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PARTICLE’S DIFFUSION
IN A TWO-DIMENSIONAL RANDOM VELOCITY FIELDPACS 71.20.Nr, 72.20.Pa

The two approaches to describe the diffusion process of test particles in a two-dimensional
random velocity field are compared to each other: the method of decorrelation trajectories and
the moment approximation. The frozen turbulence case is considered, because it is the most
complicated test for statistical theories. The results of considered analytical approaches are
verified by direct numerical simulation.
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1. Introduction

The problem of turbulent transport arises widely in
various phenomena in the fluid and plasma physics
and can be formulated as a problem of statistical
description of the evolution of an ensemble of parti-
cles in a random velocity field. There are two ways
to describe such evolution of a system: the self-
consistent description, when particle’s motion influ-
ences the random velocity field, and a problem with
external fields, when it is not. The latter one is a sim-
plified description in contrast to the self-consistent
problem. On the other hand, due to the full control
over parameters of the problem and a more tractable
analysis of the results, it gives a chance to estimate
the quality of analytical approximations.

The evolution of the probability function distribu-
tion in the problem with external fields is described
by a nonlinear integro-differential equation [1] that
defines a nonlocal dependence of the time derivative
of the probability distribution function on its values
at the previous time moments. There are no methods
to obtain the exact solution for that equation. That is
why, the simplified parabolic diffusion equation local
in the time with time-dependent diffusion coefficient
is used. The diffusion coefficient can be expressed in
terms of the correlation function of velocity compo-
nents along particle trajectories by the Taylor formula
[2, 5]. We can reformulate the problem as a problem
of relation between Lagrangian and Eulerian statis-
tical quantities. The correlation functions of velocity
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components along particles trajectories are unknown
for us and called Lagrangian correlation functions. At
the same time, the Eulerian correlation functions are
defined at the fixed points of the laboratory frame and
considered as known ones. Thus, the problem is to ob-
tain the unknown Lagrangian correlation function for
the velocity component using the known Eulerian one.

The importance of the dependence of the trajec-
tories of particles on a random field, the so-called
Lagrangian nonlinearity, is usually characterized by
the Kubo number 𝐾. It relates the mean free path of
a particle for the correlation time to the correlation
length and describes a possibility for a particle to ex-
plore the spatial structure of a random field till its
complete change.

Small values of Kubo number 𝐾 < 1 correspond
to a weak Lagrangian nonlinearity in the problem. In
this case, the motion of particles can be cosidered as
random, because the random field changes rapidly in
time. For that values of Kubo number, the asymp-
totic scaling for the diffusion coefficient as a 𝐷 ∼ 𝐾2

obtained by the known Corrsin approximation [3,5] is
agreed to be correct. But, in the case of a strong La-
grangian nonlinearity 𝐾 > 1, all the methods that are
based explicitly or implicitly on the Corrsin approx-
imation give an asymptotic scaling law for the diffu-
sion coefficient, as 𝐷 ∼ 𝐾 [4]. This result contradicts
the result of numerical simulations [6]. The reason for
this contradiction is the account for the temporal, not
spatial, decay of correlations only in the Corrsin ap-
proximation. While the Corrsin approximation is not
valid for the description of diffusion processes in a
random fields with long correlations, we will pay at-
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tention to it. This will grant a possibility to demon-
strate the differences in statistical approaches, which
are studied in this work.

The frozen turbulence is of special interest in the
validation of statistical approaches [1]. In this case,
the random field is static, Kubo number 𝐾 → ∞,
and motion of particles is completely described by
the spatial structure of a random field. According to
the recent numerical simulations [6] for a strong La-
grangian nonlinearity 1 < 𝐾 < ∞, the percolation
scaling law [7] for the diffusion coefficient 𝐷 ∼ 𝐾0.7

is observed. The exponent less than one corresponds
to the particle trapping effects. The percolation ap-
proach cannot describe the time evolution of the dif-
fusion process. It is important to point out that, in
the frozen turbulence limit, the asymptotic scaling
law gives that the diffusion coefficient is zero, rathen
than infinity.

In order to describe the time evolution of the dif-
fusion coefficient, the method of decorrelation trajec-
tories was proposed [8, 9] with the aim to take into
account the effects of particle trapping caused by the
spatial structure of a random field. The authors [8]
pointed out that the method could not be obtained
from the first principles. Instead of, its validity was
demonstrated by the comparison of its results with
a numerical simulation [6]. This approximation was
able to recover a percolation asymptotic scaling law
for the diffusion coefficient and to qualitatively re-
cover the time dependence of the Lagrangian correla-
tion function of the velocity components in the cases
of the large 𝐾 > 1 and small 𝐾 < 1 Kubo num-
bers. But the comparison of results of the decorrela-
tion trajectory method with a direct numerical sim-
ulation for the frozen turbulence for a very strong
Lagrangian nonlinearity, as 𝐾 → ∞, was not pre-
sented. Only the qualitative considerations of the cor-
rectness of the method was given.

The moment approximation [10] for the frozen tur-
bulence was proposed recently. The results of this
method were in a qualitative agreement with a di-
rect numerical simulation. Let us underline that this
method uses no free parameters: there is only the
assumption about the closure of an equation.

We will give the detailed comparison of these ap-
proaches with each other and verify their predictions
by the results of a direct numerical simulation for a
frozen turbulence, as 𝐾 → ∞. We are also inter-
ested in the best way to an approximate Lagrangian

correlation function of velocity components, by using
corresponding Eulerian ones.

The work is organized as follows. The basic con-
cepts are introduced in Section 2, the approximations
are considered in Sections 3–5, and the equations for a
numerical simulation are described in Section 6. The
obtained results and their discussion are presented in
Sections 7–10, and the conclusions are given in Sec-
tion 11.

2. Taylor Relation

Studying the motion of particles 𝜒(𝜏) in a random
velocity field 𝜐(𝜒(𝜏), 𝜏)

𝑑𝜒(𝜏)

𝑑𝜏
= 𝜐(𝜒(𝜏), 𝜏), (1)

Taylor [2, 5] proposed a statistical approach to ob-
tain a mean square displacement with the use the an
integral relation

Δ𝑖(𝜏) = ⟨𝜒2
𝑖 (𝜏)⟩ =

𝜏∫︁
0

𝑑𝜏1

𝜏∫︁
0

𝑑𝜏2 𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏1, 𝜏2), (2)

where ⟨...⟩ describes the averaging over the ensem-
ble of realizations, and 𝐶𝐿

𝜐𝑖𝜐𝑖
(𝜏1, 𝜏2) is a Lagrangian

correlation function of velocity components. In a ho-
mogeneous stationary case, a Lagrangian correlation
function of velocity components depends only on the
difference between two correspondent moments time
𝜏 = |𝜏1 − 𝜏2| and can be written as follows:

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) = ⟨𝜐𝑖(𝜒(𝜏1 + 𝜏), 𝜏1 + 𝜏) 𝜐𝑖(𝜒(𝜏1), 𝜏1)⟩. (3)

At the same time, the mean square displacement (2)
is determined as

Δ𝑖(𝜏) =

𝜏∫︁
0

𝑑𝜏 (𝜏 − 𝜏)𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏), (4)

and the time-dependent diffusion coefficient is

𝐷𝑖(𝜏) =
1

2

𝑑

𝑑𝜏
Δ𝑖(𝜏) =

𝜏∫︁
0

𝑑𝜏𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏). (5)

Using Eqs. (4) and (5), the problem of statistical de-
scription of the motion of particles in the random
velocity field (1) can be reduced to a problem of ob-
taining the unknown Lagrangian correlation function
of velocity components.
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One of the possible approaches to the solution of
this problem is to approximate the Lagrangian corre-
lation function by the corresponding Eulerian ones,
which can be calculated or obtained from experi-
ment. These functions are defined at fixed points of
the laboratory frame and are independt of the trajec-
tories of particles. We have

𝐶𝐸
𝜐𝑖𝜐𝑖

(𝜒, 𝜏) = ⟨𝜐𝑖(𝜒1 + 𝜒, 𝜏1 + 𝜏) 𝜐𝑖(𝜒1, 𝜏1)⟩. (6)

Further, we will study Eq. (1) to describe the two-
dimensional motion of particles in a static incom-
pressible Gaussian isotropic random velocity field
𝜐(𝜒(𝜏)). In this case, the Eulerian correlation func-
tion of random values (6) doesn’t depend on the time
explicitly, and the Eqs. (3)–(5) are valid.

The main purpose of this work is the compari-
son of different analytical approximations of the La-
grangian correlation function of velocity components
by the corresponding Eulerian ones for the frozen tur-
bulence, as 𝐾 → ∞. For such a problem, the crucial
role is played by the particle trapping effects.

3. Corrsin Approximation

One of the first widely used approximations in plasma
physics is the Corrsin approximation [3,5]. It is based
on the exact equation

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) =

∫︁
[𝒟𝜒(𝜏)]𝐶𝐸𝑐

𝜐𝑖𝜐𝑖
[𝜒(𝜏)] 𝑃 [𝜒(𝜏); 𝜏 ], (7)

with the Eulerian correlation function of a velocity
component 𝐶𝐸𝑐

𝜐𝑖𝜐𝑖
and the probability 𝑃 (𝜒, 𝜏) of a

trajectory realization 𝜒(𝜏) in the position 𝜒 at the
time moment 𝜏 . The mentioned Eulerian correlation
function is calculated in the laboratory frame, but
depends on particle’s trajectories as a Lagrangian
one. There is no mathematically strict way to ob-
tain the Eulerian correlation function 𝐶𝐸𝑐

𝜐𝑖𝜐𝑖
and the

trajectory realization probability 𝑃 (𝜒, 𝜏). Thus, the
approximate values are used. The Corrsin approxi-
mation supposes the statistical independence of par-
ticle’s trajectories 𝜒(𝜏) of the random velocity field
𝜐(𝜒) and the Gaussian probability distribution func-
tion for displacements Δ𝑖(𝜏) of particle’s trajecto-
ries. These assumptions allow one to replace the con-
ditional Eulerian correlation function 𝐶𝐸𝑐

𝜐𝑖𝜐𝑖
by the

usual Eulerian one 𝐶𝐸
𝜐𝑖𝜐𝑖

and the unknown trajectory
realization probability 𝑃 (𝜒, 𝜏) by the Gaussian one
in Eq. (7).

Let us look at the Lagrangian correlation function
of a velocity component (3), by using the integral
representation

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) = ⟨𝜐𝑖(𝜒(𝜏2))𝜐𝑖(𝜒(𝜏1))⟩ =
∫︁

𝑑𝜒2𝑑𝜒1×
×⟨𝜐𝑖(𝜒2)𝜐𝑖(𝜒1)𝛿(𝜒2 − 𝜒(𝜏2))𝛿(𝜒1 − 𝜒(𝜏1))⟩. (8)

The first assumption of the Corrsin approximation
allows us to rewrite the averaging under the inte-
gral as the multiplication of two independent aver-
ages. Particle’s trajectories 𝜒(𝜏) are supposed to be
statistically independent of the random velocity field
𝜐(𝜒) in this approximation. So, we have

⟨𝜐𝑖(𝜒2)𝜐𝑖(𝜒1) 𝛿(𝜒2 − 𝜒(𝜏2))𝛿(𝜒1 − 𝜒(𝜏1))⟩ ≈
≈ ⟨𝛿(𝜒2 − 𝜒(𝜏2))𝛿(𝜒1 − 𝜒(𝜏1))⟩×
× ⟨𝜐𝑖(𝜒2)𝜐𝑖(𝜒1)⟩. (9)

The Eulerian correlation function of a velocity com-
ponent for a static random velocity field is

⟨𝜐𝑖(𝜒2)𝜐𝑖(𝜒1)⟩ = 𝐶𝐸
𝜐𝑖𝜐𝑖

(𝜒2 − 𝜒1). (10)

After the introduction of new variables 𝜒 = 𝜒2 −𝜒1,
�̃� = 𝜒2 + 𝜒1 and the further substitution of Eqs. (9)
and (10) in (8), the Lagrangian correlation function
becomes
𝐶𝐿

𝜐𝑖𝜐𝑖
(𝜏) ≈

∫︁
𝑑𝜒 𝐶𝐸

𝜐𝑖𝜐𝑖
(𝜒)×

×
∫︁

𝑑�̃�

2
⟨𝛿(𝜒+ �̃�

2
− 𝜒(𝜏2))𝛿(

�̃�− 𝜒

2
− 𝜒(𝜏1))⟩ =

=

∫︁
𝑑𝜒 𝐶𝐸

𝜐𝑖𝜐𝑖
(𝜒) ⟨𝛿(𝜒− 𝜒(𝜏))⟩, (11)

where the displacement along trajectory 𝜒(𝜏) =
= 𝜒(𝜏2) − 𝜒(𝜏1) for the time 𝜏 = 𝜏2 − 𝜏1 is intro-
duced. The second assumption is

⟨𝛿(𝜒−𝜒(𝜏))⟩ ≈
∏︁

𝑖=𝑥,𝑦

exp(− 𝜒2
𝑖

2Δ𝑖(𝜏)
)√︀

2𝜋Δ𝑖(𝜏)
= 𝑃𝐶𝐴(𝜒, 𝜏). (12)

The substitution of Eq. (12) in (11) gives us the La-
grangian correlation function of a velocity component
in the Corrsin approximation in the form

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) ≈
∫︁

𝑑𝜒 𝐶𝐸
𝜐𝑖𝜐𝑖

(𝜒)𝑃𝐶𝐴(𝜒, 𝜏). (13)

In work [4], the approximate diffusion coefficient with
the asymptotic scaling law 𝐷 ∼ 𝐾 was obtained for a
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strong Lagrangian nonlinearity 𝐾 > 1. Later, in a nu-
merical simulation [6], the asymptotic scaling law for
the diffusion coefficient 𝐷 ∼ 𝐾𝛾 with 𝛾 < 1 was ob-
tained for the Kubo numbers 1 < 𝐾 < ∞. Moreover,
for Eq. (13) in the case of a static random velocity
field, the asymptotic scaling law for a diffusion co-
efficient appears to be infinite, instead of zero, as
𝐾 → ∞.

In work [8], it was pointed out that, for some cases
of Gaussian displacements, there is a possibility to
calculate 𝐶𝐸𝑐

𝜐𝑖𝜐𝑖
exactly in Eq. (7). The diffusion co-

efficient obtained with the use of this exact Eulerian
correlation function and the Gaussian trajectory real-
ization probability (12) has the same asymptotic scal-
ing law 𝐷 ∼ 𝐾 for 𝐾 > 1. This result contradicts the
results of numerical simulations and the prediction of
percolation theory, and assumption (12) is considered
as a reason for the inadequacy of the Corrsin approx-
imation for large Kubo numbers.

The numerical simulation [6] demonstrated that
the probability distribution for displacements 𝑃 (𝜒, 𝜏)
has a maximum at 𝜒 = 0 and a long power-law tail,
which is caused by the trapping of particles in the
spatial structure of a random velocity field: parti-
cles with a large absolute value of potential move
periodically along equipotent surfaces along closed
and rather short trajectories, while particles with a
small absolute value of potential can travel for long
distances.

This demonstrates also that the Gaussian distri-
bution of the displacements of trajectories (12) is an
inadequate assumption for large Kubo numbers, and
there is a need to formulate an approach, which is
not based on the second assumption of the Corrsin
approximation (12).

4. Method of Decorrelation Trajectories

The method of decorrelation trajectories was pro-
posed in [8, 9] with the aim to take the particle trap-
ping effects into account. This method does not in-
volve the assumption of Gaussian displacements of
trajectories (12). Instead of, it uses the set of deter-
ministic trajectories, which are called the trajecto-
ries of spatial decorrelation or decorrelation trajecto-
ries. Every of these trajectories is determined by the
conditional Eulerian correlation functions of random
fields. The condition defines the equality of the initial
values of random fields at the starting points of par-
ticle’s trajectories to the given values. It is important

to point out that the way to organize the subensem-
bles is not strictly fixed in this method: there is a
freedom to choose a way to split an ensemble into
subensembles. The authors of the method [8] used the
way that reproduces quite well the results of numeri-
cal simulations [6]. The Lagrangian correlation func-
tion of a velocity component is approximated as the
product of the initial velocity and the average velocity
in a subensemble along the corresponding decorrela-
tion trajectory averaged over all subensembles.

So, the method of decorrelation trajectories is
based on two assumptions: there is a set of subensem-
bles by initial values in the ensemble of realizations,
and there is the unique dynamics of particles for each
subensemble, which is described by a corresponding
decorrelation trajectory.

The approximation of a Lagrangian correlation
function proposed in work [8] is formulated as a
full weighted Eulerian correlation function for the
ensemble of realizations of random fields, which is
determined along the decorrelation trajectories for
all subensembles. This formulation of the approxima-
tion does not reflects all assumptions used in the
method of decorrelation trajectories. Thus, we are
going to present an interpretation of this method,
which is based on the integral representation of the
Lagrangian correlation function of velocity compo-
nents. Consider the ensemble of realizations of ran-
dom fields, which is partitioned in subensembles by
their initial values, as selected in work [8]:

𝜎0 = 𝜎(0), 𝜐0 = 𝜐(0). (14)

Similar to Eq. (8), we present the Lagrangian correla-
tion function of a velocity component as the integral

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) =

∫︁
𝑑𝜎0𝑑𝜐0𝑑𝜐 𝜐0𝑖𝜐𝑖 ×

×⟨𝛿(𝜎0 − 𝜎(0))𝛿(𝜐0 − 𝜐(0))𝛿(𝜐 − 𝜐(𝜒(𝜏)))⟩. (15)

This representation involves the conditions for the ini-
tial values of random potential and velocity field. Be-
cause the values of 𝜎0, 𝜐0, and 𝜐 are numbers inde-
pendent of the averaging over realizations, the aver-
age multiplication of 𝛿-functions is

⟨𝛿(𝜎0 − 𝜎(0))𝛿(𝜐0 − 𝜐(0))𝛿(𝜐 − 𝜐(𝜒(𝜏)))⟩ =

=

∫︁
𝑑𝜅𝜎0

𝑑𝜅𝜐0𝑑𝜅𝜐

(2𝜋)5
exp(−𝑖𝜅𝜎0𝜎0 − 𝑖𝜅𝜐0𝜐0 − 𝜅𝜐𝜐)×

×⟨exp(𝑖𝜅𝜎0
𝜎(0) + 𝑖𝜅𝜐0

𝜐(0) + 𝑖𝜅𝜐𝜐(𝜒(𝜏)))⟩. (16)
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Averaging the exponent, we need to consider the re-
lation between functions at the same time and at an
arbitrary time. The average of the velocity compo-
nent at the same time moment is fully described by
the second cumulant, because of the supposed homo-
geneity, stationarity, and statistical independence of
the random fields

⟨𝜐𝑖(𝜒(𝜏)) 𝜐𝑗(𝜒(𝜏))⟩ = ⟨𝜐𝑖(0) 𝜐𝑗(0)⟩ =
= 𝛿𝑖𝑗 𝐶𝐿

𝜐𝑖𝜐𝑗
(0) = 𝛿𝑖𝑗 𝐶𝐸

𝜐𝑖𝜐𝑗
(0). (17)

So, the Lagrangian correlation function at the initial
time moment corresponds to the Eulerian correlation
function at the starting point and is known. Avera-
ging the random functions 𝜎(0), 𝜐(0), and 𝜐(𝜒(𝜏))
at different time moments demands one to consider
higher cumulants in general. But, we limit ourselves
to the second cumulant, for simplicity:

⟨𝜐𝑖(𝜒(𝜏)) 𝜐𝑗(0)⟩ = 𝐶𝐿
𝜐𝑖𝜐𝑗

(𝜏), (18)

and

⟨𝜐𝑖(𝜒(𝜏)) 𝜎(0)⟩ = 𝐶𝐿
𝜐𝑖𝜎(𝜏). (19)

These averages are described by Lagrangian correla-
tion functions at an arbitrary nonzero time moment
and are still unknown. So, taking only the second cu-
mulant into account, we have

⟨exp(𝑖𝜅𝜎0
𝜎(0) + 𝑖𝜅𝜐0

𝜐(0) + 𝑖𝜅𝜐𝜐(𝜒(𝜏)))⟩ ≈

≈ exp

⎛⎝−1

2

⎛⎝𝜅2
𝜎0
𝐶𝐿

𝜎𝜎(0) +
∑︁
𝑖=𝑥,𝑦

𝜅2
𝜐0𝑖

𝐶𝐿
𝜐𝑖𝜐𝑖

(0)

⎞⎠⎞⎠×

× exp

⎛⎝−1

2

∑︁
𝑖=𝑥,𝑦

𝜅2
𝜐𝑖
𝐶𝐿

𝜐𝑖𝜐𝑖
(0)

⎞⎠×

× exp

⎛⎝− ∑︁
𝑖=𝑥,𝑦

𝜅𝜐𝑖𝜅𝜎0𝐶
𝐿
𝜐𝑖𝜎(𝜒(𝜏))

⎞⎠×

× exp

⎛⎝− ∑︁
𝑖 ̸=𝑗=𝑥,𝑦

𝜅𝜐𝑖𝜅𝜐𝑗𝐶
𝐿
𝜐𝑖𝜐𝑗

(𝜒(𝜏))

⎞⎠. (20)

The right-hand side of Eq. (16) can be represented
as the product

⟨𝛿(𝜎0 − 𝜎(0))𝛿(𝜐0 − 𝜐(0))𝛿(𝜐 − 𝜐(𝜒(𝜏)))⟩ ≈
≈ 𝑃0(𝜎0,𝜐0) 𝑃 (𝜐(𝜏),𝜒(𝜏);𝜎0,𝜐0), (21)

with the probability of realization of a subensemble
by the initial values of random fields

𝑃0(𝜎0,𝜐0) =
1√︁

(2𝜋)3𝐶𝐸
𝜐𝑥𝜐𝑥

(0)𝐶𝐸
𝜐𝑦𝜐𝑦

(0)𝐶𝐸
𝜎𝜎(0)

×

× exp

(︃
− 𝜐2

0𝑥

2𝐶𝐸
𝜐𝑥𝜐𝑥

(0)
−

𝜐2
0𝑦

2𝐶𝐸
𝜐𝑦𝜐𝑦

(0)
− 𝜎2

0

2𝐶𝐸
𝜎𝜎(0)

)︃
. (22)

The probability of realization of the velocity 𝜐 in a
position 𝜒(𝜏) for the corresponding subensemble is

𝑃 (𝜐(𝜏),𝜒(𝜏);𝜎0,𝜐0) ≈
∏︁

𝑖=𝑥,𝑦

1√︀
2𝜋Σ𝑖(𝜒(𝜏);𝜎0,𝜐0)

×

× exp

(︃
− (𝜐𝑖 −ϒ𝑖(𝜒(𝜏);𝜎0,𝜐0))

2

2Σ𝑖(𝜒(𝜏);𝜎0,𝜐0)

)︃
. (23)

The value

ϒ𝑖(𝜒(𝜏);𝜎0,𝜐0) = 𝜎0

𝐶𝐿
𝜐𝑖𝜎(𝜒(𝜏))

𝐶𝐸
𝜎𝜎(0)

+

+
∑︁
𝑗=𝑥,𝑦

𝜐0𝑗
𝐶𝐿

𝜐𝑖𝜐𝑗
(𝜒(𝜏))

𝐶𝐸
𝜐𝑗𝜐𝑗

(0)
, (24)

is determined by the unknown Lagrangian correla-
tion functions (18) and (19). It corresponds formally
to the most probable velocity in a subensemble. The
dispersion is

Σ𝑖(𝜒(𝜏);𝜎0,𝜐0) = 𝐶𝐸
𝜐𝑖𝜐𝑖

(0)−
∑︁

𝜌=𝜎,𝜐𝑥,𝑦

(𝐶𝐸
𝜐𝑖𝜌(𝜒(𝜏)))

2

𝐶𝐸
𝜌𝜌(0)

.

(25)

The substitution of Eqs. (20)–(25) in the weighted La-
grangian correlation function (15) leads to an expres-
sion, where the partial Lagrangian correlation func-
tion of velocity components for a subensemble is

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) ≈
∫︁

𝑑𝜎0𝑑𝜐0𝑃0(𝜎0,𝜐0)×

×𝐶𝐿𝑐
𝜐𝑖𝜐𝑖

(𝜒(𝜏);𝜎0,𝜐0). (26)

Here, the partial Lagrangian correlation function of a
velocity component for a subensemble is

𝐶𝐿𝑐
𝜐𝑖𝜐𝑖

(𝜏 ;𝜎0,𝜐0) = 𝜐0𝑖

∫︁
𝑑𝜐 𝜐𝑖 𝑃 (𝜐(𝜏),𝜒(𝜏);𝜎0,𝜐0) =

= 𝜐0𝑖ϒ𝑖(𝜒(𝜏);𝜎0,𝜐0). (27)
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Equation (21) is a consequence of the first assumption
of the method of decorrelation trajectories: the exis-
tence of subensembles by the initial values of random
fields. It describes the dependence of the weighted La-
grangian correlation function of a velocity component
on the parameters of subensembles.

It is important to point out that Eq. (21) is in
agreement with Eq. (3), when the Lagrangian corre-
lation functions of Eq. (24) are independent of the
parameters of a subensemble. This behavior is a con-
sequence of the neglect of higher cumulants in the
averaging (20).

It is worth to note that the most probable veloc-
ity (24) for a subensemble depends on the unknown
trajectories of particles. These trajectories cannot be
determined by the approximation of a Gaussian dis-
placement of trajectories (12), because it leads to the
asymptotically infinite diffusion coefficient for a static
random field. At the same time, according to work
[8], the assumption of statistical independence of the
trajectories of particles on the random field (9) does
not lead to a wrong asymptotic scaling law for the
diffusion coefficient. Thus, we will use this assump-
tion and perform the integration in Eq. (11) before
the averaging over particles’ trajectories:

𝐶𝐿
𝜐𝑖𝜐𝑗

(𝜏) =

⟨∫︁
𝑑𝜒𝐶𝐸

𝜐𝑖𝜐𝑖
(𝜒) 𝛿(𝜒− 𝜒(𝜏))

⟩
≈

≈ ⟨𝐶𝐸
𝜐𝑖𝜐𝑗

(𝜒(𝜏))⟩. (28)

The unknown correlation functions (18) and (19) ap-
pear in the definition of a partial Lagrangian cor-
relation function, and we suppose that, for all tra-
jectories in the subensemble, condition (14) is sat-
isfied. According to the second assumption of the
method of decorrelation trajectories, the dynamics in
each subensemble can be described by a characteristic
trajectory. Further, we approximate the Eulerian cor-
relation function of random fields, which is averaged
over particles’ trajectories, as the Eulerian correlation
function along a characteristic trajectory

𝐶𝐿
𝜐𝑖𝜐𝑗

(𝜏) ≈ 𝐶𝐸
𝜐𝑖𝜐𝑗

(⟨𝜒(𝜏)⟩). (29)

Let us consider condition (14) defining the charac-
teristic trajectory. It is formulated for one point of
the random field and means the existence of the in-
finite number of random fields that satisfy this con-
dition. The description of the statistical behavior of
the infinite number of correlated particles according

to Eqs. (26) and (27) is defined by the most prob-
able velocity in subensemble (24)), which depends
on the unknown characteristic trajectory ⟨𝜒(𝜏)⟩.
There is no way to obtain it in a strict mathemat-
ical way. According to the second assumption of the
method of decorrelation trajectories, it is natural to
approximate this trajectory by a trajectory along the
most probable velocity

⟨𝜒(𝜏 ;𝜎(0) = 𝜎0,𝜐(0) = 𝜐0)⟩ ≈ 𝑋𝑖(𝜏 ;𝜎0,𝜐0). (30)

This trajectory is called the spatial decorrelation tra-
jectory or the decorrelation trajectory and is defined
by the equation
𝑑

𝑑𝜏
𝑋𝑖(𝜏 ;𝜎0,𝜐0) = ϒ𝑖(𝑋(𝜏 ;𝜎0,𝜐0);𝜎0,𝜐0) (31)

which closes up our system for the method of decor-
relation trajectories. The interpretation of the decor-
relation trajectories (31) follows from the definition
of diffusion coefficient (5) and the partial Lagrangian
correlation function (27)

𝐷𝑖(𝜏 ;𝜎0,𝜐0) =

𝜏∫︁
0

𝑑𝜏𝐶𝐿𝑐
𝜐𝑖𝜐𝑖

(𝜏 ;𝜎0,𝜐0) =

= 𝜐0𝑖𝑋𝑖(𝜏 ;𝜎0,𝜐0), (32)

and represents the partial diffusion coefficient.
There are different ways to split up the ensemble

to subensembles [8], for example, by the initial values
of random potential, and different ways to close the
equations, for example, by considering the decay of
the Lagrangian correlation function in the time – the
so-called space-time decorrelation trajectories. All of
them give similar results, but there are the decor-
relation trajectories with subensembles (14) by the
initial values of potential and velocity with spatial
decorrelation trajectories (31), which reproduces bet-
ter the results of numerical simulations [6]. The au-
thors of work [8] noted that the decorrelation tra-
jectories are not the averaged trajectory of particles
in the subensemble. According to our interpretation,
these trajectories are the partial diffusion coefficients
(32) for the correspondent subensembles.

The time evolution of the Lagrangian correlation
function of a velocity component for an explicitly ti-
me-dependent random potential was obtained by the
method of decorrelation trajectories in work [8] for
Kubo nubers 𝐾 = 4 and 𝐾 = 160. It reproduces qual-
itatively, but not quantitatively, the correlation func-
tion obtained by the numerical simulation [6]. The
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obtained asymptotic scaling law for the diffusion co-
efficient appears to be correct in a wide range of Kubo
numbers: the method is in agreement with the quasi-
linear theory for the small values of Kubo number
𝐾 < 1. For large Kubo numbers, 𝐾 > 1, it repro-
duces the percolation scaling law with good accuracy.

There was no comparison between the method of
decorrelation trajectories and the results of numeri-
cal simulations for a static random velocity field in
work [8]. But the authors stated the possibility of the
reproduction of a subdiffusive time evolution and the
asymptotically zero diffusion coefficient by the pro-
posed method because of fact that the decorrelation
trajectories are finite closed curves for 𝜎0 ̸= 0, and the
diffusion coefficient is an integral over the all decor-
relation trajectories.

The main assumption of the method is a possibil-
ity to describe a characteristic evolution of particles
in the subensemble in terms of the decorrelation tra-
jectory (31,) as pointed out in work [8]. These de-
terministic trajectories are the partial diffusion co-
efficients (32) according to the mentioned interpre-
tation. So, the method of decorrelation trajectories
closes the system of equations, using the diffusion co-
efficient instead of the mean square displacement, as
the Corrsin approximation does.

Decorrelation trajectories 𝑋𝑖(𝜏 ;𝜎0,𝜐0) (31) are de-
pendent on three parameters of the subensemble
𝜎0,𝜐0, which are used in the further averaging in Eq.
(21) as continuous values. This correlation function
with continuous averaging is approximated by the dis-
crete sum with a finite number of subensembles in nu-
merical calculations. The asymptotic scaling law for
the diffusion coefficient for a static random potential
can depend on the number of decorrelation trajec-
tories. Thus, it is important to analyze the depen-
dence of decorrealtion trajectories on the parameters
of subensembles and to validate the closure, using the
diffusion coefficient, by comparison with the results of
direct numerical simulations.

5. Moment Approximation

There is another method proposed in work [10] to
approximate the Lagrangian correlation function of
velocity components for an isotropic frozen turbu-
lence. The moment approximation uses the first as-
sumption of the Corrsin approximation (9), but it
closes the equations in another way. The mean square
displacement is an important statistical character-

istic that describes a displacemnet of trajectories,
when the average displacement of Lagrangian parti-
cles tends to zero in isotropic frozen turbulence.

Let us consider an integral form of the Lagrangian
correlation function of a velocity component (8) with
the first assumption of the Corrsin approximation (9)
as

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) = ⟨𝐶𝐸
𝜐𝑖𝜐𝑖

(𝜒(𝜏))⟩. (33)

We define Eulerian correlation function along the ve-
locity for isotropic random fields

𝐶𝐸
𝜐𝜐(𝜒) =

∑︁
𝑖=𝑥,𝑦

𝐶𝐸
𝜐𝑖𝜐𝑖

(𝜒) = 𝐶𝐸
𝜐𝜐(|𝜒|). (34)

This correlation function depends on the absolute
value of difference between two sequent particle’s tra-
jectory values. The Lagrangian correlation function
of velocity components is approximated by the Eu-
lerian correlation function dependent on the mean
square displacement for the isotropic frozen turbu-
lence. Using assumption (29), we have

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) ≈ ⟨𝐶𝐸
𝜐𝑖𝜐𝑖

(|𝜒(𝜏)|)⟩ ≈ 𝐶𝐸
𝜐𝑖𝜐𝑖

(⟨|𝜒(𝜏)|⟩) ≈

≈ 𝐶𝐸
𝜐𝑖𝜐𝑖

(
√︀
Δ(𝜏)). (35)

The time evolutions for the Lagrangian correlation
function of velocity components, diffusion coefficient,
and mean square displacement were obtained in work
[10] and found to be in agreement with the results
of direct numerical simulations. It is pointed out that
the moment approximation has no free choices in con-
trast to the method of decorrelation trajectories.

6. Numerical Simulation

We study the motion of magnetized test particles in
a random frozen electrostatic field in a plane perpen-
dicular to a constant magnetic field. Particle’s trajec-
tories satisfy the drift motion equation

𝑑x

𝑑𝑡
= v =

𝑒

𝑚

[E(x)× eB]

ΩB
, (36)

where ΩB = 𝑒𝐵
𝑚𝑐 , and field is defined as a superpo-

sition of 𝑁 harmonic waves with a Gaussian weight
and an amplitude of the potential 𝜑0

E(x) = − 𝜕

𝜕x
𝜑(x) = −𝐴𝜑0 ×

×
𝑁∑︁
𝑠=1

k𝑠 exp

(︃
−1

2

(︂
k𝑠

Δ𝑘

)︂2)︃
sin(−k𝑠x+ 𝛼𝑠). (37)
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The set of wave vectors is given by 𝑁𝜅 different ab-
solute values in the interval (0, 𝑘max) in 𝑁𝜃 different
directions with dispersion Δ𝑘

k𝑠 = 𝑘𝑙e𝑚, e𝑚 = (cos(𝜃𝑚), sin(𝜃𝑚));

𝑘𝑙 = 𝑙 𝛿𝑘 = 𝑙
𝑘max

𝑁𝜅
, 𝑙 = 1, 𝑁𝜅;

𝜃𝑚 = 𝑚
2𝜋

𝑁𝜃
, 𝑚 = 1, 𝑁𝜃;

𝑁 = 𝑁𝜅 ×𝑁𝜃.

(38)

The normalization parameter is defined as

𝐴 =

√︃
4𝑘max

Δ𝑘
√
𝜋𝑁𝜅𝑁𝜃

, (39)

by the condition ⟨E(x)E(x)⟩ = 1. Each realization of
the random field E(x) is defined by the set of random
phases {𝛼𝑖}.

We use the dimensionless spatial 𝜒 = xΔ𝑘/(2𝜋)
and time 𝜏 = 𝑡𝜎ΩB/(2𝜋) variables for a convenient
numerical simulation and the dimensionless ampli-
tude of the potential 𝜎 = 𝑒𝜑0𝛿𝑘

2/(𝑚Ω2
B). The sub-

stitution of these variables in Eq. (36) gives us

𝜐𝑖 =
𝑑𝜒𝑖

𝑑𝜏
= 𝜖𝑖𝑘

𝜕

𝜕𝜒𝑘
𝜎(𝜒), (40)

where 𝜖𝑖𝑘 denotes the antisymmetric second-rank ten-
sor 𝜖𝑥𝑦 = −𝜖𝑦𝑥 = 1. The isotropic dimensionless po-
tential 𝜎(𝜒) looks as

𝜎(𝜒) =

√︃
4𝜅max√
𝜋𝑁𝜅𝑁𝜃

1

2𝜋
×

×
𝑁∑︁
𝑠=1

exp(−𝜅2
𝑠/2) cos (𝛼𝑠 − 2𝜋𝜅𝑠𝜒), (41)

where 𝜅𝑠 = k𝑠/Δ𝑘 represents a set of dimensionless
wave vectors.

The Eulerian correlation function of a potential in
the continuous limit 𝑁 → ∞ is obtained as

𝐶𝐸
𝜎𝜎(𝜒) = ⟨𝜎(𝜒− 𝜒2)𝜎(𝜒2)⟩ =

=
1

4𝜋2
exp

(︂
−𝜋2𝜒2

2

)︂
𝐼0

(︂
𝜋2𝜒2

2

)︂
, (42)

and depends on 𝜒2 only, i.e. it is isotropic. The Eu-
lerian correlation functions of velocity components or
the potential and velocity components are defined as
the derivatives of the correlation function of poten-
tial (42)

𝐶𝐸
𝜐𝑖𝜎(𝜒) = −𝜖𝑖𝑘

𝜕

𝜕𝜒𝑘
𝐶𝐸

𝜎𝜎(𝜒), (43)

𝐶𝐸
𝜐𝑖𝜐𝑗

(𝜒) = −𝜖𝑖𝑘𝜖𝑗𝑚
𝜕2

𝜕𝜒𝑘𝜕𝜒𝑚
𝐶𝐸

𝜎𝜎(𝜒). (44)

The integration of the system of equations (40)
for different realizations gives us particle’s trajecto-
ries. Their further averaging over 𝑁𝑟 realizations of
random fields allows us to obtain the mean displace-
ment

⟨𝜒⟩(𝜏) = 1

𝑁

𝑁𝑟∑︁
𝑖=0

𝜒{𝛼}𝑖
(𝜏),

and the mean square displacement

⟨𝜒2⟩(𝜏) = 1

𝑁

𝑁𝑟∑︁
𝑖=0

(︀
𝜒{𝛼}𝑖

(𝜏)− ⟨𝜒⟩(𝜏)
)︀2
.

Using similar expressions, we can obtain higher cu-
mulants as well. The fourth cumulant indicates an
important deviation of the probability distribution
function from the Gaussian one.

We choose 𝑁 = 1440 partial harmonic waves
(𝑁𝜅 = 20, 𝑁𝜃 = 72) in the numerical simulation,
using considerations of a smooth enough behavior of
the correlation function of the potential 𝐶𝐸

𝜎𝜎(𝜒). The
maximal absolute value of dimensionless wave vector
in the numerical simulation is limited to the value
𝜅max = 2. There are 𝑁 = 1440 random phases gen-
erated for each realization of the random field. The
numbers of realizations 𝑁𝑟 for a run are noted in the
subscriptions to the images.

7. Analytical Models

It is the Lagrangian correlation function of velocity
components that appears to be a key value in the
chosen (two-dimensional incompressible static ran-
dom velocity field) formulation of the problem. It de-
scribes the time evolution and the asymptotic scaling
law for the transport coefficients. Using general con-
siderations, it is obvious that the asymptotic value
of diffusion coefficient is zero in the limit of a strong
Lagrangian nonlinearity 𝐾 → ∞. This also means
that, in order to have a zero integral over the time,
the Lagrangian correlation function of velocity com-
ponents should has a long interval of negative values
for large times, because it has a positive values at
the start. Such behavior of the Lagrangian correlation
function reflects particle trapping effects. Particles
are moving along the closed trajectories that are fully
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determined by the spatial structure of a random po-
tential. The analytical approximations are needed to
reproduce this behavior of the correlation function
correctly.

The evolution equations for the mean square dis-
placement in the Corrsin approximation and in the
moment approximation are obtained, by using the
Taylor relation (4) after the substitution the approx-
imate Lagrangian correlation functions (13) in the
right-hand side. In the Corrsin approximation, the
equation is as follows:

𝜕2

𝜕𝑡2
Δ =

√
2𝜋

[1 + 2𝜋2Δ]3/2
. (45)

In the moment approximation, along with Eq. (35),
we have

𝜕2

𝜕𝑡2
Δ =

𝜎2

2
exp

(︂
−𝜋2Δ

2

)︂(︂
𝐼0

(︂
𝜋2Δ

2

)︂
(1− 𝜋2Δ)+

+ 𝐼1

(︂
𝜋2Δ

2

)︂
𝜋2Δ

)︂
. (46)

These equations are closed up, using the same mean
square displacement Δ, but in different ways. In con-
trast to these approximations, the equation in the
method of decorrelation trajectories is closed up by
the partial diffusion coefficient 𝑋𝑖,𝑗 :

𝑑

𝑑𝜏
𝑋𝑖 = exp

(︂
− (𝜋𝑋)2

2

)︂
𝐼1

(︂
(𝜋𝑋)2

2

)︂[︂
𝜋2𝜎0𝜖𝑖𝑗𝑋𝑗 +

+ 𝜐0𝑗

(︂
2𝜋2𝑋𝑗𝑋𝑖 +

2𝑋𝑗𝑋𝑖

𝑋2
− 1

)︂
+

+ 𝜐0𝑖

(︂
2𝜋2𝑋2

𝑗 +
2𝑋2

𝑗

𝑋2
− 1

)︂]︂
+

+ exp

(︂
− (𝜋𝑋)2

2

)︂
𝐼0

(︂
(𝜋𝑋)2

2

)︂[︂
𝜐0𝑖(1− 2𝜋2𝑋2

𝑗 )−

−𝜋2𝜎0𝜖𝑖𝑗𝑋𝑗 + 𝜐0𝑗2𝜋
2𝑋𝑖𝑋𝑗

]︂
, 𝑋2 =

∑︁
𝑖=𝑥,𝑦

𝑋2
𝑖 . (47)

Ensemble’s diffusion coefficient is obtained by the
averaging of partial diffusion coefficients over all
subensembles with a corresponding probability of re-
alization of a subensemble

𝐷𝑖 =

∫︁
𝑑𝜎0𝑑𝜐0

𝜐0𝑖𝑋𝑖√︁
(2𝜋)3𝐶𝐸

𝜎𝜎(0)𝐶
𝐸
𝜐𝑥𝜐𝑥

(0)𝐶𝐸
𝜐𝑦𝜐𝑦

(0)
×

× exp

⎛⎝− 𝜎2
0

2𝐶𝐸
𝜎𝜎(0)

−
∑︁
𝑗=𝑥,𝑦

𝜐2
0𝑗

2𝐶𝐸
𝜐𝑗𝜐𝑗

(0)

⎞⎠. (48)

The method of decorrelation trajectories and the
moment approximation don’t use the second assump-
tion of the Corrsin approximation (12) about a Gaus-
sian displacement for particles’ trajectories. These
approximations describe the evolution of particles’
trajectories, using the averaged characteristics: par-
tial diffusion coefficients or mean square displace-
ment. The method of decorrelation trajectories is
based on the idea to consider the known initial val-
ues to describe the motion of particles. At the same
time, the functional form of the Lagrangian corre-
lation functions is independent of subensembles’ pa-
rameters: the equations for the partial diffusion coef-
ficient for different subensembles differs by the value
of 𝜎0,𝜐0.

During numerical calculations in the method of
decorrelation trajectories, we need to switch to a dis-
crete sum over subensembles instead of the continu-
ous integration in Eq. (48). It is natural to suppose
that the approximation will reproduce the numeri-
cal simulation results better with more subensembles
taken into account. Let us look at right-hand sides of
Eqs. (45)–(47). The right-hand side of Eq. (45) is pos-
itive for any values of argument, while, for Eqs. (46)
and (47), it can be negative. That is why we can
immediately conclude that the Corrsin approxima-
tion (45) is not able to reproduce the zero asymp-
totic diffusion coefficient and the subdiffusive evolu-
tion. The reason is the assumption of a Gaussian dis-
placement for particles’ trajectories, which is absent
in the method of decorrelation trajectories and in the
moment approximation. Let us demonstrate that, in
the moment approximation, the Lagrangian correla-
tion function of velocity components (35) tends to
zero, as the mean square displacement tends to infin-
ity 𝜏 → ∞, Δ(𝜏) → ∞ from negative values

lim
𝜏→∞

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) = lim
Δ→∞

1

2
exp

(︂
−𝜋2Δ

2

)︂
×

×
(︂
𝐼0

(︂
𝜋2Δ

2

)︂
(1− 𝜋2Δ) + 𝐼1

(︂
𝜋2Δ

2

)︂
𝜋2Δ

)︂
=

= lim
Δ→∞

−1

4𝜋3Δ
√
𝜋Δ

= 0, (49)

where we have used the asymptotics of the modified
Bessel function with | arg 𝑧| < 𝜋/2, |𝑧| → ∞, 𝜇 = 4𝜈2

𝐼𝜈 (𝑧) ∼
exp(𝑧)√

2𝜋𝑧

(︂
1− 𝜇− 1

8𝑧
+

(𝜇− 1)(𝜇− 9)

2! (8𝑧)2
− ...

)︂
.
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The diffusion coefficient obtained by the integration
of this correlation function also tends to zero, as 𝜏 →
→ ∞, Δ(𝜏) → ∞. Using the first integral of motion,
we have

lim
𝜏→∞

𝐷(𝜏) = lim
Δ→∞

[︂
Δexp

(︂
−𝜋2Δ

2

)︂]︂1/2
×

×
[︂
𝐼0

(︂
𝜋2Δ

2

)︂
− 𝐼1

(︂
𝜋2Δ

2

)︂]︂1/2
=

= lim
Δ→∞

1

(4𝜋7Δ)1/4
= 0, (50)

where the mentioned asymptotics for the modified
Bessel is used.

The properties of decorrelation trajectories are
studied in Section 9.

8. Results of Numerical Simulations

Let us present here the results of numerical sim-
ulations for the Lagrangian correlation function of
velocity components and the mean square displace-
ment. The Lagrangian correlation function of veloc-
ity components for small times obtained by numeri-
cal simulations and by three analytic approximations
is presented in Fig. 1. The Corrsin approximation
cannot reproduce the negative values of Lagrangian
correlation function, while the method of decor-
relation trajectories and the moment approxima-
tion qualitatively demonstrate this feature. Moreover,
the moment approximation gives a more accurate
result.

The behavior of the correlation function obtained
by numerical simulations is influenced by fluctua-
tions, which are caused by a finite number of re-
alizations and a finite number of waves. The more
the number of realizations, the less the fluctuations
obtained, which is demonstrated in Fig. 2. There
are also such important characteristics of the diffu-
sion process as the diffusion coefficient and the mean
square displacement. They defined as integrals of the
correlation function over the time; thus, they are
much less influenced by fluctuations.

The time evolution of the mean square displace-
ment is presented in Fig. 3 and gives a possibility
to study the quantitative difference between the re-
sults of the numerical simulation and analytic approx-
imations for larger times. The Corrsin approximation
gives the incorrect time evolution for the mean square
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Fig. 1. Lagrangian correlation function of velocity compo-
nents obtained by numerical simulations (NS) (number of real-
izations 𝑁𝑟 = 2 × 106), Corrsin approximation (CA), method
of decorrelation trajectories (MDT) (number of subensembles
𝑁𝑠 = 1728× 103), and moment approximation (MA). The re-
gion of negative values of correlation function represents the
effect of particles’ trapping
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Fig. 2. Scaled part of Fig. 1 of the Lagrangian correlation
function of velocity components. It demonstrates that much
more realizations are needed in numerical simulations (raised
up from 104 to 106) to obtain a bit more persistent behavior
of the tail of the correlatoion function in the negative region

displacement: it grows faster, than a linear function
in time. The moment approximation qualitatively re-
produces the behavior obtained in the numerical sim-
ulation – there is a subdiffusion process.

The method of decorrelation trajectories gives
a significant fluctuation of the mean square dis-
placement caused by a finite number of subensem-
bles. Fig. 4 demonstrates the time evolution of the
mean square displacement obtained by the method
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realizations: it is close to the Gaussian one

of decorrelation trajectories for different numbers of
subensembles 𝑁𝑠. Such a dependence on the number
of subensembles can be less obvious for a nonstation-
ary turbulence [8] because of the additional exponen-
tial dumping of correlations caused by it.

The dependence of the results of the method of
decorrelation trajectories on the non-physical param-
eter of the number of subensembles demands for a
detailed analysis. It is useful to check the distribution
of subensembles in a direct numerical simulation. We
also intrested in the formulation of a condition for
a subensemble for a direct numerical simulation and
in the testing of the uniqueness of particle’s dynam-
ics for different subensembles. Further, we will ana-
lyze the properties of decorrelation trajectories, their
dependence on subensemble’s parameters, and their
contribution to the ensemble average.

9. Subensembles

The method of decorrelation trajectories is based on
the assumption of the possibility of a splitting of the
ensemble of realizations into subensembles by the set
of the initial values of random fields (14). The proba-
bility of their realization is of Gaussian type (22). Ac-
cording to the assumption of the method of decorre-
lation trajectories, each subensemble describes a pro-
cess of dumping of correlations in the corresponding
group of particles (14) in terms of the partial diffusion
coefficient.

Let us look at the probability distribution for the
initial values of random potential and velocity com-
ponents in a numerical simulation, whose results were
presented in the previous section. As shown in Fig. 5,
the distribution isn’t identical to a continuous Gaus-
sian distribution from the method of decorrelation
trajectories. But we can consider that the discrete
distribution obtained by a numerical simulation tends
to the Gaussian one for the infinite number of rea-
lizations.

It is important to verify the assumption of uni-
que dynamics for different subensembles within the
method of decorrelation trajectories by a numeri-
cal simulation. We can calculate the partial diffusion
coefficients or correspondent mean square displace-
ments for different subensembles and relate them to
one another. According to the method of decorrela-
tion trajectories, the difference in the dynamics of
these particles, which are described by the partial dif-
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fusion coefficient (31) and defined by the initial values
of random fields, can be sufficiently high:

Δ𝑥(𝜏 ;𝜎0,𝜐0)

Δ𝑥(𝜏 ;𝛼𝜎0, 𝛼𝜐0)
=

Δ𝑥(𝜏 ;𝜎0,𝜐0)

Δ𝑥(𝛼𝜏 ;𝜎0,𝜐0)
. (51)

The results of numerical simulations for the mean
square displacement for two different subensem-
bles {𝜎0, 𝜐0𝑥, 𝜐0𝑦}: (𝐴){0.0032, 0.01, 0.01} and
(𝐵){0.032, 0.1, 0.1} are presented in Fig. 6. Equations
(31) and (32) give the mean square displacement
growing in time with oscillations for the subensem-
bles. It can be seen in Fig. 6 that the mean square
displacements for the subensembles tend to infinity in
both subensembles and have a similar tangent. The
time dependences differs by the period and the ampli-
tude of oscillations only. At the same time, the mean
square displacement for the different subensembles
obtained by numerical simulations grows much slowly,
and there is no oscilations. Moreover, the time depen-
dences of the mean square displacement for different
subensembles differ significally: for the subensemble
(𝐵){0.032, 0.1, 0.1}, it tends to some constant with
fluctuations at the time 𝜏 = 1000. For the subensem-
ble (𝐴){0.0032, 0.01, 0.01}, it is growing during all the
time of the simulation.

The given results of the numerical simulation lead
us to the conclusion that the mean square displace-
ment is different for different subensembles. At the
same time, the results obtained by the method of
decorrelation trajectories and found in the numerical
simulation differ drastically.

So, the subensembles with different particle’s dy-
namics actually exist, but the method of decorrela-
tion trajectories is not sufficient to describe such dy-
namics correctly. The reason for this can be different:
this can be caused by involving only the second cu-
mulants during the averaging (21) or in the closure
of the equations using the partial diffusion coefficient
(31). Now, we are going to study the closure proce-
dure for decorrelation trajectories.

10. Decorrelation Trajectories

Before we study the closure procedure, we need ana-
lyze in depth the dependence of partial diffusion co-
efficients on subensemble’s parameters. In particular,
the analysis of Eq. (47) gives that we have three dif-
ferent classes of trajectories according to subensem-
bles’ parameters: 1) periodic ones: {𝜎0 ̸= 0, 𝜐0𝑥,𝑦 ̸=

Fig. 6. Mean square displacement in subensembles by
{𝜎0, 𝜐0𝑥, 𝜐0𝑦}: (𝐴){0.0032, 0.01, 0.01} and (𝐵){0.032, 0.1, 0.1}
obtained by a numerical simulation (NS) (number of realiza-
tions 𝑁𝑟 = 103) and the method of decorrelation trajectories
(MDT) for large times
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̸= 0}, with the subensemble density ∼1; 2) open ones:
{𝜎0 = 0, 𝜐0𝑥,𝑦 ̸= 0}, with the subensemble density
∼𝑁

−1/3
𝑠 ; 3) zero ones: {𝜎0 ̸= 0, 𝜐0𝑥,𝑦 = 0}, with the

subensemble density ∼𝑁
−2/3
𝑠 . The first type of tra-

jectories giving a leading contribution to the diffu-
sion coefficint are periodic trajectories with different
traveling velocities along them. That’s why we will
further consider decorrelation trajectories as periodic
trajectories only.

We present four decorrelation trajectories for the
different parameters of subensembles 𝜎0,𝜐0 in Fig. 7.
Changing the sign of the initial velocity 𝜐0𝑥,𝑦 along a
decorrelation trajectory reflects on the correspondent
axis, while the form of the trajectory is constant. So
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we can suppose that a decorrelation trajectory is an
odd function of the initial velocity. In the same way,
we see that the change of a sign of the initial poten-
tial leads to the inversion of a trajectory. When we
rescale the subensemble parameters 𝜎0,𝜐0, the tra-
jectory doesn’t change its shape. Instead, the speed of
bypass is changed, since it is determined by the initial
potential 𝜎0. Exactly in this way, the partial disper-
sion coefficients are related to each other in Fig. 5. We
note that the size of the closed trajectory area is de-
termined by the relation of the initial velocity to the
initial potential.

Because of the closed form of decorrelation trajec-
tories and the fact that their sizes are determined
by the relation 𝜐0/𝜎0, we can approximate the right-

hand side of the equation of a decorrelation trajectory
(31), as an expansion of the first order in 𝑋𝑥,𝑦. The
approximated equation can be solved, and we obtain
the decorrelation trajectory of the first order in 𝑋𝑥,𝑦:

𝑋𝑖 =
𝜐0𝑖
𝜋2𝜎0

sin(𝜋2𝜎0𝑡)+𝜖𝑖𝑗
𝜐0𝑗
𝜋2𝜎0

(1−cos(𝜋2𝜎0𝑡)). (52)

In the same way, we can obtain an approximated
decorrelation trajectory in the second order in 𝑋𝑥,𝑦.
We demonstrate the approximated and exact decor-
relation trajectories for two different subensembles in
Figs. 8 and 9. When |X| ∼ 0.01, we have a good
convergence of the approximated and exact solutions
with the relative error 𝜖0.01 ≈ 0.06%. For |X| ∼ 0.1,
we have the larger relative error 𝜖0.1 ≈ 7.6%. This
deviation between the exact and approximated solu-
tions grows faster than a linear function in time. It
is worth to note that the first-order approximation is
covers the exact solution, and the second-order one
is covered by exact solution. The obtained approxi-
mated decorrelation trajectories have all the proper-
ties of the exact solution: the dependence of the size
of a trajectory on the relation 𝜐0/𝜎0, the speed of
bypass of a trajectory depends on 𝜎0 only, and, what
is most important, the odd dependence on subensem-
bles’ parameters 𝜎0,𝜐0.

The above consideration leads us to the idea of that
not all of the terms in Eq. (31) are important. Some
part of them will be eliminated during the averaging
over the subensembles (48). We have no possibility to
perform an continuous averaging over a subensemble
in Eq. (48) and obtain the time evolution of the dif-
fusion coefficient in a limit of the infinite number of
subensembles 𝑁𝑠 → ∞, because we have no exact an-
alytical solution of Eq. (31) for a decorrelation trajec-
tory. That is why in order to purge the dependence
of the mean square displacement on the number of
subensembles in the method of decorrelation trajecto-
ries, we perform the averaging over the subensembles
in Eq. (48) before the closure of the equations using
the diffusion coefficient. At the same time, we sup-
pose that the symmetry of decorrelation trajectories
shown in Fig. 7 is still present for all trajectories. In
view of the assumption about the independence of
averaged trajectories in a subensemble on the initial
values of potential 𝜎0 and velocity 𝜐0, we have

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) = ⟨𝜐𝑖(0)𝜐𝑖(𝜏)⟩. (53)
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We obtain the approximated Lagrangian correlation
function in a similar way to Eqs. (28)–(31) as

𝐶𝐿
𝜐𝑖𝜐𝑖

(𝜏) ≈ 𝐶𝐸
𝜐𝑖𝜐𝑖

(�̃�(𝜏)), (54)

and we close our equation, by using the full diffusion
coefficient

�̃�𝑖 =
𝐷𝑖√︁

𝐶𝐿
𝜐𝑖𝜐𝑖

(0)
. (55)

We chose a Lagrangian correlation function of veloc-
ity components as a normalizing value for the diffu-
sion coefficient. This leads us to the final equation
that determines the diffusion coefficient

𝑑

𝑑𝜏
𝐷𝑖 = exp

(︂
− (𝜋𝐷)2

2

)︂
𝐼0

(︂
(𝜋𝐷)2

2

)︂
(1− 2𝜋2𝐷2

𝑗 )+

+ exp

(︂
− (𝜋𝐷)2

2

)︂
𝐼1

(︂
(𝜋𝐷)2

2

)︂(︃
2𝜋2𝐷2

𝑗 +
2𝐷2

𝑗

𝐷2
− 1

)︃
,

𝐷2 =
∑︁
𝑖=𝑥,𝑦

𝐷2
𝑖 . (56)

The full diffusion coefficients obtained by the
method of decorrelation trajectories for the differ-
ent numbers of subensembles and by a modified one
based on Eq. (56) are presented in Fig. 10. In the
terms of the used assumptions, the diffusion coeffi-
cient obtained from Eq. (56) is a limit for the method
of decorrelation trajectories, when 𝑁𝑠 → ∞. This so-
lution demonstrates (56) that the diffusion coefficient
doesn’t asymptotically tend to zero. This shows that
the way to close up the equations, by using the partial
(31) or full (55) diffusion coefficient, is not enough for
the frozen turbulence. It isn’t an expected result that
the method of decorrelation trajectories with a finite
number of subensembles gives a slightly better result,
when the diffusion coefficient fluctuates around zero
value at large times.

At finite times, the method of decorrelation tra-
jectories gives a satisfactory reproduction of the time
evolution of the mean square displacement, while the
number of subensembles is enough. That is why in
the non-frozen case where the asymptotics is not im-
portant, it can give a satisfactory result.

11. Discussion and Conclusions

We compare three approximations of the Lagrangian
correlation function in this work: the Corrsin approx-
imation, method of decorrelation trajectories, and
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moment approximation. They are used to calculate
the diffusion of magnetized particles in a frozen elec-
trostatic turbulent field. The results of these methods
are verified using a direct numerical simulation. In
contrast to the Corrsin approximation, the method
of decorrelation trajectories gives a satisfactory evo-
lution at the beginning, but it doesn’t work for the
asymptotics. The moment approximation reproduces
the evolution of the Lagrangian correlation function
of velocity components and the evolution of the mean
square displacement obtained by a numerical simula-
tion in a better way and for larger times.

The direct numerical simulation demostrates that
the idea of subensembles by the initial values of ran-
dom fields is valid. But the description of the behavior
of particles provided by the method of decorrelation
trajectories doesn’t correspond to the results of a nu-
merical simulation. Moreover, the diffusion coefficient
obtained by the method of decorrelation trajectories
depends on the number of subensembles.

In order to validate the way to close up the equa-
tions of the method of decorrelation trajectories sep-
arately of the assumption about subensembles, we
payed attention to the types and shapes of decor-
relation trajectories. It is shown that some terms in
Eq. (47) are not important and disappear during
the averaging because of symmetry. The method of
decorrelation trajectories is reformulated for the in-
finite number of subensembles considering the facts
above. This method accounts only the important val-
ues and gives a possibility to see the influence of the
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closure procedure solely. As a result, we saw that the
closure by the diffusion coefficient in the method of
decorrelation trajectories doesn’t provide the evolu-
tion of the Lagrangian correlation function of velocity
components that was obtained by the numerical simu-
lation. Moreover, the asymptotic diffusion coefficient
obtained by this method is nonzero.

So, the comparison of two approximations with a
numerical simulation shows that the closure by the
mean square displacement in the moment approxima-
tion is more adequate, than the closure by the diffu-
sion coefficient in the method of decorrelation trajec-
tories. It is also important to note that the moment
approximation doesn’t have any free choices or free
parameters contrary to the method of decorrelation
trajectories.
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ДИФУЗIЯ ЧАСТИНОК
У ДВОВИМIРНОМУ ВИПАДКОВОМУ
ПОЛI ШВИДКОСТI

Р е з ю м е

На основi детального аналiзу порiвняно два пiдходи до
опису дифузiї частинок у двовимiрному випадковому по-
лi швидкостi, а саме метод декорельованих траєкторiй та
наближення моментами. Розглянуто заморожену турбулен-
тнiсть, оскiльки вона є найбiльш складним тестом для пе-
ревiрки статистичних теорiй. Результати аналiтичних на-
ближень порiвняно з даними числового моделювання.
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