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ELECTRON STRUCTURE
AND ELECTRIC CONDUCTIVITY
OF GRAPHENE WITH A NITROGEN IMPURITYPACS 73.20.At

On the basis of the tight-binding model with the use of exchange-correlation potentials, the
electron structure and the electric conductivity of graphene with a nitrogen impurity have been
studied in the framework of density functional theory. The wave functions of 2𝑠 and 2𝑝 states
of neutral noninteracting carbon atoms are selected as the basis ones. Band hybridization was
found to result in the splitting of the electron energy spectrum near the Fermi level. In the
nitrogen-doped graphene, owing to the overlapping of 2𝑝 energy bands, the mentioned gap is
realized as a quasi-gap, in which the electron density of states has a much lower value in com-
parison with the other spectral region. It is found that an increase in the nitrogen concentration
reduces the electric conductivity of graphene, although the density of states at the Fermi level
grows at that. Hence, the reduction of the electric conductivity is associated with a sharper
decrease in the relaxation time for electron states.
K e yw o r d s: nitrogen-doped graphene, electron energy spectrum, tight-binding model, elec-
tric conductivity

One of the ways to intentionally modify the graphene
properties in order to use them in nano- and spin-
electronics consists in doping graphene with atoms of
other elements. Impurities can stimulate a change of
the crystal lattice symmetry and the formation of ad-
ditional energy gaps with the width depending on the
impurity type and the concentration [1–7].

In works [1, 2], the gapping of the electron en-
ergy spectrum near the Dirac point, when the impu-
rity concentration increases, was studied analytically
in the framework of the simple Lifshitz single-band
model for a disordered crystal. In work [3], the elec-
tron structure in an isolated graphene monolayer, as
well as in bilayered and three-layer graphene grown on
ultrathin layers of hexagonal boron nitride, h-BN, was
considered in the framework of density functional the-
ory with the use of the method of pseudopotential. It
was shown that, in the case of a single graphene layer
on an h-BN monolayer, there emerges an energy gap
57 meV in width. In work [4], an analogous method
was used to study graphene with aluminum, silicon,
phosphorus, and sulfur impurities. It was shown that
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graphene doped with the phosphorus impurity to 3%
has a 0.67-eV gap.

In work [5], the electron structure of graphene was
studied in the framework of density functional theory
with the use of a generalized gradient approximation
for the exchange-correlation potential. With the help
of the software package QUANTUM-ESPRESSO, a
possibility of gapping in the energy spectrum of
graphene doped with boron and nitrogen atoms (a
gap width of 0.49 eV), as well as boron atoms and
lithium ones adsorbed on the surface (a gap width of
0.166 eV), was demonstrated.

In works [6, 7], methods that allow a direct mea-
surement of the Dirac point and Fermi energies in
graphene included in various heterostructures were
proposed and applied. In particular, in the case of
graphene in a multilayered Al2O3/graphene/SiO2/Si
structure, the energy of Dirac point was found to
equal 3.58 eV, and the Fermi energy to 3.25 eV [6].

However, the influence of impurities on the electron
structure and the related properties of graphene has
not been studied enough. In this work, on the basis of
the multiband model of tight binding, we considered
the influence of the nitrogen impurity on the electron
structure and the electric conductivity of graphene.
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Electron structure and electric conductivity of graphene

The researches were carried out, by using the method
of cluster expansion of two-time Green’s functions
for the electron subsystem in a disordered crystal,
which was developed in works [8–13]. In this method,
the approximation of coherent potential comprises
the zeroth-order approximation. The contributions of
the processes of electron scattering by clusters were
shown to decrease as a certain small parameter, when
the number of sites in the clusters increases [8]. In
the cited works, the electron-electron and electron-
phonon interactions were described on the basis of
a diagram technique for temperature Green’s func-
tions. The method is a generalization of the known
technique for a uniform electron gas [14], with the
known relations between the spectral representations
for the temperature and two-time Green’s functions
being used at that.

While calculating the energy spectrum and the
electric conductivity of nitrogen-doped graphene, the
actual wave functions of the 2𝑠 and 2𝑝 states of neu-
tral noninteracting carbon atoms are chosen to form
the basis set. The wave functions of neutral non-
interacting atoms are determined from the Cohn–
Sham equation of density functional theory. The
exchange-correlation potential is calculated in the
meta-generalized gradient approximation [15]. The
matrix elements of the Hamiltonian are calculated,
by using the Slater–Koster method [16], and only first
three coordination spheres are taken into account.

Neglecting the contributions from the electron scat-
tering by clusters containing three and more atoms
(they are small in the parameter indicated above [8]),
we obtain the expression for the electron density of
states,
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where 𝑖 is the sublattice number, 𝜈 the number of
sublattices, 𝛾 the energy band number, and 𝜎 the
quantum number describing the electron spin projec-
tion on the axis 𝑧. In Eq. (1),
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where 𝑡𝑛1𝑖1 is the operator of scattering by one site,
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and 𝑃𝜆
0𝑖 and 𝑃

𝜆′/𝜆
𝑛𝑗 0𝑖 are the probability and the condi-

tional probability, respectively, for the arrangement
of the atoms of sort 𝜆. In expressions (1) and (2),
�̃� = �̃�𝑟 is retarded Green’s function of the effective
medium described by the coherent potential 𝜎𝑛1𝑖1 .

Using the Kubo formula and the indicated diagram
technique, in works [9–12], an expression for the elec-
tric conductivity of the electron subsystem in a dis-
ordered crystal was obtained. Neglecting the contri-
butions of the scattering by clusters composed of two
and more sites, the static conductivity can be written
in the form [11–13]
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Fig. 1. Dependences of the electron energy in pure graphene
on the absolute value of wave vector k for the energy bands 2𝑠

(1 and 2), 2𝑝𝑥 (3 and 4), 2𝑝𝑧 (5 and 6), and 2𝑝𝑦 (7 and 8)

Fig. 2. Energy dependence of the electron density of states,
𝑔(𝜀), in graphene doped with the nitrogen impurity to 1%:
total density of states (1), partial density of states 2𝑠 (2), 2𝑝𝑥
(3), 2𝑝𝑦 (4), and 2𝑝𝑧 (5)

Fig. 3. Energy dependences of the electron density of states,
𝑔(𝜀), in graphene doped with the nitrogen impurity to 1 (1), 5
(2), and 10% (3)
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𝑓(𝜀) is the Fermi distribution function, 𝑉 the vol-
ume of the elementary cell, 𝑒 the electron charge,
and ~ Planck’s constant. In formula (3), M𝐺𝐼𝐼

𝛼𝛽(𝜀1, 𝜀2)
is a component of two-particle Green’s function,
which is expressed in terms of the vertex function
for the mass operator of electron-electron interaction
[11]. Numerical calculations showed that the contri-
bution of the last term does not exceed a few per-
cent; therefore, it was neglected in our further cal-
culations. The operator 𝜈𝛼 of the 𝛼-projection of the
electron velocity in formula (3) equals

𝜈𝛼𝑖,𝑖′(k) =
1

~
𝜕ℎ𝑖,𝑖′(k)

𝜕k𝛼
.

The energy spectrum and the electric conductiv-
ity of graphene are calculated for the temperature
𝑇 = 0 K. In Fig. 1, the dependences of the electron
energy 𝜀 in pure graphene on the wave vector k ob-
tained from the condition for Green’s function poles
are shown. The vector k is assumed to be directed
from the center of the Brillouin zone (point Γ) to the
Dirac point (point 𝐾). In Fig. 1, 𝑎 =

√
3𝑎0, where

𝑎0 = 0.142 nm is the minimum distance between car-
bon atoms.

In Figs. 2 and 3, the energy dependences of the
electron density of states, 𝑔(𝜀), in nitrogen-doped
graphene, which were calculated by formula (1), are
depicted. Nitrogen atoms replace carbon ones at the
sites of the graphene crystal lattice. The vertical lines
mark the corresponding positions of the Fermi level.
In Fig. 3, a section of the energy spectrum near the
Fermi level is exhibited.
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From Figs. 1 to 3, it is evident that the band hy-
bridization results in the gapping in the 2𝑝𝑧 energy
band, which is connected with the (𝑝𝑝𝜋)-bond [16].
Electron states in that band are described by atomic
wave functions of the 𝑧-symmetry. Carbon atoms in
pure graphene are located in two nonequivalent posi-
tions of the elementary cell. As a result, two energy
bands correspond to the same bond type (Fig. 1). The
Fermi level is located in the middle of the gap. Its
position corresponds to the position of the Dirac
point. The gap width equals 0.008 Ry ≈ 1 eV, and the
Fermi level 𝜀F = −0.23 Ry ≈ −3.13 eV. In graphene
with the nitrogen impurity, owing to the overlap-
ping of 2𝑝 bands, the gap mentioned above man-
ifests itself as a quasi-gap in the electron energy
spectrum. The electron density of states in a vicin-
ity of this quasi-gap is much lower in comparison
with the neighbor spectral regions (Fig. 2). The po-
sition of the Fermi level in the energy spectrum de-
pends on the nitrogen concentration and falls within
the energy interval −0.36 Ry ≤ 𝜀F ≤ −0.23 Ry. As
the nitrogen concentration increases, the quasi-gap
width decreases, and the Fermi level shifts toward
the left quasi-gap edge. The theoretical values of
Fermi level energy for pure graphene agree with ex-
perimental values for graphene in the multilayered
Al2O3/graphene/SiO2/Si structure [6].

In Fig. 4, the dependences of the components 𝜎𝛼𝛽

of the static electric conductivity tensor on the nitro-
gen impurity concentration calculated by formula (3)
for the temperature 𝑇 = 0 K are shown. The 𝑥-axis is
directed toward the nearest neighbor atom. The con-
ductivity was calculated for nitrogen concentrations
denoted by points, and the points are connected by
straight lines. As is seen from Fig. 4, the conductiv-
ity of graphene decreases, as the nitrogen concentra-
tion grows. For comparison, the experimental value of
electric conductivity in graphite at the temperature
𝑇 = 300 K equals 𝜎 = 9.82× 105 Ω−1m−1 [17].

In Fig. 5, the concentration dependences of the par-
tial 2𝑠 and 2𝑝 components of the 𝜎𝑥𝑥 component of
the static electric conductivity tensor are shown. One
can see that the main contribution to the conductiv-
ity is made by the electron states that are described
by the 2𝑝𝑧 atomic wave functions [16].

In order to examine the nature of the concentration
dependence of the electric conductivity in graphene,
let us write down the limiting expression for this pa-
rameter in the case of weak scattering, which follows

Fig. 4. Dependences of the components of the electric con-
ductivity tensor on the nitrogen impurity concentration 𝑐: 𝜎𝑥𝑥

(1), 𝜎𝑦𝑦 (2), and 𝜎𝑥𝑦 (3)

Fig. 5. Dependences of the partial 2𝑠 and 2𝑝 components of
the component 𝜎𝑥𝑥 of the electric conductivity tensor on the
nitrogen impurity concentration 𝑐: 2𝑠 (1), 2𝑝𝑥 (2), 2𝑝𝑦 (3),
and 2𝑝𝑧 (4)

from the general formula (3) in the single-band ap-
proximation [12]:

𝜎𝛼𝛼 =
𝑒2~𝑔(𝜀F)𝜈2(𝜀F)
3Ω1 | Σ′′(𝜀F) |

,

where Σ′′(𝜀F) = ImΣ(𝜀F) is the imaginary part of the
mass operator of Green’s function, 𝜈(𝜀F) the electron
velocity at the Fermi level, and Ω1 the volume per one
atom. The relaxation time of electron states, 𝜏(𝜀F),
is determined by the relation |Σ′′(𝜀F)| 𝜏(𝜀F) = ~.

In Fig. 6, the concentration dependences of the to-
tal imaginary part of the mass operator of Green’s
function and its partial 2𝑝𝑧 component are shown. In
Fig. 7, the concentration dependences of the total
electron density of states at the Fermi level and its
partial 2𝑝𝑧 component are exhibited. Since the elec-
tron density of states at the Fermi level grows with
the nitrogen concentration (Fig. 7), the reduction of
the electric conductivity (Figs. 4 and 5) is explained
by a more drastic reduction of the relaxation time for
electron states (Fig. 6).
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Fig. 6. Dependences of the (1) total imaginary part of the
mass operator of Green’s function for graphene and (2) its par-
tial 2𝑝𝑧 component on the nitrogen impurity concentration 𝑐

Fig. 7. Dependences of the (1) total electron density of states
in graphene at the Fermi level and (2) its partial 2𝑝𝑧 component
on the nitrogen impurity concentration 𝑐

Thus, it is found that the band hybridiza-
tion results in the splitting of the electron en-
ergy spectrum near the Fermi level. The gap width
equals 0.008 Ry ≈ 1 eV, and the Fermi level 𝜀F =
= −0.23 Ry ≈ −3.13 eV. In graphene doped with
the nitrogen impurity, owing to the overlapping of 𝑝
bands, the indicated gap manifests itself as a quasi-
gap. The position of the Fermi level in the energy
spectrum depends on the nitrogen concentration and
falls within the energy interval −0.36 Ry ≤ 𝜀F ≤
≤ −0.23 Ry. As the nitrogen concentration increases,
the quasi-gap width decreases, and the Fermi level
shifts toward the left quasi-gap edge. The reduction
of the graphene conductivity at higher nitrogen con-
centrations is connected with a decrease of the relax-
ation time of electron states.
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ЕЛЕКТРОННА
СТРУКТУРА ТА ЕЛЕКТРОПРОВIДНIСТЬ
ГРАФЕНУ З ДОМIШКОЮ АЗОТУ

Р е з ю м е

На основi моделi сильного зв’язку з використанням обмiн-
но-кореляцiйних потенцiалiв у теорiї функцiонала густи-
ни дослiджена електронна структура та електропровiднiсть
графену з домiшкою азоту. В ролi базису вибираються хви-
льовi функцiї 2𝑠-, 2𝑝-станiв нейтральних невзаємодiючих
атомiв вуглецю. Встановлено, що гiбридизацiя зон призво-
дить до розщеплення енергетичного спектра електронiв в
областi рiвня Фермi. У графенi з домiшкою азоту завдя-
ки перекриттю 2𝑝-енергетичних зон згадана вище щiлина
проявляється як квазiщiлина, в областi якої густина еле-
ктронних станiв має значно менше значення порiвняно з
iншою областю спектра. Встановлено, що зi збiльшенням
концентрацiї азоту електропровiднiсть графену зменшує-
ться. Оскiльки зi збiльшенням концентрацiї азоту густина
станiв на рiвнi Фермi зростає, то зменшення електропровiд-
ностi зумовлено бiльш рiзким зменшенням часу релаксацiї
електронних станiв.


