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CALCULATION OF THE GROUND-STATE
IONIZATION ENERGY FOR SHALLOW DONORS
IN 𝑛-Ge SINGLE CRYSTALS WITHIN THE Δ1-MODEL
FOR THE CONDUCTION BANDPACS 71.20.-b

On the basis of the Ritz variational method, the ionization energies for the ground states of
Sb, P, and As donors in 𝑛-Ge single crystals are calculated in the framework of the Δ1-model
for the conduction band and taking the dispersion law anisotropy and the chemical shift into
account. A comparison of theoretical results with corresponding experimental data shows that
the model of impurity’s Coulomb potential can be used as a rough approximation only for Sb
impurities in Ge, making no allowance for the chemical shift. For the P and As impurities,
when the potential field of an impurity ion is not Coulombic, the calculations have to be carried
out with regard for a chemical shift.
K e yw o r d s: Ritz variational method, chemical shift, Δ1-minimum, anisotropy factor.

1. Introduction

Single crystalline germanium is widely used in various
fields of science and engineering as a raw material to
manufacture diodes, triodes, power rectifiers, dosime-
try devices, and meters measuring the strength of dc
and ac magnetic fields [1]. One of its main applica-
tions is the fabrication of optical elements for an inf-
ra-red equipment; in particular, it is used in ground-,
air-, and sea-based thermal imagers operating in the
wavelength interval from 2.5 to 14 𝜇m [2]. Single crys-
talline germanium is also a promising material for
nanoelectronics. A high mobility of electrons allows
nanotransistors with highly conducting channels to
be created, with the switching time of about picose-
conds [3, 4]. The application of nanostructures with
self-assembled Ge/Si nanoislands opens new pros-
pects in the development of opto- and nanoelectronics
[5]. Arrays of Ge (GeSi) quantum dots can be ap-
plied to manufacture photodetectors and light emit-
ting diodes in the near infra-red spectral range [6].

The optical and electric properties of semiconduc-
tor devices considerably depend on the lattice defor-
mation and the spatial distribution of point defects.
Recently, heterostructures with and without strained
boundaries have found a wide application to micro-
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electronic devices [7]. In silicon-germanium hetero-
structures with quantum dots, elastic deformation
fields arise at the heterointerface owing to the mis-
match between the lattice constants in germanium
and silicon. The interaction of point defects with the
deformation field, which can emerge as a result of
those defects, and inhomogeneities in the crystal sys-
tem (e.g., a heterointerface) gives rise to the spatial
redistribution of defects and, under certain condi-
tions, to the formation of self-assembled defect-de-
formation structures [8]. Therefore, the study of elec-
tric, optical, and photo-electric properties of semi-
conductors in the presence of a deformation is a chal-
lenging issue from both the theoretical and practical
viewpoints.

Variations in the specific resistance of 𝑛-Ge single
crystals under the influence of directed uniaxial de-
formations (𝑃 < 1.6 GPa) were considered in work
[9]. The deformation-induced redistribution between
the minima of the same type 𝐿1 was the main mecha-
nism of the observed tensoresistive effect. An essential
reconstruction of the band spectrum of 𝑛-Ge owing to
the (𝐿1−Δ1)-type inversion of the absolute minimum
in the conduction band by imposing strong uniaxial
elastic deformations (𝑃 ≈ 2.4 GPa) was obtained ex-
perimentally for the first time in work [10]. As a re-
sult, the deformation-induced phase transition metal–
insulator was observed.
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In order to quantitatively interpret various material
properties at such a radical reconstruction, one has to
know the parameters of Δ1-minima. In works [11,12],
the components of the effective mass tensor, parame-
ter of effective mass anisotropy, and constants of the
deformation potential for the Δ1-minimum in 𝑛-Ge
were determined. A common issue for those works is
the fact that the ultimate result was obtained on the
basis of the data of various experiments, which can in-
sert additional errors to the values of sought parame-
ters. In our works [13,14] on the basis of experimental
data concerning only the longitudinal piezoresistance
of single crystals and the theory of anisotropic scat-
tering, the corrected values were found for the com-
ponents of the effective mass tensor and the constants
of the deformation potential for the Δ1-minimum of
the conduction band in 𝑛-Ge single crystals.

This work was aimed at studying the influence of
the (𝐿1 − Δ1)-type inversion of the absolute mini-
mum in 𝑛-Ge single crystals on a change of the ion-
ization energy of shallow donors. It is known that the
ionization energy of a shallow level is described by
the parameters of a valley, whose wave functions de-
scribe its state, when 𝑘0𝑎 ≫ 1, where 𝑎 is the Bohr
radius, and 𝑘0 the distance between the valley min-
ima in the quasimomentum space [15]. In the case
of 𝑛-Ge, this condition is satisfied for both the 𝐿1-
and Δ1-valleys. In addition, it is also known that
the Schrödinger equation for shallow impurity lev-
els in multivalley semiconductors has no exact an-
alytical solution. Therefore, in practice, approximate
methods to find eigenfunctions and eigenvalues of a
Hamiltonian are used, as a rule [16]. In work [17] on
the basis of the Ritz variational method, an analyt-
ical expression for the ionization energies of shallow
levels was derived in the case of the isotropic disper-
sion law with regard for the screening of the impurity
ion field. For 𝑛-Ge, this approach is inapplicable, be-
cause the isoenergetic surfaces for both 𝐿1- and Δ1-
valleys are ellipsoids of revolution. In this case, the
anisotropy of effective masses has to be taken into
account first of all, as was done in work [18] on the
basis of perturbation theory for the ellipsoidal energy
surfaces in CdS and ZnO crystals. In the cited work,
the anisotropy factor, which depends on the effec-
tive mass ratio and the dielectric permittivities of a
material along the principal axis of the ellipsoid and
perpendicularly to it, was chosen as a small parame-
ter. The indicated factors, as well as the fact that the

energy levels of the ground states of shallow donors
in germanium single crystals undergo a substantial
chemical shift associated with the correction of the
central cell potential [16, 19], were taken into account
in this work while considering the Δ1-model for 𝑛-Ge.

2. Calculation of the Ionization
Energy of Shallow Donors in 𝑛-Ge
on the Basis of the Ritz Variational Method

2.1. No chemical shift

In the case of ellipsoidal isoenergetic surface in the
effective mass approximation, the Hamiltonian for an
electron localized at the donor looks like [15]

�̂� = − ~2

2𝑚⊥

(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

)︂
−

− ~2

2𝑚‖

𝜕2

𝜕𝑧2
− 𝑍𝑞2

𝜀
√︀
𝑥2 + 𝑦2 + 𝑧2

, (1)

where 𝑍 is the absolute value of the ion charge, 𝑞 the
elementary charge, 𝑚⊥ and 𝑚‖ are longitudinal and
transverse, respectively, components of the electron
effective mass tensor, and 𝜀 is the dielectric permit-
tivity of the material. Using the Wheeler–Dimmock
transformation [20],

𝑥 = 𝑥1, 𝑦 = 𝑦1, 𝑧 = 𝑧1

(︂
𝑚⊥

𝑚‖

)︂1/2
, (2)

let us write down the Schrödinger equation in the
form

�̂�𝜓(r) = 𝐸𝜓(r), (3)

where

�̂� = − ~2

2𝑚⊥
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−
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, (4)

𝛼 = 1− 𝛾, 𝛾 =
𝑚⊥

𝑚‖
, (5)

is the anisotropy factor, and 𝛾 = 𝑚⊥
𝑚‖

. Hamiltonian
(4) in the spherical coordinate system looks like

�̂�1 = − ~2

2𝑚⊥
∇2(𝑟, 𝜃, 𝜙)− 𝑍𝑞2

𝜀𝑟
𝑓(𝛼, 𝜃), (6)

ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 10 1023



S.V. Luniov, O.V. Burban, P.F. Nazarchuk

where

𝑓(𝛼, 𝜃) =
1√

1− 𝛼 cos2 𝜃
. (7)

The trial function for the electron ground state is
sought in the form

𝜓1𝑠 = 𝑐𝑒−
√︁

𝑥2+𝑦2

𝑎2 + 𝑧2

𝑏2 . (8)

In the spherical coordinate system,

𝜓1𝑠 = 𝑐𝑒
−𝑟

√︁
sin2 𝜃
𝑎2 + cos2 𝜃

𝑏2 , (9)

where 𝑐, 𝑎, and 𝑏 are unknown variational parame-
ters. Then the expression for the average energy of
the system in the state given by the trial function (9)
reads

𝐸(𝑐, 𝑎, 𝑏) =

∫︀
𝑉

𝜓*
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𝑉

|𝜓1𝑠|2 𝑑𝑉
. (10)

Calculating the integrals in the numerator and the
denominator of Eq. (10), we obtain the following de-
pendence of the average ground state energy on the
variational parameters:
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×
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𝑏
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. (11)

The variational parameters are determined from
the following system of equations:⎧⎪⎪⎨⎪⎪⎩
𝜕𝐸(𝑎, 𝑏)

𝜕𝑎
= 0,

𝜕𝐸(𝑎, 𝑏)

𝜕𝑏
= 0.

(12)

Substituting the solution into expression (11), we can
calculate the ionization energy of the impurity in the
ground state, 𝐸1𝑠.

2.2. Chemical shift

The chemical shift depends on the impurity origin.
Therefore, in our case, we should construct such a
potential that takes the specific nature of the impu-
rity ion into account. Some aspects of this problem
were considered for the first time in work [21] by an
example of shallow donors in silicon. The authors of
work [22] proposed the following form for the impu-
rity ion potential with regard for its “core”:

𝑈(𝑟) = −𝑞
2

𝜀𝑟

(︁
1 +𝐴𝑒−

𝑟
𝑟0

)︁
𝑒−

𝑟
𝑅 . (13)

Here, the parameter 𝐴 characterizes the efficiency of
the impurity ion “core”, 𝑟0 equals half the distance
between two nearest neighbor atoms in the crystal
(for germanium, 𝑟0 = 1.225 × 10−10 m), and 𝑅 is
the screening radius. In the most general case, the
screening radius looks like [23]

𝑅2
0 =

ℎ3𝜀

16𝜋2𝑞2(𝑚*)3/2(2𝑘𝑇 )1/2Φ−1/2(𝐸
*
F)
, (14)

where 𝑚* is the effective mass, and

Φ−1/2 =

∞∫︁
0

𝑥−1/2𝑑𝑥

𝑒𝑥−𝐸*
F + 1

is the Fermi integral with an index of −1/2. In or-
der to calculate this integral, one should know the
reduced Fermi energy 𝐸*

F = 𝐸F

𝑘𝑇 . The electron con-
centration in the conduction band equals [24]

𝑛 =
2𝑁𝐶√
𝜋
Φ1/2, (15)

where

𝑁𝐶 = 2

(︂
2𝜋𝑚*𝑘𝑇

ℎ2

)︂3/2
,

𝑚* = 𝑁2/3
(︀
𝑚‖𝑚

2
⊥
)︀1/3

,

(16)

and 𝑁 is the number of equivalent valleys. Knowing
the effective density of states in the conduction band,
𝑁𝐶 , it is easy to find the Fermi integral with an index
of 1/2 from expression (15):

Φ1/2 =

∞∫︁
0

𝑥1/2𝑑𝑥

𝑒𝑥−𝐸*
F + 1

, (17)
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where 𝑥 = 𝐸
𝑘𝑇 is the reduced electron energy. The

Fermi energy value 𝐸*
F obtained from Eq. (17) makes

it possible to determine the Fermi integral with an
index of −1/2 and, hence, the screening radius (14).

In work [22], with regard for the values of longi-
tudinal and transverse components of the effective
mass tensor for the 𝐿1-minimum in the conduction
band of 𝑛-Ge and the experimental values of ioniza-
tion energy for the ground states of Sb, P, and As
impurities [𝐸1𝑠(Sb) = 9.6 meV, 𝐸1𝑠(P) = 12 meV,
and 𝐸1𝑠(As) = 12.7 meV [25]], the parameter 𝐴 for
those impurities in germanium was found, respec-
tively, to be 𝐴(Sb) = 11.29, 𝐴(P) = 32.34, and
𝐴(As) = 34.67. Then, in the case of ellipsoidal isoen-
ergetic surfaces in view of transformations (2), the
Hamiltonian for an electron in field (13) reads

�̂�2 = − ~2
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In the framework of the variational method, the av-
erage energy for an electron in the state given by the
trial function (9) equals
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where
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By solving the system of equations (12) with respect
to the unknown variational parameters, we can use
expression (19) to determine the ionization energy of
the ground state for various shallow impurities.

3. Results of Numerical
Calculations and Conclusions

In order to calculate the ionization energy for shal-
low donors within the Δ1-model for the conduction
band in 𝑛-Ge single crystals, one should know the
components of the effective mass tensor for the cor-
responding minimum and the dielectric permittiv-
ity of a material. For the Δ1-minimum, the param-
eters 𝑚‖ = 1.65𝑚0 and 𝑚⊥ = 0.32𝑚0, where 𝑚0

is the free electron mass, were found, as was indi-
cated above, in work [13]. The dielectric permittivity
for germanium, 𝜀 = 16, is well known [25]. In work
[26], by analyzing the dependences of the impact ion-
ization field on the uniaxial pressure along the crys-
tallographic direction [100] for 𝑛-Ge single crystals
doped with Sb and As impurities to the concentration
𝑛 = 𝑁𝑑 = 1.8× 1014 cm−3, the ionization energies of
ground states for those impurities were determined
provided the (𝐿1−Δ1)-type inversion of the absolute
minimum. On the basis of the method used in work
[26], the authors of work [27] found the ionization
energy for the ground state of P impurity with the
concentration 𝑛 = 𝑁𝑑 = 1.15× 1014 cm−3 associated
with Δ1-valleys.

In Table, the calculation results for the ionization
energy of shallow-donor ground states in 𝑛-Ge sin-
gle crystals taking and not taking the chemical shift
for those impurities into account are quoted. In order
to compare the theoretical results obtained in this
work with the experimental data of works [26, 27],
the calculations were executed for the concentrations
of Sb, P, and As impurities that were used in those
works. The results of calculations testify that, when
changing from the 𝐿1-model to the Δ1-one for the
conduction band in 𝑛-Ge single crystals, the ioniza-
tion energies of ground states of the Sb, P, and As

Ionization energies for the ground states
of shallow donors in 𝑛-Ge associated with Δ1-valleys

Ionization energy of the shallow donor
ground state 𝐸Δ1

1𝑠 , meV

No chemical With chemical Experimental
shift shift results [26, 27]

Sb : 32.6 Sb : (35± 2)

30.4 As : 42.5 As : (45± 2)

P : 39 P : (41± 2)
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impurities essentially increase. The Coulomb poten-
tial model for an impurity ion can be used in a rough
approximation only for the Sb impurity in Ge. For the
P and As impurities, the calculations must be carried
out with regard for the chemical shift, i.e. when the
specific character of the impurity ion potential field,
which is not Coulombic, manifests itself.

1. A.A. Selesniov, A.Y. Aleinikov, P.V. Ermakov, N.S. Gan-
chuk, S.N. Ganchuk, and R.E. Jones, Phys. Solid State 54,
436 (2012).

2. D.Yu. Voronovich, A.V. Shelopaev, A.B. Zaletov, and
I.A. Kaplunov, Vestn. Tv. Gos. Univ. Ser. Fiz. 8, 48 (2010).

3. C.Y. Sung, L. Ji-Song, N. Toshinori, N. Toshikazu, and
T.E. Scott, J. Appl. Phys. 102, 104507 (2007).

4. K. Masaharu, I. Toshifumi, M. Blanka, S. Krishna,
W.H.-S. Philip, and N. Yoshio, IEEE Trans. on Electr.
Dev. 57, 1037 (2010).

5. D.N. Drozdov, A.N. Yablonskii, V.B. Shmagin, Z.F. Kra-
silnik, N.D. Zakharov, and P. Werner, Fiz. Tekh.
Poluprovodn. 43, 332 (2009).

6. S. Tong, J. Liu, L.J. Wan, and K.L. Wang, Appl. Phys.
Lett. 80, 1189 (2002).

7. R.M. Peleshchak, O.V. Kuzyk, and O.O. Dan’kiv, Ukr. Fiz.
Zh. 57, 841 (2012).

8. F.Kh. Mirzade, K.R. Alakverdiev, and Z.Yu. Salaeva,
J. Nanosci. Nanotechnol. 8, 764 (2008).

9. P.I. Baranskyi, A.V. Fedosov, and G.P. Gaidar, Physical
Properties of Silicon and Germanium Crystals in Fields of
Effective External Infuence (Nadstyr’ya, Luts’k, 2000) (in
Ukrainian).

10. P.I. Baranskii, V.N. Ermakov, V.V. Kolomoets, and
P.F. Nazarchuk, in Abstracts of the 11-th Intern. Confer-
ence of IARAPT (ISM AN UkrSSR, Kiev, 1987), p. 127
(in Russian).

11. V.V. Baidakov, N.N. Grigoryev, V.N. Ermakov, V.V. Kolo-
moets, and T.A. Kudykina, Fiz. Tekh. Poluprovodn. 17,
370 (1983).

12. V.N. Ermakov, V.V. Kolomoets, and V.S. Timochuk, Phys.
Status Solidi B 116, K77 (1983).

13. S.V. Luniov, P.F. Nazarchuk, and O.V. Burban, Zh. Fiz.
Dosl. 17, 3702 (2013).

14. S. Luniov, O. Burban, and P. Nazarchuk, J. Adv. Phys. 5,
705 (2014).

15. G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced
Effects in Semiconductors (Wiley, New York, 1974).

16. S.M. Kogan and R. Taskinboev, Fiz. Tekh. Poluprovodn.
17, 1583 (1983).

17. Ya.S. Budzhak and M.P. Zayachkovskii, Ukr. Fiz. Zh. 13,
1798 (1968).

18. A.V. Konstantinovich, S.V. Melnychuk, P.I. Savitskii,
I.M. Rarenko, and I.A. Konstantinovich, J. Optoelectr.
Adv. Mater. 2, 391 (2000).

19. P.Y. Yu and M. Cardona, Fundamentals of Semiconduc-
tors. Physics and Materials Properties of Semiconductors
(Springer, Berlin, 1996).

20. R.G. Wheeler and J.O. Dimmock, Phys. Rev. 125, 1805
(1962).

21. H. Nara and A. Morita, J. Phys. Soc. Jpn. 21, 1852 (1967).
22. P.K.Katana, N.V. Dernovich, and Sh.D. Tiron, Fiz. Tekh.

Poluprovodn. 4, 1147 (1970).
23. V.I. Fistul, Heavily Doped Semiconductors (Plenum Press,

New York, 1969).
24. V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconduc-

tor Physics (Nauka, Moscow, 1977) (in Russian).
25. W. Kohn, Solid State Phys. 5, 257 (1957).
26. V.V. Baidakov, V.N. Ermakov, N.N. Grigoryev, V.V. Kolo-

moets, and T.A. Kudykina, Phys. Status Solidi B 122,
K163 (1984).

27. A.E. Gorin, V.N. Ermakov, and V.V. Kolomoets, Fiz.
Tekh. Poluprovodn. 29, 1147 (1995).

Received 12.08.14.
Translated from Ukrainian by O.I. Voitenko

С.В.Луньов, О.В.Бурбан, П.Ф.Назарчук

РОЗРАХУНОК ЕНЕРГIЇ IОНIЗАЦIЇ
ОСНОВНОГО СТАНУ НЕВЕЛИКИХ ДОНОРIВ
В Δ1-МОДЕЛI ЗОНИ ПРОВIДНОСТI
МОНОКРИСТАЛIВ 𝑛-Ge

Р е з ю м е

На основi варiацiйного методу Рiтца розраховано енергiю
iонiзацiї основного стану донорiв Sb, P, As для Δ1-моделi
зони провiдностi монокристалiв 𝑛-Ge з врахуванням анi-
зотропiї закону дисперсiї та хiмiчного зсуву. Порiвняння
одержаних теоретичних результатiв з вiдповiдними експе-
риментальними даними показують, що модель кулонiвсько-
го потенцiалу домiшки може бути використана в грубому
наближеннi лише для домiшки Sb в Ge без врахування хi-
мiчного зсуву. Для домiшок P та As розрахунки необхiдно
вже проводити з врахуванням хiмiчного зсуву, тобто, коли
потенцiал поля iона домiшки не є кулонiвським.
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