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Analytical expressions describing the polarizability of insulators in the framework of main
mechanisms of polarization have been derived and analyzed. The obtained formula can ade-
quately describe the effects that emerge, when the electric field penetrates into a dielectric
crystal. A dielectric nonlinearity occurring at the ferroelectric-paraelectric phase transition is
analyzed. The results of analytical calculations confirmed the results of previous researches
concerning the application of thin paraelectric films in microwave technology and as gate in-
sulators.
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1. Mechanisms of Dielectric Polarization

The dielectric nonlinearity, i.e. a nonlinear dependen-
ce of the dielectric permittivity on the electric field,
in a vicinity of the phase transition is an important
property of ferroelectric materials, which can find its
application in superhigh-frequency electronics. With
the development of modern technologies, in particular
with the advent of nanometer-thickness films, there
emerged an opportunity to take advantage of the di-
electric nonlinearity, because the breakdown of such
films takes place at very high electric fields.

The dielectric nonlinearity itself reflects more el-
ementary microscopic processes that run in a crys-
tal, where the electric field 𝐹 nonlinearly depends
on the polarizability of the insulator, 𝛼. It can be
seen by expressing the magnitude of local electric
field 𝐹 in relation to the macroscopic electric field 𝐸,
i.e. 𝐹 = 𝐸(𝜀 + 2)/3, whence the Clausius–Mossotti–
Lorentz equation 𝜀+2

𝜀−1 =
∑︀

𝑁𝑘𝛼𝑘

3𝜀0
can be derived. In

this expression, 𝑁𝑘 is the concentration of atoms of
the 𝑘-th kind, and 𝛼𝑘 is their polarizability. Hence,
in order to express the dependence of the dielectric
permittivity on the electric field, it is necessary to
analyze more elementary mechanisms of polarization
in the paraelectric phase.

When an electric field is applied to an insulator,
the bound electric charges shift with respect to one
another, so that the insulator becomes polarized.
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The external electric field induces elementary elec-
tric moments 𝑝 = 𝑞𝑥 in dielectric particles, where
𝑞 is the shifted electric charges, and 𝑥 the relative
charge shift. Electric moments are produced by elec-
trons (shifted with respect to the nuclei), ions (de-
viated from their equilibrium positions), and dipoles
(by varying their orientation under the influence of
external forces). Those particles promote the forma-
tion of a polarized state by means of various me-
chanisms.

The polarizability is one of the most important pa-
rameters, which characterizes the mechanisms of po-
larization of insulators. It determines the ability of
an insulator to be polarized, and its magnitude is
governed by the parameters of a polarized system,
which can be described in different forms for differ-
ent polarization mechanisms. The dependence of the
polarizability on the parameters can be analyzed by
expanding the formula for the polarizability in a se-
ries and evaluating its terms. For simplification, we
will consider that there is no electric conductivity in
the insulator (𝜎 = 0) [2].

1.1. Features of elastic
polarization mechanisms

If the particles in a crystal structure are connected
rather rigidly and elastically with one another, the ex-
ternal action in the form of an electric field or another
influence gives rise to very small displacements of
those particles. However, since all particles in the in-
sulator become shifted at that, even a small displace-
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a b
Fig. 1. Simplified model of electronic polarization [2]

ment of charges gives rise to the polarization. This
mechanism of polarization is called elastic.

1.1.1. Electronic elastic polarization

In the nonpolarized state, the electron shells are
located symmetrically with respect to the nuclei.
Therefore, the center of negative charges coincides
with the positively charged nucleus, and the electric
moment is absent (𝑝 = 𝑞𝑥 = 0), because the displace-
ment of charges does not take place: 𝑥 = 0.

If an electric field is applied, the orbitals in struc-
tural particles become deformed and shifted with re-
spect to the nuclei. Owing to the displacement of the
negative charge center, an elementary polarization
𝑝 = 𝑞𝑥 > 0 arises. Since the mass of nuclei is by 3
to 5 orders of magnitude larger than the mass of elec-
trons, this is electrons and the electron cloud as a
whole that actually undergo shifting. The main con-
tribution to this polarization is given by electrons at
the outer shells, which are weakly bound with the
nucleus of an atom or ion.

The mechanism of electronic polarization has a gen-
eral character and takes place in all insulators. The ef-
fective mass of shifted electrons is much smaller than
that of atoms and ions, relatively to which they are
shifted. Therefore, this mechanism is the least iner-
tial one among the others. The stationary polariza-
tion is reached quickly and allows its contribution to
the static dielectric permittivity 𝜀st = 𝑛2, where 𝑛 is
the low-frequency refractive index, to be determined.

For the maximum simplicity and the illustrative
purpose, let us consider the mechanism of electronic
polarization using the Bohr model of hydrogen atom
as an example. The absolute electric charges of a pro-

ton and an electron equal 𝑞 = 1.6 × 10−19 C, the
proton mass is 𝑚+ = 1.67 × 10−24 g, the electron
mass 𝑚− = 9.11 × 10−28 g, and the distance be-
tween the electron and the positively charged nu-
cleus 𝑟𝑒 = 0.53 Å. The strength of the electric field
between the proton and the electron amounts to
𝐸𝑟 = 5× 1011 V/m.

In the absence of an external electric field, the ef-
fective center of negative charges coincides with the
nucleus. In the electric field 𝐹 much lower than the
field 𝐸𝑟, the atomic electron shell shifts, the geometri-
cal center of the negative charge shifts by the distance
𝑥 from the nucleus, and an electric moment propor-
tional to the applied field strength arises:

𝑝 = 𝛼𝑒𝐹 = 𝑞𝑥, (1)

where 𝛼𝑒 is the sought electronic polarizability.
The equilibrium in the proton–electron system un-

der the action of an electric field is provided by the
equality between the perturbation force and the force
that tends to return the system into the nonpolar
state, which is proportional to the deformation 𝑥:

𝑓per = 𝑞𝐹 = 𝑐𝑥. (2)

The “elasticity” coefficient 𝑐 in this model is deter-
mined from the returning force, 𝑓ret = 𝑓 sin 𝜃 (see
Fig. 1). From Eqs. (1) and (2), it follows that 𝛼𝑒

𝑐𝑥
𝑞 =

= 𝑞𝑥; hence,

𝛼𝑒 =
𝑞2

𝑐
. (3)

Since

𝑓 =
𝑞2

4𝜋𝜀0
√
𝑟2 + 𝑥2

, sin𝜃 =
𝑥√

𝑟2 + 𝑥2
,

we can obtain from Eq. (2) that

𝑐𝑥 = 𝑓ret =
𝑞2𝑥

4𝜋𝜀0(𝑟2 + 𝑥2)3/2
. (4)

The field 𝐹 is very low in comparison with 𝐸𝑟;
therefore, the shift is much smaller than the dis-
tance 𝑟𝑒. The previous expression can be simplified
to 𝑐 = 𝑞2

4𝜋𝜀0𝑟3
. This expression obtained for the coef-

ficient of “elasticity” should be substituted into the
polarizability formula (3); then, 𝛼𝑒 = 4𝜋𝜀0𝑟

3.
The coefficient 4𝜋𝜀0 is necessary when the value

of elastic polarizability is expressed in the SI system,

340 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 4



Features of Dielectric Nonlinearity in Paraelectrics

i.e. when it has the dimension of fm3. In order to get
rid of the coefficients required in the SI system, let us
introduce the relative polarizability 𝛼𝑒rel = 𝑟3. From
formula (3), the polarizability can be determined as

𝛼′
𝑒rel(𝐹 ) =

𝑞2

𝑐
. (5)

While calculating the nonlinearity of the polariz-
ability coefficient, one should take formula (2) into
account and find an expression for the quantity 𝑐 from
expression (4) not neglecting 𝑥. Bearing in mind that,
in the general case, the nonlinearity can be expanded
in the series 𝛼′

𝑒rel = 𝛼0 + 𝛼1𝐹 + 𝛼2𝐹
2 + 𝛼3𝐹

3 + ...,
we expand the denominator of 𝑐 in a series in the
parameter 𝑥2/𝑟2,

𝑐 ≈ 𝑞2

𝑟3
· 1(︀

1 + 3
2
𝑥4

𝑟4 + 1
8
𝑥6

𝑟6 + ...
)︀ , (6)

and substitute this expression into formula (5):

𝛼′
𝑒rel (𝐹 ) = 𝑟3

(︂
1 +

3

2

𝑥4

𝑟4
+

1

8

𝑥6

𝑟6
+ ...

)︂
. (7)

The required coefficients are determined taking into
account that only the even-order ones differ from zero,
i.e. 𝛼0 = 𝑟3, 𝛼1 = 0, 𝛼2 = 3

2
𝑟7

𝑞2 , 𝛼3 = 0, 𝛼4 = 1
8
𝑟9

𝑞2 .

1.1.2. Ionic elastic polarization

If the ionic crystal does not undergo the action of an
external electric field, the cations and the anions in
it are located at the crystal lattice sites. This system
of charges is electrically neutral and does not cre-
ate an electric moment (polarization). However, in
an external electric field, the cations and the anions
are shifted under the influence of Coulomb forces and
form a polarized lattice with the elementary electric
moments 𝑞+−𝑞−. This is a mechanism of ionic elastic
polarization in crystals, which has a great importance
for the electric properties of ionic insulators [2].

Ionic elastic polarization is not a universal phe-
nomenon, being typical of only insulators with the
ionic character of bonds in molecules or the crystal
lattice. The ionic elastic polarization plays a crucial
role in alkaline haloid crystals of the NaCl type. This
mechanism of polarization as a response to the ap-
plied field is also a main one for active insulators,
such as piezo-, pyro-, and ferroelectrics. Owing to a

relatively large mass of ions, the establishment time
for the ionic polarization is longer than that for the
electronic one. However, even in this case, we can de-
termine the contribution of a polarization to the di-
electric permittivity.

While calculating the polarizability in the case of
the ionic elastic polarization, 𝛼𝑖, a simple model of
this mechanism is used. Two ions form a molecule. At
the same time, they can also belong to two sublat-
tices – cation and anion ones – inserted into each
other and thus forming a simplest ionic crystal (of
the Na+Cl− type). In this model, only the Coulom-
bic attraction between ions and the repulsion forces
that arise in the case where their electron shells start
to overlap are made allowance for. In the framework
of the model, the charge 𝑞 is considered to be con-
centrated at the ionic center, so that 𝑟 is the distance
between the centers of ions.

According to the Coulomb law, the energy of at-
traction between ions falls down proportionally to
the distance between them and equals 𝑞2

4𝜋𝜀0𝑟
. The en-

ergy of repulsion between the electron shells drasti-
cally grows only in the case where the ions strongly
approach each other, which can approximately be de-
scribed by the power function 𝑑/𝑟𝑛, where the param-
eter 𝑛 = 8÷11, being dependent on the properties of
that or another ionic pair and the specific features of
the crystal lattice.

The coefficient 𝑑 can be determined from other pa-
rameters of this model. The total potential energy of
the system is the difference between the attraction
and repulsion energies:

𝑈 (𝑟) =
𝑑

𝑟𝑛
− 𝑞2

4𝜋𝜀0𝑟
. (8)

Its curve has a minimum that characterizes the
equilibrium state of the ionic system. In the equilib-
rium state (𝑟 = 𝑎), the force acting on the ions van-
ishes: 𝐹 =

[︀
𝑑𝑈
𝑑𝑟

]︀
𝑟=𝑎

= 0. Since 𝑈 ′(𝑟) = 𝑑 − 𝑞2𝑟𝑛

4𝜋𝑟𝜀0
,

𝑑 = 𝑞2𝑎𝑛

4𝜋𝑎𝜀0
= 𝑞2𝑎𝑛−1

4𝜋𝜀0
, the expression for the energy of

interaction between ions looks like

𝑈 ′(𝑟) =
𝑑

𝑟𝑛
=

𝑞2𝑎𝑛−1

4𝜋𝜀0

1

𝑟𝑛
. (9)

When the ions are relatively shifted under the field
action, there arises a force that tries to return the
system to the nonperturbed state. In the equilib-
rium state, this force equals the force that acts on

ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 4 341



I. Vorotiahin, Y. Poplavko, Y. Fomichov

Fig. 2. Elastic ionic polarization of the simplest molecule con-
sisting of a positive and a negative ion: (a) energy dependence
on the distance between the centers of ions (the energy of repul-
sion between the electron shells (1 ) and the energy of Coulomb
attraction (2 )), (b) dependence of the total interaction force
on the distance between the ions, (c) change of the ion-to-ion
distance under the field action [2]

the ions, but it is oppositely directed: 𝑐𝑥 = 𝑞𝐹 ,
𝛼𝑖𝐹 = 𝑞𝑥. Taking into account that 𝐹 = 𝑐𝑥/𝑞, the
expression for the ionic elastic polarizability looks like
𝛼𝑖 = 𝑞2/𝑐. Therefore, in order to find the polarizabil-
ity, the quasielastic constant 𝑐 has to be calculated.
For this purpose, we can use the dependence of the
elastic energy on the deformation, 𝑈 = 𝑐𝑥2/2, and
obtain the expression for the variation of the ionic
shift energy under the influence of an external field,

𝑈(𝑎+𝑥) − 𝑈𝑎 =
𝑐𝑥2

2
. (10)

We now calculate the second derivatives of the right-
and left-hand sides of this equation and then substi-
tute the displacement 𝑎 + 𝑥 rather than 𝑟 into the
function 𝑈(𝑟):

𝑈
′′

(𝑎+𝑥) =
𝑞2(𝑛− 1)− 2𝑞3

4𝜋(𝑎+ 𝑥)
3
𝜀0

. (11)

In this formula, the term 2𝑞3 in the nominator is so
small that it can be neglected. Substituting the result
into the formula for the polarizability, we obtain

𝛼𝑖 =
𝑞2

𝑐
=

𝑞24𝜋 (𝑎+ 𝑥)
3
𝜀0

𝑞2 (𝑛− 1)
=

4𝜋 (𝑎+ 𝑥)
3
𝜀0

𝑛− 1
. (12)

The nonlinearity is calculated in the same way as for
the electronic polarization. The relative polarizability
is introduced to get rid of the coefficients of the SI sys-
tem and looks like 𝛼𝑖rel =

(𝑎+𝑥)3

(𝑛−1) or 𝛼𝑖rel =
𝑞2

𝑐 . Since

𝐹 = 𝑐𝑥/𝑞, we obtain that 𝑐 = 𝑞2 (𝑛−1)
(𝑎+𝑥)3 . Expanding

this expression in a series, 𝑐 = 𝑞2(𝑛−1)
𝑎3 + 𝑞3(𝑛−1)2

𝑎5(𝑛+4) + ...,
we can determine the coefficients in the series 𝛼𝑖(𝐹 ) =
= 𝛼+ 𝛼1𝐹 + ... as

𝛼0 =
𝑎3

(𝑛− 1)
, 𝛼1 =

𝑎5(𝑛+ 4)

𝑞 (𝑛− 1)
2 ,

and so on.

1.1.3. Dipole elastic polarization

The elastic rotation of dipoles is possible only if an
“internal polarity” exists in the crystal. It plays an
important role in many active insulators. Dipoles
in such a “polar” crystal lattice are bound and ori-
ented under the action of an internal crystalline field
𝐹 created by those dipoles themselves. The applied
external electric field changes the orientation of each
dipole and the whole polar structure. As a result, the
electric moment of the insulator changes, i.e. the vari-
ation of the polarization induced by an electric field
takes place. This is a simplified scenario of the dipole
elastic polarization [2]

Let us consider a simple example of the elastic ori-
entation in a polar crystal consisted of two-atomic
asymmetric polar molecules, e.g., HCl. It should be
noted that the elastic dipole polarization occurs only
in the crystalline state, because the molecules con-
cerned form an ordered structure with the dipoles ori-
ented in parallel to one another only in this case. The
external electric field gives rise to an elastic deviation
of the dipoles from their equilibrium orientation. In
polar crystals, the direction of a spontaneous polar-
ization is characterized by the polar axis; therefore,
the elastic dipole polarization can be observed in py-
roelectric crystals.

In Fig. 3, we present a simple model, which helps
us to calculate the polarizability given be the mech-
anism of dipole elastic polarization, 𝛼𝑑. The dipole
with constant moment 𝑝 is oriented by a spontaneous
(internal) electric field 𝐺. Let the external electric
field 𝐹 acting on this dipole make the angle 𝜃 with
the internal field 𝐺. The field 𝐹 stimulates the dipole
to rotate by a small angle 𝑥. The dipole rotation in
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the field 𝐹 is hampered by a quasielastic backward
force associated with the torsional moment emerg-
ing owing to the deviation of the dipole by an angle
𝑥. In the linear approximation, it is supposed that
𝐹 ≪ 𝐺. The polarizability within this model can be
calculated assuming that the variation of the electric
moment of the system in an external electric field 𝐹
is proportional to the strength of this field, 𝑝 = 𝛼𝑑𝐹 .

The projection of the dipole electric moment on the
direction of the field 𝐹 changes owing to the dipole
rotation from the angle 𝜃, when 𝐹 = 0, to the angle
𝜃 − 𝑥, when 𝐹 > 0:

𝑝 = 𝑝0cos(𝜃−𝑥)− 𝑝0cos𝜃 =

= 𝑝0

(︁
sin𝑥 sin 𝜃 − 2 sin2

𝑥

2
cos 𝜃

)︁
. (13)

Since 𝐹 ≪ 𝐺 at low fields, the angular displace-
ment 𝑥 is also small, and the term with sin2(𝑥/2)
can be neglected, so that 𝑝 = 𝑝0 sin𝑥 sin 𝜃. The value
of sin𝑥 can be found from the equilibrium condition
𝑝0𝐹 sin(𝜃 − 𝑥) = 𝑝0𝐺 sin 𝜃. At 𝐹 ≪ 𝐺, we have that
cos𝑥 ≈ 1 and sin𝑥 ≪ 1. Then

sin(𝜃 − 𝑥) = sin 𝜃 cos𝑥− cos 𝜃 sin𝑥 ≈ sin 𝜃,

and

sin𝑥 =
𝐹

𝐺
sin 𝜃 ≪ 1. (14)

The expression for the energy of a quasielastic bond
in the field 𝐺 looks like

𝑈 = −𝑝𝐺 cos𝑥. (15)

Taking into account that 𝐹 ≪ 𝐺 and cos𝑥 ≈ 1,
we obtain 𝐺 = 𝑈/𝑝. Substituting this expression to-
gether with expression (14) into the expression for the
torsion moment, we obtain a formula for the moment
induced by the dipole rotation,

𝑝𝐹 sin 𝜃 = 𝑝0𝐺 sin 𝜃 = 𝑈 sin 𝜃,

giving rise to the expression for 𝑝,

𝑝 =
𝑝20sin

2𝜃

𝑈0
𝐹. (16)

Formula (16) is used to find the polarizability

𝛼𝑑 =
𝑝20sin

2𝜃

𝑈0
. (17)

746





/57

a b
Fig. 3. Model of elastic dipole polarization: (a) schematic
diagram of the dipole rotation in an electric field 𝐹 , (b) polar-
izability averaging in a polycrystalline polar insulator [2]

The nonlinearity of the dipole polarizability is de-
termined as was done in two previous cases, namely,
by expanding 𝑝 in a power series in 𝐹,

𝑝 =
𝑝20sin

2𝜃

𝑈0
𝐹 − 3

2

𝑝30sin
2𝜃cos𝜃

𝑈2
0𝐹

+ ...,

so that

𝛼0 =
𝑝20sin

2𝜃

𝑈0
, 𝛼1 = −3

2

𝑝30sin
2𝜃cos𝜃

𝑈2
0

,

and so on.

1.2. Mechanisms of relaxation
(thermal) polarization

Besides the elastic polarization, electrons, ions, and
dipoles can also participate in the relaxation one. If
the particles are weakly bound in insulator’s struc-
ture, their thermal motion in the crystal volume can
strongly affect the polarization processes. Remaining
localized in a microvolume, those particles can per-
form thermally induced jumps under the influence of
the thermal motion and move by a distance of the
atomic size order [2].

1.2.1. Thermal dipole polarization

In the absence of an external electric field (𝐸 = 0),
the dipoles are oriented chaotically, and the electric
moment of a unit volume equals zero. But if 𝐸 > 0,
some dipoles become oriented along the field in the
course of their thermal chaotic motion, and a new
equilibrium state, the polarized one, emerges. This
equilibrium is thermodynamic: owing to thermal mo-
tions (oscillations, rotations), the dipoles are oriented
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Fig. 4. Thermal dipole polarization: (a) schematic illustra-
tion to the calculation of the dipole moment, (b) schematic
plot of the Langevin function [2]

a b
Fig. 5. Illustration to the calculation of the polarizability in
the framework of the thermal ionic polarization model [2]

along the field direction, but thermally induced os-
cillations interfere with the orientation of all dipoles;
therefore, only some part of dipoles turn out oriented.
The higher the electric field strength, the larger the
fraction of dipoles in the unit volume that becomes
oriented along the field, and the higher is the dipole
thermal polarizability 𝛼𝑑𝑡. The electric moment aver-
aged per one molecule is proportional to the electric
field strength 𝐹 provided that this field is not too
high: 𝑝 = 𝛼𝑑𝑡𝐹 . While calculating the polarizability
𝛼𝑑𝑡 in the framework of the dipole mechanism of ther-
mal polarization, statistical models have to be consid-
ered, because only some dipoles (defective electrons
or ions) change, in effect, their orientation (or become
redistributed over the volume of solid insulator).

In this model, the reorientation of a statistical en-
semble of dipoles is considered. The probability of the
orientation depends on the temperature and the elec-
tric field strength; the values averaged over the en-
semble are determined at that. In a specific model,
for simplification, the spherical volume of an insulator
is considered, which contains 𝑁 dipoles. The dipoles
have their own characteristic electric moment 𝑝, and
they are reoriented independently of one another (the

free rotation) under the influence of the chaotic ther-
mal motion.

The applied electric field 𝐹 should change the
chaotic orientation of the dipoles, so that they become
partially oriented along the field direction, giving rise
to the polarization 𝑃 = 𝑁 ⟨𝑝⟩ = 𝑁𝛼𝑑𝑡𝐹 , where

⟨𝑝⟩ = 𝐽𝑑𝑝

𝐽𝑑𝑁

is the average moment of a polar molecule, 𝑑𝑁 is the
number of dipoles directed at the angle 𝜃 with respect
to the axis 𝑧 (they are considered to be oriented into
a certain ring ranging from 𝜃 to 𝜃+𝑑𝜃), and 𝑑𝑝 is the
electric moment created by those dipoles. To verify
the calculation technique, let us find the average polar
dipole moment without the field, 𝐹 = 0. In this case,
𝑑𝑁 is proportional to the ring area,

𝑑𝑁 = 2𝜋𝑅2 sin 𝜃𝑑𝜃 = 𝐶 sin 𝜃𝑑𝜃,

so that

𝑑𝑝 = 𝑝0 cos 𝜃𝑑𝑁 = 𝐶𝑝0 cos 𝜃 sin 𝜃𝑑𝜃.

Therefore,

⟨𝑝⟩ = 𝐽𝑑𝑝

𝐽𝑑𝑁
=

𝐽𝐶 sin 𝜃𝑑𝜃 cos 𝜃𝑝0
𝐽𝐶sin𝜃𝑑𝜃

. (18)

Averaging over 𝜃 within the interval 0 6 𝜃 6 𝜋, we
obtain that ⟨𝑝⟩ = 0. Hence, in the absence of a field,
the polarization does not arise.

If the external electric field is switched-on (𝐹 > 0),
𝑈 = −𝑝𝐹 cos 𝜃. According to the Boltzmann distri-
bution law, the probability that the dipole moment
is oriented “into a ring” (within the angular interval
from 𝜃 to 𝜃+𝑑𝜃) is proportional to exp

(︁
−𝑝0𝐹

𝑘𝑇 cos𝜃
)︁
=

= exp
(︀

𝑈
𝑘𝑇

)︀
. Then, the formulas for 𝑑𝑁 and 𝑑𝑝 look

like

𝑑𝑁 = 𝐶𝑒
𝑝0𝐹
𝑘𝑇 cos𝜃 sin 𝜃𝑑𝜃,

𝑑𝑝 = 𝐶𝑒
𝑝0𝐹
𝑘𝑇 cos𝜃𝑝0 cos 𝜃 sin 𝜃𝑑𝜃,

so that
⟨𝑝⟩
𝑝0

= coth

(︂
𝑝0𝐹

𝑘𝑇

)︂
− 1(︁

𝑝0𝐹
𝑘𝑇

)︁ . (19)

Using the notation 𝑎 = (𝑝𝐹 )/(𝑘𝑇 ), Eq. (19) is
rewritten as ⟨𝑝⟩

𝑝0
= coth 𝑎 − 1

𝑎 . This expression is
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the Langevin function 𝐿(𝑎). To calculate the non-
linearity, we should expand it in a series 𝐿(𝑎) =
= 𝑎/3− 𝑎3/45− ... . Then

𝛼𝑑𝑡 =
(⟨𝑝⟩ /𝑝0)

𝐹
=

𝑝20
3𝑘𝑇

− 𝑝40
45𝑘3𝑇 3

+ ... .

From whence, we have 𝛼0 =
𝑝2
0

3𝑘𝑇 , 𝛼1 = 0, and 𝛼2 =

= − 𝑝4
0

45𝑘3𝑇 3 .

1.2.2. Thermal ionic polarization

The ionic polarization is associated with thermally
induced vibrations of the crystal lattice. Its mecha-
nism consists in hoppings of weakly bound (as a rule,
impurity) ions in a certain local space of the crys-
tal lattice. Therefore, this polarization is mainly typ-
ical of solid insulators with a pronounced defective
structure, such as glasses, pyroceramics, and ceram-
ics, which are characterized by a high concentration of
structural defects. However, the thermal ionic polar-
ization is also observed in single crystals, in vicinities
of structural defects.

Interstitial ions and ion vacancies can change their
location under the influence of the fluctuations of
thermal vibrations. In the course of those displace-
ments, which are usually confined by structural de-
fects, the ions overcome potential barriers and stay at
new positions for some time, which gives rise to the
emergence of electric dipoles. If the external electric
field is absent, the locally confined displacement of
charged particles is disordered and random and does
not result in a macroscopic polarization. The external
electric field makes changes in the distribution of ions
over the defective sites of the crystal lattice, so that a
polarization induced by the electric field arises. The
establishment time for this kind of the polarization, 𝜏 ,
depends on the temperature, features of the insulator
structure relaxation, and type of defects.

To analyze the relaxation mechanisms of polariza-
tion and to calculate the thermal ionic polarizability
𝛼𝑖𝑡, a statistical model has to be used. Let us con-
sider the polarization in an insulator that contains
𝑛0 weakly bound ions in a unit volume. The value of
𝑛0 is much less than the total concentration of ions in
the insulator, 𝑛, because not all but only some ions
take part in this form of polarization.

Thermally activated local hoppings are possible
only for weakly bound ions localized in vicinities of

structural defects. During the thermal chaotic mo-
tion, the weakly bound ions overcome a definite av-
erage potential barrier 𝑈 , which separates two (or
more) probable sites for an ion. It is clear that the
temporary localization of such ions can survive only
in the case of not very high temperatures, for which
𝑈 ≫ 𝑘B𝑇 .

On the average, only 𝑛0/3 weakly bound ions
moves along any selected direction in the insula-
tor. The average distance 𝛿 between the probable lo-
calization positions for such ions is of the order of
the crystal lattice constant (𝛿 ≈ 10−9 m). The quan-
tity 𝛿 can be called the mean “free” path length. The
probability that, in the course of vibrations at the
temperature 𝑇 , the ion, being at the equilibrium po-
sition in potential well 1 or 2, can acquire an en-
ergy larger or equal to the barrier height 𝑈 equals
exp(−𝑈/𝑘B𝑇 ). Let 𝜈 be the Debye frequency of ther-
mal vibrations of ions [Hz], let subscripts 1 and 2 de-
note the position in either of the potential wells, and
let 𝑛 be number of ions per second that overcome the
barrier and transit from position 1 into position 2 or
vice versa:

𝑛12 = 𝑛21 =
𝑛

6
𝜈 exp

(︂
− 𝑈

𝑘𝑇

)︂
.

If the probabilities of transitions are equal, the polar-
ization does not arise.

If an electric field 𝐹 is applied to the insulator
along a selected axis 𝑥, the probability of transitions
of weakly bound ions from position 1 into position 2
increases, whereas the probability of inverse transi-
tions should decrease:

Δ𝑈 =
𝑞𝐹𝛿

2
. (20)

In some time after the electric field has been swit-
ched-on, it turns out that 𝑛2 > 𝑛1, namely, 𝑛1 =
= 𝑛0/6 − Δ𝑛, and 𝑛2 = 𝑛/6 + Δ𝑛. In the frame-
work of the considered thermal polarization model,
only some part of all 𝑛0 weakly bound ions, Δ𝑛, par-
ticipates in jumps over the barrier. Let us calculate
the average elementary polarizability 𝛼𝑖𝑡 per one im-
purity ion. The electric moment induced by the field
equals 𝑃 = Δ𝑛𝑞𝛿 = 𝑛𝑝 = 𝑛𝛼𝑖𝑡𝐹 . From the expres-
sions given above, it is possible to determine the po-
larizability,

𝛼𝑖𝑡 =
Δ𝑛𝑞𝛿

𝑛0𝐹
. (21)
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Hence, the further calculations are reduced to the de-
termination of the quantity Δ𝑛, which depends on the
temperature and the electric field strength. In order
to determine the establishment time for the thermal
ionic polarization, the temporal dependence of Δ𝑛
has to be taken into account as well: 𝑑(Δ𝑛)/𝑑𝑡 =
= 𝑑𝑛1/𝑑𝑡.

Let us consider the rate of variation of the redun-
dant ion concentration in position 1, when the elec-
tric field is switched-on. Changing their positions, the
particles overcome the potential barrier of the height
𝑈 −Δ𝑈 in one direction and 𝑈 +Δ𝑈 in the opposite
one. Substituting the values of 𝑛1 and 𝑛2, we obtain

𝑑𝑛1

𝑑𝑡
= 𝜈𝑒(−𝑈/𝑘𝑇 ) ×

(︂
𝑛0

6

(︁
𝑒(−Δ𝑈/𝑘𝑇 ) − 𝑒(Δ𝑈/𝑘𝑇 )

)︁
+

+Δ𝑛
(︁
𝑒(−Δ𝑈/𝑘𝑇 ) + 𝑒(Δ𝑈/𝑘𝑇 )

)︁)︂
. (22)

For weak fields (Δ𝑈 ≪ 𝑘𝑇 ),

exp

(︂
±Δ𝑈

𝑘𝑇

)︂
= 1± Δ𝑈

𝑘𝑇
= 1± 𝑞𝛿𝐹

2𝑘𝑇
. (23)

Substituting Eq. (23) into Eq. (22), we obtain

𝑑𝑛1

𝑑𝑡
= −2

(︂
𝑛0𝑞𝐹𝛿

12𝑘𝑇

)︂
𝜈𝑒

−𝑈
𝑘𝑇 + 2×Δ𝑛𝜈𝑒

−𝑈
𝑘𝑇 . (24)

To simplify the expression, we make the following
substitutions and introduce the following notation:
𝑑𝑛1/𝑑𝑡 = 𝑑(Δ𝑛)/𝑑𝑡, 𝜏 = 1

2𝜈 exp
(︀
𝑈
𝑘𝑇

)︀
, and 𝐴 = 𝑛𝑞𝛿𝐹

12𝑘𝑇 .
As a result, we obtain the differential equation

𝑑 (Δ𝑛)

𝑑𝑡
=

Δ𝑛−𝐴

𝜏
,

which has the solution Δ𝑛 = 𝐶𝑒−𝑡/𝜏 + 𝐴. From the
conditions that Δ𝑛 = 0 at 𝑡 = 0, it follows that 𝐶 =
= −𝐴. Hence, we have

Δ𝑛 =
𝑛0𝑞𝛿𝐹

12𝑘𝑇

(︁
1− 𝑒−𝑡/𝜏

)︁
. (25)

Substituting expression 25) into Eq. (21), we obtain

𝛼𝑖𝑚 =
𝑞𝛿

12𝑘𝑇

(︁
1− 𝑒−𝑡/𝜏

)︁
.

If the field acts for a long enough time (𝑡 → ∞),

𝛼𝑖𝑡 =
𝑞2𝛿2

12𝑘𝑇
. (26)

1.2.3. Determination of nonlinearity

If the electric field is strong enough, the nonli-
near properties of any polarization mechanism have
to reveal themselves. The ionic polarization is not
an exception in this sense. The nonlinearity should
arise when a strong electric field stimulates ions to
overcome the potential barrier. Consider once more
Eq. (23), by keeping its additional terms at the sim-
plification:

𝑑𝑛1

𝑑𝑡
= 𝜈𝑒(

−𝑈
𝑘𝑇 )2

[︂
−𝑛0

6
sinh

(︂
Δ𝑈

𝑘𝑇

)︂
+Δ𝑛 cosh

(︂
Δ𝑈

𝑘𝑇

)︂]︂
.

(27)

Introducing the notation 2𝜈 exp(−𝑈/𝑘𝑇 ) = 1/𝜏 and
substituting it into the expression

𝑑 (Δ𝑛)

𝑑𝑡
=

1

𝜏0
cosh

(︂
Δ𝑈

𝑘𝑇

)︂(︂
−Δ𝑛+

𝑛0

6
tanh

(︂
Δ𝑈

𝑘𝑇

)︂)︂
,

we obtain the formula

Δ𝑛 =

[︂
1− exp

(︂
−𝑡

𝜏0
cosh

(︂
Δ𝑈

𝑘𝑇

)︂)︂]︂(︂
𝑛0

6
tanh

(︂
Δ𝑈

𝑘𝑇

)︂)︂
.

(28)

Substituting it into the formula for the polarizability,
we have

𝛼𝑖𝑚 =

[︂
1− exp

(︂
−𝑡

𝜏0
cosh

(︂
Δ𝑈

𝑘𝑇

)︂)︂]︂(︂
𝑞𝛿

6𝐹
tanh

(︂
Δ𝑈

𝑘𝑇

)︂)︂
.

If the field acts for a long-term period (𝑡 → ∞),

𝛼𝑖𝑡 =
𝑞𝛿

6𝐹
tanh

(︂
Δ𝑈

𝑘𝑇

)︂
.

Expanding the hyperbolic tangent in a series,
tanh(𝑥) = 𝑥−𝑥3/3+2𝑥5/15+..., we obtain a formula
for the polarizability in the form of a series

𝛼𝑖𝑡 =
(𝑞𝛿)

2

12𝑘𝑇𝐹
+

(𝑞𝛿)
4

144𝑘2𝑇 2𝐹 2
+ ... .

The expansion coefficients are 𝛼0 = (𝑞𝛿)2

12𝑘𝑇 , 𝛼1 = 0,
𝛼2 = − (𝑞𝛿)4

144(𝑘𝑇 )2
, and 𝛼3 = 0.

The model of thermal electronic polarization is si-
milar to the ionic one. The corresponding calculations
bring about the same results [2].
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2. Nonlinearity in Paraelectrics

Film-like ferroelectrics were earlier studied from the
viewpoint of their application as nonlinear capacitors,
controllable filters, microwave phase inverters, and so
on. Thin layers of ferroelectric materials can also be
used in controllable transistors as gate insulators in
ferroelectric memory units. In recent years, the inter-
est in thin ferroelectric films has been renewed, be-
cause there emerged a possibility to control the tem-
perature of phase transitions, as well as other param-
eters, in them [1]. For example, the temperature of a
phase transition in a strontium titanate film can be
raised from 4 to 400 K.

As a rule, the electric fields, at which a considerable
dielectric nonlinearity is observed, are higher than the
dielectric breakdown strength, which makes their ap-
plication complicated. The revival of the interest in
this phenomenon is connected with the appearance of
new technologies allowing nano-sized dielectric layers
to be created. In such layers, the dielectric nonlinear-
ity is by an order of magnitude larger, and the layers
become more controllable. For instance, 100-nm lay-
ers with a high dielectric permittivity and very low
losses of the control can be used.

Since such materials as SrTiO3, BaTiO3, BST, and
EuTiO3 [4, 8] became promising for applications, it is
necessary to reconsider the theory of dielectric non-
linearity and to verify theoretical calculations made
earlier for some mechanisms that take place in ferro-
electrics in order to determine the operational condi-
tions of units and devices based on thin ferroelectric
films more exactly.

The paraelectric is the phase of a ferroelectric
above the phase transition point, which is characteri-
zed by high values of dielectric permittivity, whose
temperature dependence obeys the Curie–Weiss law.

2.1. Phase transition in a ferroelectric

Ferroelectrics anomalously change their dielectric
properties at the phase change. Phase transitions in
the ferroelectric have specific features in every crystal
and can be similar to a phase transition of the first
or second kind. Their main classification is based on
the displacement type and whether the ferroelectric
structure is ordered or disordered.

At the phase transition of the displacement type,
if the temperature is above the Curie point, the crys-
tal becomes unstable with respect to one type of vi-

a b c
Fig. 6. Temperature dependences of the spontaneous polari-
zability (a) and the inverse dielectric permittivity (b), and di-
electric nonlinearity in the nonpolar phase (c) [2]

Fig. 7. Dependence of the dielectric permittivity on the elec-
tric field strength. Obtained for formula (29) using character-
istics [4] of Barium Titanate

brations called a soft mode. As the temperature de-
creases and approaches the phase transition point, the
frequency of those vibrations also decreases and can
reach the zero value. This circumstance is responsible
for the emergence of a spontaneous relative displace-
ment of the crystal sublattices and the appearance of
a spontaneous polarization.

At the phase transition of the order-disorder type,
the structural elements of a crystal are characterized
by the dipole-dipole interactions, which are described
by dipole moments. In the high-temperature phase,
the structural elements are disordered, and the energy
of such disordered thermal motion is higher than the
energy of interaction between the dipoles. Therefore,
the dipoles are orientated chaotically, and the to-
tal polarization equals zero. In the low-temperature
phase, the structural elements are ordered, and a
spontaneous polarization emerges.

The Landau theory helps us to describe the phase
transitions in ferroelectrics. For this purpose, let us
use the series expansion of thermodynamic potential,
taking the polarization as the order parameter,

Φ(𝑇, 𝑃 ) = Φ0(𝑇 )+
1

2
𝛼𝑃 2+

1

4
𝛽𝑃 4+

1

6
𝛾𝑃 6+ ... . (29)
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Fig. 8. Main properties of paraelectrics: dependences of the
dielectric permittivity on the temperature (a) and the field
strength (b), dependence of the quantity 𝑇𝐾𝜀 on the temper-
ature (c), and dependence of the nonlinearity 𝑁 on the field
strength (d) [2]

The choice of polarization as the order parameter
is quite natural, because the spontaneous polariza-
tion (𝑃 > 0) appears in the ordered low-temperature
phase, whereas the energy of disordered thermal mo-
tion in the high-temperature phase exceeds the energy
of interaction between the dipoles, so that dipole ori-
entations become chaotic, and their total polarization
𝑃 = 0. In the framework of the Landau theory, the
Curie–Weiss law can be obtained, which describes the
temperature dependence of the dielectric permittivity
𝜀(𝑇 ), as well as the spontaneous polarization 𝑃𝑠(𝑇 )
and other nonlinear dependences for insulators.

For the phase transition of the second kind, the
expression for the electric field strength can be de-
rived by differentiating the thermodynamic potential
with respect to the order parameter: 𝐸 = 𝜕Φ/𝜕𝑃 =
= 𝛼𝑃 + 𝛽𝑃 3. Taking the second derivative, we can
determine the inverse dielectric susceptibility: 1/𝜒 =
= 𝑟𝜕𝐸/𝜕𝑃 = 𝜕2Φ/𝜕𝑃 2 = 𝛼 + 3𝛽𝑃 2. The dielectric
susceptibility is related to the dielectric permittivity
by the expression 𝜒 = 1+𝜀. However, since the values
of dielectric permittivity are very high in a vicinity of
the phase transition point, namely, 𝜀 ≫ 1, we may
consider that 𝜀 ∼ 𝜒.

Let us consider a nonpolar phase, in which the Cu-
rie–Weiss law is satisfied. It exists within a tempera-
ture interval above the critical temperature (𝑇 > 𝑇𝑐),

in which the coefficient 𝛼 in the Landau expansion
is positive (𝛼 > 0). The phase stability is provided
by the conditions 𝜕Φ/𝜕𝑃 = 0 and 𝜕2Φ/𝜕𝑃 2 = 0.
The former condition is reduced to the equation
𝛼𝑃 + 𝛽𝑃 3 = 0. Its solutions are 𝑃 = 0 and 𝑃 =
= ±(−𝛼𝛽)1/2. Taking into account that 𝛼 > 0 and
𝛽 > 0 for the phase transitions of the second kind,
those solutions are imaginary. Hence, there is no
spontaneous polarization above the Curie point.

Let us consider the temperature dependence of the
dielectric permittivity above the Curie point. Here,
1/𝜀 ≈ 1/𝜒 = 𝛼+3𝛽𝑃 2. As was said above, the critical
dependence on the temperature is inherent only to the
coefficient 𝛼. Then the coefficient 𝛽 can be neglected,
and 𝛼 can be written as follows: 1/𝜀 = 𝛼0(𝑇 − 𝜃).
Identifying 1/𝛼0 as the Curie–Weiss constant, we ob-
tain 𝜀 = 𝐶/(𝑇−𝜃). From whence, we can see that the
phase transition takes place at the Curie–Weiss tem-
perature 𝜃, when the parameter 𝛼 changes its sign.

In the nonpolar phase, the dielectric permittivity
depends not only on the temperature but also on
the electric field strength. The expressions for 𝐸(𝑃 )
and 𝜒−1(𝑃 ) testify that the nonpolar phase of fer-
roelectrics has a very considerable and appreciable
dielectric nonlinearity, which can be described as
𝜀 𝜕𝑃/𝜕𝐸. The general formula for the nonlinearity in-
volves both the temperature and electric-field depen-
dences:

𝜀 (𝑇,𝐸) =
𝜀 (𝑇 )

3
√︀
1 + 3𝛽𝜀30𝜀

3 (𝑇 )𝐸2
, (30)

where 𝜀(𝑇 ) = 𝐶/(𝑇 − 𝜃). Let us analyze this ex-
pression. First, let us plot the dielectric permittivity
as a function of the electric field strength. The spe-
cific parameters at that are the Curie–Weiss constant
𝐶 = 1.2×105 K, the critical temperature 𝑇 = 400 K,
the Curie–Weiss temperature 𝜃 = 388 K, and the co-
efficient 𝐾 ≈ 3 × 10−15; i.e. close to the parameters
of barium titanate [2, 4]. Now, let us determine the
coefficient of nonlinearity and the temperature coef-
ficient of the permittivity. For this purpose, we make
the substitution 3𝛽𝜀30 = 𝐾 and expand the function
𝜀 (𝑇,𝐸) in a series

𝜀 (𝑇,𝐸) =
𝐶

𝑇 − 𝜃
− 𝐾

3

𝐶4𝐸2

(𝑇 − 𝜃)
4 +

2𝐾2

9

𝐶7𝐸4

(𝑇 − 𝜃)
7 − ... .

(31)

From whence, we can determine the nonlinearity and
the temperature coefficient of the dielectric permit-
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Polarizability components obtained in 1.1 and 1.2

Polarization type 𝛼 𝛼1 𝛼2 𝛼3

Elastic
Electronic 𝑟3 0 3

2
𝑟7

𝑞2
0

Ionic 𝑎3

(𝑛−1)
𝑎5(𝑛+4)

𝑞(𝑛−1)2
∼ 𝑎7𝑛2

𝑞2(𝑛−1)3
∼ 𝑎9𝑛3

𝑞3(𝑛−1)4

Dipole 𝑝20sin
2𝜃

𝑈0
− 3

2

𝑝30sin
2𝜃cos𝜃

𝑈2
0

∼ 𝑝40sin
2𝜃

𝑈3
0

∼− 𝑝50sin
2𝜃

𝑈4
0

Relaxation
Electronic (𝑒𝛿)2

12𝑘𝑇
0 − (𝑒𝛿)4

144(𝑘𝑇 )2
0

Ionic (𝑞𝛿)2

12𝑘𝑇
0 − (𝑞𝛿)4

144(𝑘𝑇 )2
0

Dipole 𝑝20
3𝑘𝑇

0 − 𝑝40
45(𝑘𝑇 )3

0

tivity:

𝜕𝜀

𝜕𝐸
= 0− 2

3

𝐾𝐶4𝐸

(𝑇 − 𝜃)
4 +

2

3

𝐾2𝐶7𝐸3

(𝑇 − 𝜃)
7 , (32a)

𝑁 =
1

𝜀

𝜕𝜀

𝜕𝐸
≈ −2

3

𝐾𝐶3𝐸

(𝑇 − 𝜃)
3 +

2

3

𝐾2𝐶6𝐸3

(𝑇 − 𝜃)
6 , (32b)

𝜕𝜀

𝜕𝑇
=

−𝐶

(𝑇 − 𝜃)
2 +

4

3

𝐾𝐶4𝐸2

(𝑇 − 𝜃)
5 − 14

3

𝐾2𝐶7𝐸4

(𝑇 − 𝜃)
8 , (33а)

𝑇𝐾𝜀 =
1

𝜀

𝜕𝜀

𝜕𝑇
≈ −1

(𝑇 − 𝜃)
+

4

3

𝐾𝐶3𝐸2

(𝑇 − 𝜃)
4 − 14

3

𝐾2𝐶6𝐸4

(𝑇 − 𝜃)
7 .

(33b)

The most interesting is the temperature, at which
the nonlinearity has a maximum. The corresponding
electric field strength can be determined from the
nonlinearity formula

2

3

𝐾2𝐶6𝐸3

(𝑇 − 𝜃)
6 =

2

3

𝐾𝐶3𝐸

(𝑇 − 𝜃)
3 .

As a result, we obtain

𝐸2
max = (𝑇 − 𝜃)3/(3𝐾C 3).

This parameter is used to select the working elec-
tric voltage. It has to be as low as possible to prevent
the electric breakdown in the material and reduce the
material heating by consumed capacities. For the ap-
plication of paraelectrics at ultrahigh frequencies, we
need a low dielectric permittivity, a high nonlinearity,
and a small temperature coefficient.

2.2. Nonlinear paraelectric films

The prospectivity of paraelectrics consists in their ap-
plication in the UHF technology. Ferroelectric mate-
rials in the paraelectric phase with a transition of
the displacement type can be used in the form of
thin films deposited on a dielectric substrate with
a high thermal conductivity. Since the film dielec-
tric permittivity is often required to be made lower,
films and substrates with the different coefficients of
thermal expansion are selected to produce mechanical
stresses.

For a quick inertialess control, the films have to
possess the following parameters: a thickness of
0.1÷1 𝜇m (which enables both 𝜀 and tan 𝛿 to be
reduced), the film permittivity 𝜀 = 300÷1000, and
the substrate permittivity 𝜀𝑠𝑢𝑏 = 10. The ability to
control the film by an external electric field, Δ𝜀/𝜀𝑚,
grows together with the parameter 𝜀. The film thick-
ness is also of importance: the thicker the film, the
higher is the control degree [2, 5, 6, 9].

3. Results and Conclusions

Thin films of controllable ferroelectric materials have
found more and more applications in the recent
time. The analysis of the literature testifies that they
can be used as insulators in capacitors and delay lines,
and as gate insulators in transistors. Those elements
can be used while fabricating UHF phase invertors
and filters driven by the electric field, and in a new
promising type of non-volatile random-access mem-
ory (FRAM).
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The executed calculations for relevant mechanisms
show that even the simplest model can describe the
processes taking place when the electric field pen-
etrates into the insulator. The calculations demon-
strate the mechanism of how the polarization grows
with the field penetration depth.

Bearing in mind its applications, the expression ob-
tained for the dielectric nonlinearity is analyzed to
confirm and to specify the information obtained in
earlier calculations. With the help of the Landau the-
ory, the Curie–Weiss for ferroelectric materials in the
paraelectric phase is derived. It shows the apprecia-
ble dependence of the dielectric permittivity of para-
electrics on the ambient temperature. The approxi-
mation of this law is used to derive the law of non-
linearity in the form of the dependence of the fer-
roelectric dielectric permittivity on the electric field
strength. It is this dependence that mainly character-
izes the controllability of thin ferroelectric films.

In view of a permanently growing interest in thin
ferroelectric films and an increasing demand for de-
vices and units on their basis, we may claim that the
technologies based on the application of controllable
insulators have to justify the hopes put on them con-
cerning a reduction of the sizes of active elements and
the enhancement of their controllability.
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ОСОБЛИВОСТI ДIЕЛЕКТРИЧНОЇ
НЕЛIНIЙНОСТI У ПАРАЕЛЕКТРИКАХ

Р е з ю м е

Виконано розрахунки та аналiз формул поляризовностi для
основних механiзмiв поляризацiї дiелектрикiв. Отриманi
вирази можуть вiдобразити ефекти, що виникають при про-
никненнi в кристал електричного поля. Проаналiзовано дi-
електричну нелiнiйнiсть сегнетоелектрика при переходi у
параелектричну фазу. Аналiтично отримано пiдтверджен-
ня результатiв попереднiх дослiджень параелектрикiв, якi
допускають можливiсть застосування тонких параелектри-
чних плiвок у НВЧ технiцi та в ролi пiдзатворних дiеле-
ктрикiв.
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