
term 𝑈𝑇 (𝑞)𝜌, which makes allowance for the density
of the diffusion pressure energy as a result of the ther-
mal stochastic influence of the environment, into the
expression for the Lagrangian density.

In our opinion, the expression for 𝑈𝑇 has to pos-
sess a form that is analogous to the factor −𝑚𝑢2/2
in expression (21a) for a cold vacuum. However, it
must be modified so that 𝑈𝑇 → 0 as 𝑇 → 0. The
corresponding expression looks like

𝑈𝑇 (𝑞) = −𝑚
2

[︁𝛼
ϒ

]︁2
𝑢2ef = − ~2

8𝑚
𝛼2

(︂
1

𝜌

𝜕𝜌

𝜕𝑞

)︂2
, (31)

where we use the notation

𝛼2 ≡ sinh−2 κ
𝜔

𝑇
, ϒ = coth

(︁
κ
𝜔

𝑇

)︁
,

and

𝑢ef ≡ −D
1

𝜌

𝜕𝜌

𝜕𝑞

is the effective diffusion velocity in a warm vacuum.
This quantity is defined analogously to the velocity 𝑢
in Eq. (25), but now it is expressed in terms of the
effective diffusion coefficient D of type (12). Hence,
as the Lagrangian density at 𝑇 = 0, we choose the
expression

ℒ̃𝑇 (𝜌, 𝜃) = −~
𝜕𝜃

𝜕𝑡
𝜌− 𝑚

2
(𝑣+ 𝑢ef)

2𝜌−𝑈𝜌−𝑈𝑇 𝜌. (32)

For the variation operation to be convenient, let
us rewrite expression (32) in terms of the random
functions 𝜃 and 𝜌 in the explicit form:

ℒ̃𝑇 (𝜌, 𝜃) = −~
𝜕𝜃

𝜕𝑡
𝜌−

−

{︃
~2

2𝑚

(︂
𝜕𝜃

𝜕𝑞

)︂2
𝜌− ~2

2𝑚
ϒ
𝜕𝜃

𝜕𝑞

𝜕𝜌

𝜕𝑞
+

~2

8𝑚
ϒ2 1

𝜌

(︂
𝜕𝜌

𝜕𝑞

)︂2}︃
−

−𝑈𝜌− ~2

8𝑚
𝛼2 1

𝜌

(︂
𝜕𝜌

𝜕𝑞

)︂2
. (33)

Varying the action 𝒮 with ̃︀ℒ𝑇 written in form (33)
with respect to 𝜃 brings us again to the Fokker–Planck
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equation, which is similar to Eq. (29) with an accu-
racy to the substitution of 𝐷qu by the effective diffu-
sion coefficient Def ,

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑞

(︂
𝜌
~
𝑚

𝜕𝜃

𝜕𝑞

)︂
− D

𝜕2𝜌

𝜕𝑞2
= 0. (34)

Analogously, varying 𝒮 with respect to 𝜌 leads to the
Hamilton–Jacobi equation generalized to the case of
the stochastic influence of a warm vacuum,

~
𝜕𝜃

𝜕𝑡
+

~2

2𝑚

(︂
𝜕𝜃

𝜕𝑞

)︂2
+

~2

2𝑚
ϒ
𝜕2𝜃

𝜕𝑞2
+ 𝑈(𝑞)−

− ~2

8𝑚
Ξ𝑇

[︃
1

𝜌2

(︂
𝜕𝜌

𝜕𝑞

)︂2
+ 2

𝜕

𝜕𝑞

(︂
1

𝜌

𝜕𝜌

𝜕𝑞

)︂]︃
= 0, (35)

where the notation

Ξ𝑇 = 2ϒ2 − 1 = 2 coth2
(︁
κ
𝜔

𝑇

)︁
− 1 (36)

was introduced for convenience. Note that Ξ𝑇 (𝑇 =
= 0) ≡ Ξ0 = 1.

The obtained equations (34) and (35), in turn, gen-
eralize Eqs. (29) and (30) and make it possible to
consistently take the stochastic influence of a warm
vacuum into account. The latter is indirectly con-
tained in the quantities D, Ξ𝑇 , and ϒ entering those
equations and depending on the world constants ~
and 𝑘B. From the physical viewpoint, this means that
both types of stochastic environmental influence are
taken into account simultaneously: the quantum-
mechanical one characterized by Planck’s constant ~
and the thermal one characterized by the Boltzmann
constant 𝑘B.

Certainly, the system of the Fokker–Planck equa-
tion (34) and the Hamilton–Jacobi one (35) is a
nontrivial generalization of the Schrödinger equation.
There are two ways of their further application. First,
one can directly solve this system to find the functions
𝜌 and 𝜃 of different kinds. As was showed by us re-
cently [12], this procedure makes it possible to calcu-
late nonequilibrium wave functions with temperature-
dependent amplitudes and phases; then they can be
used to calculate macroparameters in nonequilibrium
states. On the other hand, those equations can also be
modified by transforming them to the form inherent
to the equations of the two-velocity stochastic hydro-
dynamics for the characteristic velocities 𝑣 and 𝑢.

6. One-Dimensional Model
of Two-Velocity Stochastic Hydrodynamics

To modify the system of equations (34) and (35), let
us express them in the form of equations depend-
ing on the variables of the same kind, the velocities
𝑣 and 𝑢ef , which are typical of any Markovian pro-
cess. As a result, we obtain a system of equations of
two-velocity stochastic hydrodynamics, which gener-
alizes the equations of the Nelson stochastic mechan-
ics to the case of quantum thermal influence from the
environment.

Now, let us demonstrate that Eqs. (34) and (35)
allow the equations of stochastic hydrodynamics to
be obtained in the most convenient form. Taking
the aforesaid into account, the matter concerns only
the one-dimensional model. In order to perform the
corresponding transformation, let us first transform
the continuity equation (34) into an equation for
the diffusion velocity. The latter, in accordance with
Eq. (25), can be written in the form

𝑢ef = −D
𝜕 ln 𝜌

𝜕𝑞
.

First, let us transform Eq. (34) by explicitly introduc-
ing 𝑣 and 𝑢ef into it and multiply the result by −D/𝜌:

−D
𝜌

𝜕𝜌

𝜕𝑡
− D
𝜌

[︂
𝜌
𝜕(𝑣 + 𝑢ef)

𝜕𝑞
+
𝜕𝜌

𝜕𝑞
(𝑣 + 𝑢ef)

]︂
= 0. (37)

Now, we should differentiate Eq. (37) with respect to
𝑞, change the order of differentiation in the first term,
take into account that 1

𝜌
𝜕𝜌
𝜕𝑞 = 𝜕

𝜕𝜌 ln 𝜌, and introduce
𝑢ef everywhere. As a result, we obtain
𝜕𝑢ef
𝜕𝑡

+
𝜕

𝜕𝑞
(𝑣𝑢ef) +

𝜕

𝜕𝑞
𝑢2ef − D

𝜕2

𝜕𝑞2
(𝑣 + 𝑢ef) = 0. (38)

This equation can be expressed in a more elegant form
by using the substantial derivative of the diffusion
velocity 𝑢ef , which is typical of hydrodynamics:
𝑑𝑢ef
𝑑𝑡

≡ 𝜕𝑢ef
𝜕𝑡

+ 𝑢ef
𝜕𝑢ef
𝜕𝑞

=

= − 𝜕

𝜕𝑞
(𝑣𝑢ef)−

𝜕

𝜕𝑞

𝑢2ef
2

+ Def
𝜕2

𝜕𝑞2
(𝑣 + 𝑢ef). (39)

In order to express Eq. (35 in the explicit hydrody-
namic form, let us also rewrite it in terms of the vari-
ables 𝑣 and 𝑢ef ,

~
𝜕𝜃

𝜕𝑡
+
𝑚

2
𝑣2 +

~
2
ϒ
𝜕𝑣

𝜕𝑞
+ 𝑈(𝑞)−

− 𝑚

2
Ξ𝑇

(︂
𝑢2ef −

~
𝑚

𝜕𝑢ef
𝜕𝑞

)︂
= 0. (40)
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To exclude the function 𝜃, we can differentiate
Eq. (40) with respect to 𝑞, change the order of dif-
ferentiation in the first term, and explicitly introduce
the function 𝑣 in it, by following Eq. (24). After form-
ing the substantial derivative of the drift velocity 𝑣,
we obtain

𝑑𝑣

𝑑𝑡
≡

(︂
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑞

)︂
= − 1

𝑚

𝜕𝑈

𝜕𝑞
+

+Ξ𝑇
𝜕

𝜕𝑞

𝑢2ef
2

− ~
2𝑚

(︂
Ξ𝑇

𝜕2𝑢ef
𝜕𝑞2

+ϒ
𝜕𝑣2

𝜕𝑞2

)︂
. (41)

Recall that the role of velocity 𝑣 in those equations
is played only by the quantity Δ𝑣 generated by the
stochastic influence. In the case concerned, as well as
at 𝑇 = 0, the expressions for 𝜌 and 𝜃 are related to the
wave functions of thermal correlated-coherent states,
in which the argument of the exponential function
depends on 𝑞2. Whence it follows that the last terms
in Eqs. (39) and (41) with the second derivatives of
𝑣 ≡ Δ𝑣 and 𝑢ef with respect to 𝑞 equal zero.

As a result, the system of equations for the one-
dimensional model of two-velocity stochastic hydro-
dynamics has the following general form:

𝑑𝑢ef
𝑑𝑡

≡ 𝜕𝑢ef
𝜕𝑡

+
𝜕

𝜕𝑞

𝑢2ef
2

= − 𝜕

𝜕𝑞
(𝑣𝑢ef)−

𝜕

𝜕𝑞

𝑢2ef
2
, (42a)

𝑑𝑣

𝑑𝑡
= − 1

𝑚

𝜕𝑈

𝜕𝑞
+ Ξ𝑇

𝜕

𝜕𝑞

𝑢2ef
2
. (42b)

Note that, in the general case, the proposed equations
(42) are valid for any temperature. Each equation of
this system makes allowance for the self-diffusion in
a warm vacuum characterized by the coefficient 𝐷ef

in 𝑢ef . In addition, the right-hand side of Eq. (42b)
includes the gradient of the classical potential 𝑈(𝑞)
and the gradient of the diffusion pressure energy den-
sity. The latter is associated with the stochastic in-
fluence of a quantum thermostat, actual at 𝑇 = 0 as
well. An analogous contribution of the diffusion pres-
sure energy of the quantum thermostat is also con-
tained in the right-hand side of Eq. (42a). This con-
tribution does not vanish even if 𝑣 = 0.

In order to compare the system obtained with the
equations of the Nelson stochastic mechanics,

𝜕𝑢

𝜕𝑡
= − 𝜕

𝜕𝑞
(𝑣𝑢), (43a)

𝑑𝑣

𝑑𝑡
= − 1

𝑚

𝜕𝑈

𝜕𝑞
+

𝜕

𝜕𝑞

𝑢2

2
, (43b)

which are valid only at 𝑇 = 0, let us consider the
system of equations (42) in the case of cold vacuum
(𝑇 = 0). Then 𝑢ef = 𝑢. In addition, to make the com-
parison convenient, we restore the partial derivative
with respect to the time in Eq. (42a); for this pur-
pose, we combine similar terms in formula (42). As a
result, we obtain

𝜕𝑢

𝜕𝑡
= − 𝜕

𝜕𝑞
(𝑣𝑢)− 𝜕

𝜕𝑞
𝑢2, (44a)

𝑑𝑣

𝑑𝑡
= − 1

𝑚

𝜕𝑈

𝜕𝑞
+

𝜕

𝜕𝑞

𝑢2

2
. (44b)

One can see that Eqs. (43b) and (44b) are identical.
However, the corresponding systems of equations dif-
fer substantially from each other. It becomes notice-
able, when comparing Eqs. (43a) and (44a). The dif-
ference is expectedly associated with the fact that our
theory takes into account the self-diffusion, which oc-
curs even in a cold vacuum. As a consequence, the
equation for the diffusion velocity includes the gradi-
ent of the diffusion pressure energy density.

Below, we compare the solutions of the systems of
equations (43) and (44) in order to establish impor-
tant physical distinctions between them that occur
at 𝑇 = 0. Actually, it is of interest to elucidate how
the account for the self-diffusion in Eqs. (44) in the
case of cold vacuum (at 𝑇 = 0) affects the form of
obtained solutions in comparison with those for the
system of equations (43).

7. Analysis of the Solutions
of Eqs. (43) and (44)

Note that, as was shown in Sec. 6, the system of
equations (42) was derived taking the self-diffusion at
an arbitrary temperature into account. At the same
time, the system of equations (44) is valid only at
𝑇 = 0. Therefore, a correct comparison can be done
only between the system of equations (43), which is a
particular case of system of equations (42) at 𝑇 = 0,
and the system of equations (44).

7.1. Method of determination
of the class of an equation

Note that the total derivative of the velocity equals
𝑑𝑣

𝑑𝑡
=
𝜕𝑣

𝜕𝑞

𝜕𝑞

𝜕𝑡
+
𝜕𝑣

𝜕𝑡
= 𝑣

𝜕𝑣

𝜕𝑞
+
𝜕𝑣

𝜕𝑡
. (45)

Let us rewrite Eqs. (43) and (44) in terms of partial
derivatives. For the sake of convenience, we introduce
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the notation 1
𝑚

𝜕𝑈
𝜕𝑞 = 𝛼(𝑞). Then the systems of equa-

tions (43) and (44) look like

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑞
+ 𝑢

𝜕𝑣

𝜕𝑞
= 0,

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑞
− 𝑢

𝜕𝑢

𝜕𝑞
= 𝛼(𝑞),

(46)

and
𝜕𝑢

𝜕𝑡
+ (𝑣 + 2𝑢)

𝜕𝑢

𝜕𝑞
+ 𝑢

𝜕𝑣

𝜕𝑞
= 0,

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑞
− 𝑢

𝜕𝑢

𝜕𝑞
= 𝛼(𝑞),

(47)

respectively, where 𝑢 is the diffusion velocity, and 𝑣
the drift one. The main difference between systems
(46) and (47) consists in that, when deriving the lat-
ter, the assumption about the self-diffusion was used.

In this work, we analyze only the homogeneous
systems of equations (46) and (47), so that we put
𝛼(𝑞) = 0. The most important issue that determines
the procedure of solution of those equations is the
establishment of the type of an equation: elliptic,
hyperbolic, or parabolic one. It is known that, while
solving hyperbolic equations, the concept of a char-
acteristic, i.e. an integral of a certain characteristic
equation, is used. The elliptic operator has no char-
acteristics in the real region, and, generally speaking,
elliptic differential equations describe stationary equi-
librium states in physics. Hence, the establishment of
the class, which the corresponding system belongs to,
allows a conclusion about the character of solutions
of the equation to be drawn and a certain physical
interpretation for them to be given.

Proceeding from the aforesaid, let us begin our ana-
lysis. Equations (46) and (47) compose a system of
quasilinear partial differential equations of the first
order for two unknown functions 𝑢(𝑡, 𝑞) and 𝑣(𝑡, 𝑞).
Therefore, following [14], let us express each of the
equations in systems (46) and (47) in the form

𝐿1 = 𝐴1𝑢𝑡 +𝐵1𝑢𝑞 + 𝐶1𝑣𝑡 +𝐷1𝑣𝑞,
𝐿2 = 𝐴2𝑢𝑡 +𝐵2𝑢𝑞 + 𝐶2𝑣𝑡 +𝐷2𝑣𝑞,

(48)

where 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 (𝑖 = 1, 2) are known func-
tions of the variables 𝑡, 𝑞, 𝑢, and 𝑣. Let all the
functions under consideration be continuous and pos-
sess continuous derivatives of required orders. It is
well known that the linear combination 𝑎𝑓𝑥 + 𝑏𝑓𝑦 of
the partial derivatives of a function of two variables,

𝑓(𝑥, 𝑦), is a derivative in the direction determined
by the relation 𝑑𝑥

𝑑𝑦 = 𝑎
𝑏 . If the functions 𝑥(𝑙) and

𝑦(𝑙) parametrize a certain curve and if 𝑥𝑙

𝑦𝑙
= 𝑎

𝑏 , the
combination 𝑎𝑓𝑥 + 𝑏𝑓𝑦 is a derivative of the function
𝑓(𝑥, 𝑦) along this curve. This fact allows us to change
from the analysis of the systems of partial differential
equations (46) and (47) to the analysis of algebraic
equations.

Consider such functions 𝑢(𝑡, 𝑞) and 𝑣(𝑡, 𝑞), for
which the coefficients in the differential equations (48)
depend only on 𝑡 and 𝑞. Let us find a linear combi-
nation

𝐿 = 𝜆1𝐿1 + 𝜆2𝐿2 (49)

such that its differential would contain derivatives
only along a single direction. Such a direction depend-
ing on the point (𝑡, 𝑞), as well as on the values of
functions 𝑢(𝑡, 𝑞) and 𝑣(𝑡, 𝑞) at this point, is called a
characteristic. Let this direction be given by the ratio
𝑡𝑙 : 𝑥𝑙. Then, as was mentioned above, the condition
that the functions 𝑢(𝑡, 𝑞) and 𝑣(𝑡, 𝑞) in the differential
expression 𝐿 are differentiated in the same direction
looks like

𝜆1𝐴1 + 𝜆2𝐴2

𝜆1𝐵1 + 𝜆2𝐵2
=
𝜆1𝐶1 + 𝜆2𝐶2

𝜆1𝐷1 + 𝜆2𝐷2
=
𝑡𝑙
𝑥𝑙
, (50)

since the coefficients of the 𝑢𝑡, 𝑢𝑥, 𝑣𝑡,, and 𝑣𝑥 deriva-
tives in the expression 𝐿 are determined by the corre-
sponding terms in proportions (50). Multiplying ex-
pression (49) by 𝑡𝑙, we obtain

𝐿𝑡𝑙 = (𝜆1𝐴1 + 𝜆2𝐴2)𝑢𝑡𝑡𝑙 + (𝜆1𝐵1 + 𝜆2𝐵2)𝑢𝑞𝑡𝑙 +

+(𝜆1𝐶1 + 𝜆2𝐶2)𝑣𝑡𝑡𝑙 + (𝜆1𝐷1 + 𝜆2𝐷2)𝑣𝑞𝑡𝑙 =

= (𝜆1𝐴1 + 𝜆2𝐴2)(𝑢𝑙 − 𝑢𝑞𝑞𝑙) + (𝜆1𝐵1 + 𝜆2𝐵2)𝑢𝑞𝑡𝑙 +

+(𝜆1𝐶1 + 𝜆1𝐶2)(𝑣𝑙 − 𝑣𝑞𝑞𝑙) + (𝜆1𝐷1 + 𝜆2𝐷2)𝑣𝑞𝑡𝑙 =

= (𝜆1𝐴1 + 𝜆2𝐴2)𝑢𝑙 + (𝜆1𝐶1 + 𝜆2𝐶2)𝑣𝑙 −

− [(𝜆1𝐴1 + 𝜆2𝐴2)𝑞𝑙 − (𝜆1𝐵1 + 𝜆2𝐵2)𝑡𝑙]𝑢𝑞 −

− [(𝜆1𝐶1 + 𝜆2𝐶2)𝑞𝑙 − (𝜆1𝐷1 + 𝜆2𝐷2)𝑡𝑙]𝑣𝑞 =

= (𝜆1𝐴1 + 𝜆2𝐴2)𝑢𝑙 + (𝜆1𝐶1 + 𝜆2𝐶2)𝑣𝑙, (51)

because, owing to Eq. (48),

(𝜆1𝐴1 + 𝜆2𝐴2)𝑞𝑙 − (𝜆1𝐵1 + 𝜆2𝐵2)𝑡𝑙 =

= (𝜆1𝐶1 + 𝜆2𝐶2)𝑞𝑙 − (𝜆1𝐷1 + 𝜆2𝐷2)𝑡𝑙 = 0. (52)
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Analogously, when multiplying 𝐿 by 𝑞𝑙, we obtain

𝐿𝑞𝑙 = (𝜆1𝐵1 + 𝜆2𝐵2)𝑢𝑙 + (𝜆1𝐷1 + 𝜆2𝐷2)𝑣𝑙. (53)

If the functions 𝑢(𝑡, 𝑞) and 𝑣(𝑡, 𝑞) are solutions of sys-
tem (48), and if the expression 𝐿 has a derivative in
the direction 𝑙 determined by the ratio 𝑡𝑙 : 𝑞𝑙, Eq. (50)
yields easily a system of two linear homogeneous al-
gebraic equations for the parameters 𝜆1 and 𝜆2,

𝜆1(𝐴1𝑞𝑙 −𝐵1𝑡𝑙) + 𝜆2(𝐴2𝑞𝑙 −𝐵2𝑡𝑙) = 0,
𝜆1(𝐶1𝑞𝑙 −𝐷1𝑡𝑙) + 𝜆2(𝐶2𝑞𝑙 −𝐷2𝑡𝑙) = 0.

(54)

System (54) has a nontrivial solution if its determi-
nant equals zero, i.e.⃒⃒⃒⃒
𝐴1𝑞𝑙 −𝐵1𝑡𝑙 𝐴2𝑞𝑙 −𝐵2𝑡𝑙
𝐶1𝑞𝑙 −𝐷1𝑡𝑙 𝐶2𝑞𝑙 −𝐷2𝑡𝑙

⃒⃒⃒⃒
= 0, (55)

which is convenient to be written as a quadratic form

𝑎𝑡2𝑙 − 2𝑏𝑡𝑙𝑞𝑙 + 𝑐𝑞2𝑙 = 0, (56)

where 𝑎 = [𝐵𝐷], 2𝑏 = [𝐴𝐷] + [𝐵𝐶], 𝑐 = [𝐴𝐶], and
[𝑋𝑌 ] = 𝑋1𝑌2 −𝑋2𝑌1.

Depending on the determinant sign of form (56),
the equations can be classed as follows.

1. If 𝑏2 − 𝑎𝑐 < 0, the quadratic form (566) differs
from zero at any real 𝑡𝑙 and 𝑞𝑙. Consequently, there
is no real characteristic direction, and the system of
differential equations belongs to the elliptic type.

2. If 𝑏2 − 𝑎𝑐 > 0, there are two characteristic direc-
tions at every point. The directions are given by the
ratio 𝑡𝑙 : 𝑞𝑙 and correspond to two different roots 𝜆1
and 𝜆2 of the quadratic form (56). In this case, the
system of differential equations belongs to the hyper-
bolic type.

3. In the case 𝑏2 − 𝑎𝑐 = 0, expression (56) has a
single root of multiplicity two. There is a degenerate
direction corresponding to this root. The system of
differential equations belongs to the parabolic type.

7.2. Analysis of Eqs. (46) and (47)

On the basis of aforesaid, let us analyze the system of
Nelson equations (46). The corresponding coefficients
are

𝐴1 = 1, 𝐵1 = 𝑣, 𝐶1 = 0, 𝐷1 = 𝑢,
𝐴2 = 0, 𝐵2 = −𝑢, 𝐶2 = 1, 𝐷2 = 𝑣.

(57)

From whence, it follows that

𝑏2 − 𝑎𝑐 = −𝑢2 < 0.

Therefore, the hydrodynamic system of Nelson equa-
tions is elliptic and cannot be used to analyze the evo-
lution of fluctuations in the framework of a quantum-
mechanical description of the system.

For system (47), the coefficient 𝐵1 is different, and

𝐴1 = 1, 𝐵1 = 2𝑢+ 𝑣, 𝐶1 = 0, 𝐷1 = 𝑢,

𝐴2 = 0, 𝐵2 = −𝑢, 𝐶2 = 1, 𝐷2 = 𝑣.
(58)

As a result,

𝑏2 − 𝑎𝑐 = 0,

which testifies that the system of equations (47) is
parabolic. In other words, the system is of the evolu-
tion type and therefore can be used to describe the
evolution of perturbations emerging at fluctuations.

Let us determine the characteristic direction for
system (47). Following to what was said above, we
compose a linear combination of two equations from
this system and require that it should contain deriva-
tives of the functions 𝑢(𝑞, 𝑡) and 𝑣(𝑞, 𝑡) only in a single
direction (𝑢𝑙, 𝑣𝑙) given by (𝑡𝑙, 𝑞𝑙):

𝐿 = 𝑢𝑡 + (2𝑢+ 𝑣 − 𝜆𝑢)𝑢𝑞 + 𝜆𝑣𝑡(𝑢+ 𝜆𝑣)𝑣𝑞 = 0. (59)

Then, according to Eq. (50), the conditions determin-
ing the direction (𝑡𝑙, 𝑞𝑙) look like

𝑞𝑙 = (2𝑢+ 𝑣 − 𝜆𝑢)𝑡𝑙,

𝜆𝑞𝑙 = (𝑢+ 𝜆𝑣)𝑡𝑙.
(60)

From whence,

(𝜆− 1)2 = 0. (61)

This means that there is one characteristic direction
in problem (47), and it is determined by the condition

𝑞𝑙 = (𝑢+ 𝑣)𝑡𝑙. (62)

From Eqs. (60)–(62), we obtain the following charac-
teristic equation for 𝑢 and 𝑣:

𝑢𝑙 + 𝑣𝑙 = 0. (63)

The meaning of Eq. (62) consists in that the char-
acteristic in the (𝑞, 𝑡)-plane represents the motion of
probable perturbations with a velocity that is a sum
of the drift and diffusion components:

𝑑𝑞

𝑑𝑡
= 𝑢+ 𝑣. (64)
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While applying this system, the following circum-
stance should be born in mind. The fluctuations of
macroscopic parameters, e.g., the temperature, den-
sity, or pressure, inevitably perturb the variables 𝑢
and 𝑣 in hydrodynamic equations. The evolution of
those perturbations can be described and examined,
by using the system of equations (47).

7.3. Numerical simulation
of solutions of Eqs. (46) and (47)

Our considerations presented above will be illustrated
by numerically simulating the solutions of systems
(46) and (47). A model equation for those systems is
the transport equation written in the vector form
𝜕𝑦

𝜕𝑡
+𝐴(𝑦)

𝜕𝑦

𝜕𝑞
= 𝑓, (65)

where 𝑦 = (𝑢, 𝑣)T, 𝐴 ∈ R2×2 is the matrix of the sys-
tem, and 𝑓 ∈ R2. Let us consider the Cauchy problem
on the real axis for systems (46) and (47):

𝑦(𝑞, 0) = 𝑦0(𝑞),

𝑞 ∈ R, 𝑡 > 0.

To solve the problem in the (𝑞, 𝑡) plane, a mesh with
the step ℎ along the 𝑞-coordinate and the step 𝜏 along
the 𝑡-one was used:
𝜔ℎ𝜏 = 𝜔ℎ × 𝜔𝜏 ,

𝜔ℎ = {𝑞𝑘 = 𝑘ℎ, 𝑘 = 0,±1,±2, ...},
𝜔𝜏 = {𝑡𝑛 = 𝑛𝜏, 𝑛 = 0, 1, 2, ...}.

The solution of the problem was analyzed with the
help of the implicit three-layer scheme

3𝑦𝑛+1
𝑘 − 4𝑦𝑛𝑘 + 𝑦𝑛−1

𝑘

2𝜏
= 𝐴(𝑦)

𝑦𝑛+1
𝑘+1 − 𝑦𝑛+1

𝑘−1

2ℎ
+ 𝜙 (66)

characterized by the approximation order 𝑂(𝜏2+ℎ2).
Problem (65) was solved, by using the iteration me-
thod. Let us demonstrate that scheme (66) is abso-
lutely stable. For the homogeneous scalar equation
𝜕𝑦

𝜕𝑡
+ 𝑎(𝑦)

𝜕𝑦

𝜕𝑞
= 0,

the solution of problem (66) is sought in the form

𝑦𝑛𝑘 = 𝜂𝑛𝑒𝑖𝑘ℎ𝜃, (67)

where 𝑖 =
√
−1 and 𝜃 ∈ R. Substituting Eq. (67) into

the equation

3𝑦𝑛+1
𝑘 − 4𝑦𝑛𝑘 + 𝑦𝑛−1

𝑘

2𝜏
= 𝑎(𝑦)

𝑦𝑛+1
𝑘+1 − 𝑦𝑛+1

𝑘−1

2ℎ
,

and making simple transformations, we obtain the
equation for 𝜂:

𝜇𝜂2 − 4𝜂 + 1 = 0, (68)

where 𝜇 = 3 + 2𝑎𝛾𝑖 sin 𝜃 and 𝛾 = 𝜏
ℎ .

Let us determine the set 𝐺 of points in the complex
plane, 𝜇 = 𝑟+𝑖𝑠, for which the roots of Eq. (68) do not
exceed unity by absolute value. The boundary of the
region 𝐺 consists of points 𝜇, for which |𝜂| < 1. Let
us use Eq. (68) to express the parameter 𝜇 in terms
of the variable 𝜂:

𝜇 =
4

𝜂
− 1

𝜂2
.

It is evident that if |𝜂| = 1, then, putting 𝜂 = 𝑒−𝑖𝜙,
we obtain

𝜇 = 4𝑒𝑖𝜙 − 𝑒2𝑖𝜙.

When the argument 𝜙 varies from 0 to 2𝜋, the point
𝜇 describes a closed curve Γ, whose equation in the
complex plane 𝜇 = 𝑟 + 𝑖𝑠 is convenient to be repre-
sented in the parametric form,

𝑟 = 4 cos𝜙− cos 2𝜙,

𝑠 = 4 sin𝜙− sin 2𝜙.
(69)

From Eqs. (69), one can see that the curve Γ is sym-
metric with respect to the real axis 𝑟. It intersects this
axis at the points 𝜇(0) = 3 and 𝜇(𝜋) = −5, where the
derivatives

𝑑𝑠

𝑑𝑟
=

cos 2𝜙− cos 2𝜙

2 sin𝜙− sin 2𝜙
,

𝑑2𝑠

𝑑𝑟2
=

6 sin2 𝜙
2

(2 sin𝜙− sin 2𝜙)3

are not determined. One can see that the second
derivative of the curve Γ is negative at 0 < 𝜙 < 𝜋
and positive at 𝜋 < 𝜙 < 2𝜋. This fact testifies that
the closed curve Γ is convex upward in the upper
half-plane 𝜇 and convex downward in the lower one.
Therefore, the region bounded by the closed curve Γ
is convex (Fig. 1). The straight line 𝜇 = 3+ 𝑖𝑠 is tan-
gent to the curve Γ at the point 𝜇 = 3. The other
points of this straight line are located in the region
outside the curve Γ. Let us demonstrate that, in this
region, the condition |𝜂| < 1 is satisfied, so that the
locus of points outside the curve Γ is a stability region
for scheme (66).

Really, let us consider the solution of the equation

(3 + 𝑖𝑠)𝜂2 − 4𝜂 + 1 = 0,
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provided that 0 < 𝑠 < 1. Then one of the roots,

𝜂 =
2 +

√
1− 𝑖𝑠

3 + 𝑖𝑠
,

which corresponds to the maximum of the absolute
value |𝜂|, can be written in the form

𝜂 =

(︀
3− 𝑖𝑠

2

)︀
(3− 𝑖𝑠)

9 + 𝑠2
+𝑂(𝑠).

Its absolute value equals

|𝜂| =

√︁
81 + 45𝑠2+𝑠4

4

9 + 𝑠2
=

=

√︃
1− 27𝑠2 + 𝑠4

4(9 + 𝑠2)
= 1−𝑂(𝑠2) < 1.

Therefore, all the points 𝜇 = 3 + 2𝑎𝛾𝑖 sin 𝜃 are lo-
cated in the stability region, where |𝜂| ≤ 1. Hence,
scheme (66) is absolutely stable and does not depend
on the quantity 𝛾 = 𝜏

ℎ . The stability region 𝐺 is il-
lustrated in Fig. 1.

While carrying out the numerical simulation, we
analyzed the solution obtained, when the initial con-
dition for one of the variables was subjected to a cer-
tain perturbation in a vicinity of the point 𝑞 = 0
in comparison with the reference homogeneous initial
condition. This perturbation of the initial condition
mimics the fluctuation of a macroscopic parameter in
the physical system. The numerical calculations car-
ried out according to the proposed implicit scheme
gave rise to the following result. An arbitrary per-
turbation, even an infinitesimally small one, in the
system of Nelson equations results in an unconfined
growth of the variables 𝑢 and 𝑣. This is a consequence
of the elliptic character of the Nelson equations, which
are intended for the description of stationary pro-
cesses, such as a flow around a body, electrostatic
problems, stationary problems in the gravitation the-
ory, and others.

The solution obtained for the system of equations
(47) corresponds to a perturbation wave running
along the spatial coordinate. In addition, the evolu-
tion of the perturbation shape is also observed. In
Fig. 2, the numerical solutions of system (47) are
shown for various time moments 𝑡 = 0 (a), 𝜏 (b), 20𝜏
(c), and 50𝜏 (d), where 𝜏 is the step of integration
over the time.

8. Discussion of Results and Conclusions

The idea to use the Lagrangian density ℒ[𝜌; 𝜃] in
quantum mechanics seems to be suggested for the
first time by Fenyes [11]. The expression proposed
by him yields the Fokker–Planck equation contain-
ing the total velocity of a probability flux 𝑉 with the
diffusion coefficient equal to either 𝐷qu or 𝐷𝑇 . Ho-
wever, the generalized diffusion coefficient 𝐷ef was
not introduced. Note that, in the cited work, a differ-
ent equation of motion of the Hamilton–Jacobi type
was derived. Moreover, the obtained system of equa-
tions for the functions 𝜌 and 𝜃 was asserted to be
completely equivalent to the Schrödinger equations
for the functions 𝜓 and 𝜓*, despite that the Fokker–
Planck equation, unlike the Schrödinger one, leads to
the irreversibility.

In our approach, in contrast to that used in work
[11], quantum thermal fluctuations and the diffusion
pressure energy density associated with the stochas-

Fig. 1. Boundary of the stability region for scheme (66)

Fig. 2. Results of numerical studies of the system of equations
(47)
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tic influence of the environment (the quantum ther-
mostat) at 𝑇 > 0 were consistently taken into ac-
count. Ultimately, we have represented the Fokker–
Planck and Hamilton–Jacobi equations as the sys-
tem of equations (42) for a one-dimensional model of
the two-velocity stochastic hydrodynamics. The cor-
responding self-diffusion coefficient is governed by the
effective influence of the environment depending on
the fundamental constant κ = ~

2𝑘B
.

In our opinion, this way can be used to construct
a full-scale stochastic hydrodynamics, which involves
not only the self-diffusion, but also the shear viscos-
ity, and to apply it to the description of such in-
teresting media as nearly perfect fluids (NPFs). For
this purpose, it is necessary to change from Eq. (42b)
for the drift velocity to an equation that generalizes
the Navier–Stokes equation to the case with the self-
diffusion.

Our analysis testified that the self-diffusion coef-
ficient Def = J/𝑚 may be, probably, the most ade-
quate characteristic of transport phenomena and can
play an important role in the description of dissipa-
tive processes in NPFs. At present, there appears a
possibility to determine Def experimentally by study-
ing the diffusion of massive quarks in a quark-gluon
plasma obtained at the collision of heavy ions.

The numerical analysis of the solutions obtained
for the particular case of system (42) in form (44),
which is valid at 𝑇 = 0, showed that those equations
describe the relaxation of perturbations. Hence, the
self-diffusion can be considered as a hydrodynamic
mechanism driving the relaxation of quantum ther-
mal fluctuations. The behavior of the solutions of sys-
tem (42) in the general case will be done elsewhere.

Thus, we suppose that the hydrodynamic ap-
proach, which is proposed in this work, to the
quantum-mechanical theory allows one to study, in
principle, quantum thermal fluctuations on the basis
of the obtained hydrodynamic equations.
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Translated from Russian by O.I. Voitenko

О.Н. Голубєва, С.В.Сiдоров, В.Г. Бар’яхтар

ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ПРОЦЕСУ
РЕЛАКСАЦIЇ КВАНТОВО-ТЕПЛОВИХ ФЛУКТУАЦIЙ

Р е з ю м е

Пропонується узагальнення рiвнянь квантової механiки в
гiдродинамiчнiй формi шляхом введення в густину лагран-
жиана членiв, що враховують дифузiйну швидкiсть при
нульовiй i скiнченних температурах, а також енергiю ди-
фузiйного тиску теплого вакууму. На цiй основi для моде-
лi одновимiрної гiдродинамiки будується система рiвнянь,
аналогiчних рiвнянням Ейлера, але з урахуванням кванто-
вих i теплових ефектiв. Вони являють собою узагальнення
рiвнянь стохастичної механiки Нельсона. Чисельний аналiз
поведiнки рiшень даної системи дозволяє зробити висновок
про її придатнiсть для опису процесу релаксацiї квантово-
теплових флуктуацiй.
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