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VIBRATIONS IN DIATOMIC IONIC CRYSTALS

PACS 63.20. e, 71.36.+c,
72.30.+q

Long-wave phonon-polaritons and longitudinal optical phonons have been considered as eigen-
waves of the electromagnetic field in ionic crystals with two atoms per unit cell. The Kun
Huang model is used to describe the sublattices of point charges vibrating with the frequency
𝜔0. The dispersion laws for optical vibrations in crystals are generalized, by considering the
thermal motion of charges. An additional longitudinal phonon with the frequency 2𝜔0 and two
upper phonon-polaritons are found in the second-order approximation with respect to the ratio
between the standard deviation and the wavelength.
K e yw o r d s: ionic crystal, electromagnetic field; long-wave vibrations, phonon-polaritons,
longitudinal optical phonons, harmonics.

1. Introduction

While considering optical phonons, a spatial inhomo-
geneity is usually made allowance for if confined ob-
jects are studied [1, 2] or if a superlattice is available
[3]. When optical vibration modes in infinite crystals
are determined, the standard theory involving only
the frequency dispersion of the dielectric permittivity
is applied [4, 5]. The corresponding theory of long-
wave, in comparison with the lattice constant, optical
vibrations in ionic crystals with regard for the elec-
tromagnetic interaction was developed by K. Huang
[6, 7]. In the framework of this theory, the relative
vibrations of positively and negatively charged ionic
sublattices are considered in the long-wave limit, the
vibration frequency of transverse optical phonons is
considered to be constant, and the spatial dispersion
and the thermal motion are neglected.

However, the consideration of the thermal motion
of charges results, e.g., in the emergence of cyclotron
waves in the magnetized plasma [8]. Let us consider
the same problem for charges in a solid. In the re-
cent work [9], optical vibrations in ionic crystals with
two atoms in an elementary cell were analyzed on
the basis of Kun Huang’s theory. The thermal mo-
tion of charges was also neglected, and, in contrast to
the widely known Szigeti model [10], effective charges
were not introduced. Our further consideration con-
sists in a generalization of the results of work [9] by
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involving the thermal motion of sublattices and the
related spatial dispersion of the crystal dielectric per-
mittivity.

2. Dispersion Law for an Electromagnetic
Field Weakly Interacting with the Medium

Let us consider the optical vibrations in a diatomic
ionic crystal in the harmonic approximation. Their
damping, as a manifestation of anharmonicity, is
neglected. Following the ideas of Kun Huang, we
assume the sublattices of positively and negatively
charged ions to be infinitely rigid. Let us consider
only the relative vibrations of those sublattices with a
given constant frequency 𝜔0. The Lagrange function
can be written in the form [11, Eq. (13.3)]

𝐿𝑚 = 𝑁( ṙ2 − 𝜔2
0r

2)𝑚/2, (1)

where 𝑁 is the number of ionic pairs (crystal cells),
r = r+ − r− is the relative shift of sublattices, the
sign + or − corresponds to that of the charge, and
𝑚 = 𝑚+𝑚−

𝑚++𝑚−
is the reduced mass of the pair.

Since the considered frequencies are “slow” for elec-
trons, the motion of electron shells (the electron po-
larizability) can be taken into account by introducing
the high-frequency dielectric permittivity 𝜀∞ taken
to be constant [12, Eq. (13.1)]. The Hamiltonian of
the system can be presented as a sum of the Hamil-
tonian of only charges, �̂�m, and the terms describing
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the electromagnetic field:

�̂� = �̂�1 + �̂�2 + �̂�𝑓 + �̂�𝑚,

�̂�1 ≡ −
∫︁

𝑑3𝑥
𝐴𝛼(𝑥)𝚥𝛼(𝑥)

𝑐
, �̂�2 ≡

∫︁
𝑑3𝑥

Ω̂2(𝑥)𝐴(𝑥)2

8𝜋𝑐2
,

�̂�𝑓 =
1

8𝜋

∫︁
𝑑3𝑥[𝜀∞Ê2 + (rot Â)2]. (2)

Here, the notation

Ω2 = 4𝜋𝑒2𝑛/𝑚 (3)

is introduced for the operator of plasma frequency
of ions with charges ±𝑒, as well as the nonrelativis-
tic operator of electric current density in the absence
of electromagnetic field, 𝚥𝛼(𝑥) (see, e.g., work [13,
§5.3.2]).

From the mathematical viewpoint, phonon-pola-
ritons and longitudinal optical phonons are solu-
tions of the Maxwell equations in an ionic crys-
tal. Therefore, let us write the operator equations
of motion for the electromagnetic field in the Hei-
senberg representation. For this purpose, we should
take the derivatives of the field strength �̂�𝛼 (𝑥, 𝑡) =
= 𝑒𝑖𝑡𝐻/~�̂�𝛼 (𝑥) 𝑒−𝑖𝑡𝐻/~ and the vector potential
𝐴𝛼 (𝑥, 𝑡) = 𝑒𝑖𝑡𝐻/~𝐴𝛼 (𝑥) 𝑒−𝑖𝑡𝐻/~ and calculate the
commutators. The generalized momentum, which is
conjugate to the vector potential, is defined by the
expression P = 𝜀∞

4𝜋𝑐2 Ȧ [12, Eq. (13.5)]. The operator
equations for the electromagnetic field read

𝜕𝑡𝐴𝛼(𝑥, 𝑡) = −𝑐�̂�𝛼(𝑥, 𝑡),

𝜀∞𝜕𝑡�̂�𝛼(𝑥, 𝑡) = 𝑐 rot𝛼rotÂ(𝑥, 𝑡)− 4𝜋𝐽𝛼(𝑥, 𝑡),
(4)

where

𝐽𝑛 (𝑥) = 𝚥𝑛 (𝑥)−
1

4𝜋𝑐
𝐴𝑛 (𝑥) Ω̂

2 (𝑥)

is the operator of electric current density. Now, we
should average Eq. (4) with the statistical operator
for the crystal + electromagnetic field system. To find
an explicit form for the average current in the ionic
crystal, let us single out the weak interaction with the
field created by the charge subsystem. Further calcu-
lations will be carried out with the use of general
notations. Following work [13, § 4.1.1], we have free
charge subsystems with the equilibrium Gibbs statis-
tical operator 𝑤𝑚 and a certain statistical operator

𝜌𝑓 for the electromagnetic field at the initial time
moment 𝑡0. According to the correlation attenuation
principle, the initial condition can be written in the
form

𝜌 (𝑡0) = 𝜌𝑓 (𝑡0)𝑤𝑚 (𝑡0), Sp𝜌 = 1. (5)

Owing to the weak interaction between the subsys-
tems,

�̂�𝑓𝑚 = �̂� − �̂�0, (6)

the statistical operator (5) is changed for a long time
and becomes real. In Eq. (6), the term

�̂�0 =
1

8𝜋

∫︁
𝑑3𝑥Ê(𝑥)

2
+

1

8𝜋𝑐2

∫︁
𝑑3𝑥×

×
∫︁

𝑑3𝑥′𝐴𝛼(𝑥)𝜔
2
𝛼(𝑥− 𝑥′)𝐴𝛼(𝑥

′) + �̂�𝑚, (7)

where the frequency 𝜔𝛼(𝑥) is an unknown dispersion
law, makes the main contribution to the Hamilto-
nian. In the interaction representation, the statistical
operator looks like

𝜌 (𝑡) = exp (𝑖𝑡𝐻0/~)×
× exp (−𝑖𝑡𝐻/~) 𝜌 exp (𝑖𝑡𝐻/~) exp (−𝑖𝑡𝐻0/~). (8)

Let us expand expression (8) in a series accord-
ing to the thermodynamic perturbation theory [13,
§3.1.2], bearing in mind that the operator 𝑆 (𝜆) =
= exp (𝜆𝐻0) exp ( −𝜆𝐻) satisfies the equation

𝑆 (𝜆) = 1−
𝜆∫︁

0

𝑑𝜆′�̂�𝑓𝑚 (𝜆′)𝑆 (𝜆′) (9)

where the notation �̂�𝑓𝑚(𝜆) = exp(𝜆�̂�0)�̂�𝑓𝑚×
× exp(−𝜆�̂�0) is used. Hence, the operator 𝑇 (𝜆) =
= exp(𝜆𝐻) exp( −𝜆𝐻0) satisfies the equation

𝑇 (𝜆) = 1 +

𝜆∫︁
0

𝑑𝜆′𝑇 (𝜆′) �̂�𝑓𝑚 (𝜆′). (10)

Therefore, the statistical operator (8) can be rewrit-
ten in the form

𝜌 (𝑡) = 𝑆 (𝑖𝑡/~) 𝜌𝑇 (𝑖𝑡/~). (11)

For simplicity, let us take the current time moment
as the initial one, 𝑡 = 0, and let us use initial condition
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(5). Then, for 𝑡0 large enough by the absolute value
(𝑡0 < 0, because the evolution started in the past),

𝜌 (𝑡 = 0) = 𝑆 (𝑖𝑡0/~)𝑤𝑚𝜌𝑓𝑇 (𝑖𝑡0/~). (12)

Expanding Eq. (12) in a perturbation series up to the
first-order terms and substituting Eqs. (9) and (10),
we obtain

𝜌 (𝑡 = 0) =

(︃
1−

𝑖𝑡0/~∫︁
0

𝑑𝜆′�̂�𝑓𝑚 (𝜆′)𝑆 (𝜆′)

)︃
×

×𝑤𝑚𝜌𝑓

(︃
1 +

𝑖𝑡0/~∫︁
0

𝑑𝜆′𝑇 (𝜆′) �̂�𝑓𝑚 (𝜆′)

)︃
. (13)

Taking into account that 𝑆0 (𝑖𝑡/~) = 𝑇0 (𝑖𝑡/~) = 1 in
the zeroth approximation order, we obtain

𝜌 (𝑡 = 0) ≈ 𝑤𝑚𝜌𝑓 −
𝑖𝑡0/~∫︁
0

𝑑𝜆′
[︁
�̂�𝑓𝑚 (𝜆′) , 𝑤𝑚𝜌𝑓

]︁
(14)

or, changing the integration variable, 𝜆′ = 𝑖𝜏/~,

𝜌 (𝑡 = 0) ≈ 𝑤𝑚𝜌𝑓 − 𝑖

~

𝑡0∫︁
0

𝑑𝜏
[︁
�̂�𝑓𝑚 (𝜏) , 𝑤𝑚𝜌𝑓

]︁
, (15)

where the ordinary notation �̂� (𝜏) ≡ 𝑒𝑖𝜏�̂�0/~�̂�×
× 𝑒−𝑖𝜏�̂�0/~ for the interaction representation of an ar-
bitrary operator is introduced. Hence, the main and
first orders of the statistical operator look like

𝜌0 ≈ 𝑤𝑚𝜌𝑓 , 𝜌1 ≈ − 𝑖

~

𝑡0∫︁
0

𝑑𝜏
[︁
�̂�𝑓𝑚 (𝜏) , 𝑤𝑚𝜌𝑓

]︁
. (16)

Now, taking into account that the Heisenberg and
interaction representations coincide at 𝑡 = 0, the op-
erator Maxwell equations (4) have to be averaged. For
simplification, the averages of the field operators
will be designated as 𝐸𝛼(𝑥) = Sp �̂�𝛼(𝑥)𝜌. Moreover,
when averaging the field with small multipliers in
𝐽𝛼(𝑥), the main order of perturbation will be suffi-
cient: 𝐸𝛼(𝑥) ≈ Sp �̂�𝛼(𝑥)𝜌0. Note that, in this ap-
proach (unlike the method of brief descripion used in
work [13, §4.2.]), 𝐸𝛼(𝑥) ̸= Sp�̂�𝛼(𝑥)𝜌0 in the general
case. From Eq. (4), we have

𝜕𝑡𝐴𝛼(𝑥, 𝑡) = −𝑐𝐸𝛼(𝑥, 𝑡), (17)

𝜀∞𝜕𝑡𝐸𝛼(𝑥, 𝑡) = 𝑐 rot𝛼rotA(𝑥, 𝑡)− 4𝜋𝐽𝛼(𝑥, 𝑡). (18)

The next step consists in the averaging of 𝐽𝛼(𝑥)
with the statistical operator (15). The smallness of
terms will be conventionally determined by the pow-
ers of the electromagnetic field strength. Then

𝜌1 = − 𝑖

~

𝑡0∫︁
0

𝑑𝜏

[︂
−
∫︁

𝑑3𝑥𝐴𝛼(𝜏, 𝑥)𝚥𝛼(𝜏, 𝑥)/𝑐, 𝑤𝑚𝜌𝑓

]︂
.

(19)

The generalized momentum, which is conjugate with
the vector potential, is now determined in accordance
with Eq. (7) by the expression P = 1

4𝜋𝑐2 Ȧ. It is easy
to verify that, after the spatial Fourier transforma-
tion, we obtain

𝐴𝛼𝑘(𝜏) = 𝐴𝛼𝑘 cos (𝜔𝛼(𝑘)𝜏)−

− 𝑐�̂�𝛼𝑘 sin (𝜔𝛼(𝑘)𝜏) /𝜔𝛼(𝑘). (20)

Hence, the electric current in Eq. (18) looks like

𝐽𝑛(𝑥, 𝑡) = Sp

(︃
𝑤𝑚𝜌𝑓 − 𝑖

~

𝑡0∫︁
0

𝑑𝜏
[︁
�̂�𝑓𝑚 (𝜏) , 𝑤𝑚𝜌𝑓

]︁)︃
×

× �̂�𝑛(𝑥)− Sp𝑤𝑚𝜌𝑓
1

4𝜋𝑐
𝐴𝑛(𝑥)Ω̂

2(𝑥). (21)

Since the current is absent in equilibrium,
Sp𝑤𝑚𝚥𝑛 (𝑥) = 0, Eq. (21) can be rewritten in the
form

𝐴𝛼𝑘(𝜏) = 𝐴𝛼𝑘 cos (𝜔𝛼(𝑘)𝜏)−

− 𝑐�̂�𝛼𝑘 sin (𝜔𝛼(𝑘)𝜏) /𝜔𝛼(𝑘). (22)

Hence, at the average field, we have the coeffi-
cient Sp [𝚥𝛼(𝜏, 𝑥

′), 𝚥𝑛 (𝑥)]𝑤𝑚, which should quickly
fall down in time. Therefore, let us apply a trick that
is usually made in electrodynamics: let us pass to the
limit 𝑡0 → −∞. As a result,

𝐽𝑛(𝑥, 𝑡 = 0) =
𝑖

𝑐~

0∫︁
−∞

𝑑𝜏

∫︁
𝑑3𝑥′𝐴𝛼(𝜏, 𝑥

′)×

×Sp
[︁
�̂�𝛼(𝜏, 𝑥

′ − 𝑥), �̂�𝑛 (0)
]︁
𝑤𝑚 − 1

4𝜋𝑐
𝐴𝑛 (𝑥, 𝑡 = 0)Ω2.

(23)
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The further procedure of solution of system (17)–
(18) is standard: we make the Fourier transformation
with respect to the coordinate, take a derivative with
respect to the time, and substitute 𝐴𝑘𝛼 from Eq. (17)
into Eq. (18). Then, Eq. (18) looks like

𝜀∞𝜕𝑡𝐸𝑘𝑛 = −𝑐 [k× [k×A𝑘]]𝑛 +
1

𝑐
𝐴𝑘𝑛Ω

2 +

+4𝜋
𝑖

𝑐~

0∫︁
−∞

𝑑𝜏(𝐴𝛼𝑘 cos (𝜔𝛼(𝑘)𝜏)−

− 𝑐𝐸𝛼𝑘 sin (𝜔𝛼(𝑘)𝜏) /𝜔𝛼(𝑘))Sp
[︁
�̂�𝛼(𝜏, 𝑘), �̂�𝑛 (0)

]︁
𝑤𝑚.

(24)

Now, let us take a derivative. In view of Eq. (17), we
have

𝜀∞𝜕2
𝑡𝐸𝑘𝑛 = 𝑐2 [k× [k×E𝑘]]𝑛 − 𝐸𝑘𝑛Ω

2 − 4𝜋𝑖/~×

×
0∫︁

−∞

𝑑𝜏(𝐸𝛼𝑘 cos (𝜔𝛼(𝑘)𝜏) + 𝜕𝑡𝐸𝛼𝑘 ×

× sin (𝜔𝛼(𝑘)𝜏) /𝜔𝛼(𝑘))Sp
[︁
�̂�𝛼(𝜏, 𝑘), �̂�𝑛 (0)

]︁
𝑤𝑚. (25)

This is a homogeneous differential equation of the
second order. The solution is sought in the form
𝐸𝑘𝑛(𝑡) = 𝐸𝑘𝑛exp(−𝑖𝑡𝜔𝛼(𝑘)), because just this fre-
quency appears in 𝐻0 as the frequency of field oscil-
lators. Then, we obtain the equation

−𝜔𝛼(𝑘)
2𝜀∞𝐸𝑘𝑛 = 𝑐2 [k× [k×E𝑘]]𝑛 − 𝐸𝑘𝑛Ω

2 −

− 4𝜋
𝑖

~

0∫︁
−∞

𝑑𝜏Sp
[︁
�̂�𝛼(𝜏, 𝑘), �̂�𝑛 (0)

]︁
𝑤𝑚 ×

× (𝐸𝛼𝑘 cos (𝜔𝛼(𝑘)𝜏)−𝑖𝜔𝛼(𝑘)𝐸𝛼𝑘 sin (𝜔𝛼(𝑘)𝜏)/𝜔𝛼(𝑘)).

(26)

The expression in the last parentheses can be simpli-
fied, by using the Euler formula

cos (𝜔𝛼(𝑘)𝜏)− 𝑖 sin (𝜔𝛼(𝑘)𝜏) = exp (−𝑖𝜔𝛼(𝑘)𝜏),

−𝜔𝛼(𝑘)
2𝜀∞𝐸𝑘𝑛 = 𝑐2 [k× [k×E𝑘]]𝑛 − 𝐸𝑘𝑛Ω

2 −

− 4𝜋
𝑖

~
𝐸𝛼𝑘

∞∫︁
−∞

𝑑𝜏 exp (−𝑖𝜔𝛼(𝑘)𝜏) 𝜃 (−𝜏)×

×Sp
[︁
�̂�𝛼(𝜏, 𝑘), �̂�𝑛 (0)

]︁
𝑤𝑚. (27)

Now, it is convenient to introduce Green’s function
[13, p. 169]

𝐺(+)
𝑛𝛼 (𝜏, 𝑘) = 𝑖𝜃 ( −𝜏)𝑆𝑝 [𝚥𝛼(𝜏, 𝑘), 𝚥𝑛 (0)]𝑤𝑚/~. (28)

Equation (27) contains its Fourier transform

−𝜔𝛼(𝑘)
2𝜀∞𝐸𝑘𝑛 = 𝑐2 [k× [k×E𝑘]]𝑛 − 𝐸𝑘𝑛Ω

2 −

− 4𝜋

~
𝐸𝛼𝑘𝐺

(+)
𝑛𝛼 (𝜔𝛼(𝑘), 𝑘). (29)

Equation (29) produces the well-known dispersion
equation for the electromagnetic field in a medium
(see, e.g., work [14, Eq. (16)]),

𝑐2
(︀
𝛿𝑛𝛼𝑘

2 − 𝑘𝑛𝑘𝛼
)︀
+ 𝛿𝑛𝛼Ω

2 +

+4𝜋𝐺(+)
𝑛𝛼 (𝜔𝛼(𝑘), 𝑘)− 𝜔𝛼(𝑘)

2𝜀∞𝛿𝑛𝛼 = 0. (30)

In a homogeneous isotropic medium, Green’s func-
tion of currents can be divided into the longitudinal
and transverse parts,

𝐺
(+)
𝑚𝑙 (𝜔𝛼(𝑘), 𝑘) = 𝐺(+)(𝜔𝛼(𝑘), 𝑘)

⊥
(︁
𝛿𝑚𝑙 − 𝑘𝑚𝑘𝑙

)︁
+

+𝐺(+)(𝜔𝛼(𝑘), 𝑘)
‖𝑘𝑚𝑘𝑙, (31)

where

𝐺(+)(𝜔𝛼(𝑘), 𝑘)
⊥ =

(︁
𝛿𝑚𝑙 − 𝑘𝑚𝑘𝑙

)︁
𝐺

(+)
𝑚𝑙 (𝜔𝛼(𝑘), 𝑘)/2,

𝐺(+)(𝜔𝛼(𝑘), 𝑘)
‖ = 𝐺

(+)
𝑚𝑙 (𝜔𝛼(𝑘), 𝑘)𝑘𝑚𝑘𝑙,

and 𝑘𝑚 = 𝑘𝑚/𝑘.
Let us calculate Green’s function (28) for the equi-

librium medium with the temperature 𝑇 = 1/𝛽. In
this case, instead of the commutator, we have (see
works [15, Eq. (1.49)] and [13, Eq. (4.1.22)])

𝐺(+)
𝑛𝛼 (𝜔, 𝑘) =

1

2𝜋~

∞∫︁
−∞

𝑑𝜛 (1− exp (~𝜛𝛽))×

× Sp�̂�𝛼(𝜛, 𝑘)�̂�𝑛 (0)𝑤𝑚

𝜛 − 𝜔 − 𝑖0
. (32)

In the classical case, the difference in the parentheses
in Eq. (32) can be substituted by the multiplier 𝛽~𝜛,
so that

𝐺(+)
𝑛𝛼 (𝜔, 𝑘) =

1

2𝜋𝑇

∞∫︁
−∞

𝑑𝜛Sp�̂�𝛼(𝜛, 𝑘)�̂�𝑛(0)𝑤𝑚 ×

×
(︂
−1− 𝜔

𝜛 − 𝜔 − 𝑖0

)︂
. (33)

To simplify the notation, the current correlation will
be denoted below as

Sp𝚥𝛼(𝜛, 𝑘)𝚥𝑛 (0)𝑤𝑚 = ⟨𝚥𝛼(𝜛, 𝑘)𝚥𝑛 (0)⟩.
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3. Kun Huang’s Approximation
for an Insulator

Now, let us detail the form of the current Green’s
function in the interaction representation in the case
of optical phonons. For this purpose, let us consider
the motion of charges without their interaction with
the field. We should change to the coordinate of the
center of mass R = (𝑚+r+ +𝑚−r−)/𝑀 , where 𝑀 =
= 𝑚+ +𝑚−, and to the coordinate difference. Now,
the random variables are the amplitude and the phase
of harmonic vibrations, i.e. the relative coordinate
and velocity. Let us use Kun Huang’s approximation
of independent one-dimensional vibrations. The ve-
locity of the center of mass is put equal to zero. The
procedure is the same as in the case of a single
degree of freedom. Free vibrations are described by
the following time dependences of the radius vector
and the velocity (see works [11, Eq. (21.7)] and [16,
Eq. (5.1.1)]):

𝑟𝑎𝑛 (𝑡) = 𝑟𝑎𝑛 cos (𝜔0𝑡) + 𝑣𝑎𝑛 sin (𝜔0𝑡) /𝜔0,

𝑣𝑎𝑛 (𝑡) = 𝑣𝑎𝑛 cos (𝜔0𝑡)− 𝑟𝑎𝑛 sin (𝜔0𝑡)𝜔0.
(34)

Let us write down the distribution function for an
oscillator. The normalization will be carried out with
respect to the number of pairs in the volume, i.e.

𝑁 =

∫︁
𝑑3𝑣𝑑3𝑟𝑎𝑑

3𝑉 𝑑3𝑅𝛿(V)𝑓 (𝑣, 𝑟𝑎).

Since the theory is macroscopic, the centers of mass
are “scattered” randomly owing to the homogeneity
and the isotropy, i.e. the crystal structure is not im-
portant. However, the centers of mass are fixed, and
vibrations occur only in every pair. Let the velocity
and the coordinate of an oscillator have a normal dis-
tribution

𝑓 (𝑣, 𝑟) =
𝑛

(2𝜋)
3
𝑣3𝑠𝑟

3
𝑠

exp
(︀
−
(︀
𝑣2/2𝑣2𝑠 + 𝑟2/2𝑟2𝑠

)︀)︀
, (35)

where 𝑣𝑠 = 1/
√
𝑚𝛽 and 𝑟𝑠 = 1/

√
𝑚𝛽𝜔0 are the stan-

dard deviations of the oscillator velocity and coordi-
nate, respectively. Different kinds of particles reveal
themselves only in the reduced mass 𝑚.

The operator of the current created by the pair
looks like [16, (2.3.4)]

𝚥𝑚 (𝑟, 𝑡) = 𝑒𝑣𝑚 (𝑚−/𝑀𝛿 (r−R−𝑚−r𝑎 (𝑡) /𝑀)+

+𝑚+/𝑀𝛿 (r−R+𝑚+r𝑎 (𝑡) /𝑀)) .

The current is a sum of components created by the
positively and negatively charged ions. Hence, the
correlation function of currents, which is required in
Eq. (33), can be written in the form⟨̂
𝑗𝑚 (𝑟, 𝑡) �̂�𝑙 (0)

⟩
= 𝑒2

∫︁
𝑑3𝑟𝑎𝑑

3𝑣𝑑3𝑅𝑣𝑚 (𝑡) 𝑣𝑙𝑓 (𝑣, 𝑟𝑎)×

× (𝑚−/𝑀𝛿 (r−R−𝑚−r𝑎 (𝑡) /𝑀)+

+𝑚+/𝑀𝛿 (r−R+𝑚+r𝑎 (𝑡) /𝑀))×

× (𝑚−/𝑀𝛿 (R+𝑚−r0𝑎/𝑀)+

+𝑚+/𝑀𝛿 (𝑚+r0𝑎/𝑀 −R)). (36)

The integration over the coordinate of the center of
mass is trivial and gives four terms:⟨̂
𝑗𝑚 (𝑟, 𝑡) �̂�𝑙 (0)

⟩
= 𝑒2

∫︁
𝑑3𝑟𝑎𝑑

3𝑣𝑣𝑚 (𝑡) 𝑣𝑙𝑓 (𝑣, 𝑟𝑎)×

× (𝑚2
−𝛿 (r+𝑚−r0𝑎/𝑀 −𝑚−r𝑎 (𝑡) /𝑀)+

+𝑚−𝑚+𝛿 (r−𝑚+r0𝑎/𝑀 −𝑚−r𝑎 (𝑡) /𝑀)+

+𝑚−𝑚+𝛿 (r+𝑚−r0𝑎/𝑀 +𝑚+r𝑎 (𝑡) /𝑀)+

+𝑚2
+𝛿 (r−𝑚+r0𝑎/𝑀 +𝑚+r𝑎 (𝑡) /𝑀))/𝑀2. (37)

It is convenient to change to Fourier transforms in the
obtained expressions, by following the rule

𝑂 (x, 𝑡) = ∫ 𝑑3𝑘𝑑𝜔𝑂 (k, 𝜔) 𝑒𝑖kx−𝑖𝜔𝑡/(2𝜋)4. (38)

Then the Fourier transform of the correlation func-
tion (37) with respect to the coordinate difference and
the time looks like⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩
= 𝑒2

∫︁
𝑑3𝑣𝑑3𝑟

∞∫︁
−∞

𝑑𝑡 exp(−𝑖𝑡𝜔)×

× (𝑚2
− exp(𝑖k(r(cos (𝜔0𝑡)− 1)+

+v sin (𝜔0𝑡) /𝜔0)𝑚−/𝑀)+

+𝑚−𝑚+ exp(𝑖k(r(cos (𝜔0𝑡) +𝑚+/𝑚−)+

+v sin (𝜔0𝑡) /𝜔0)𝑚−/𝑀))+

+𝑚+𝑚− exp(−𝑖k(r(cos (𝜔0𝑡) +𝑚−/𝑚+)+

+v sin (𝜔0𝑡) /𝜔0)𝑚+/𝑀))+

+𝑚2
+ exp(−𝑖k(r(cos (𝜔0𝑡)− 1)+

+v sin (𝜔0𝑡) /𝜔0)𝑚+/𝑀))×

× 𝑣𝑚(𝑣𝑙 cos (𝜔0𝑡)− 𝑟𝑙 sin (𝜔0𝑡)𝜔0)𝑓 (𝑣, 𝑟) /𝑀2. (39)
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The exponential functions in this expression can be
expanded in a series of Bessel functions (see works [8,
p. 104] and [17, Eq. (39)]), as is usually done in the
case of magnetized plasmas, following the rule

𝑒𝑖kv sin(𝜔0𝑡)/𝜔0 =

∞∑︁
𝑛=−∞

𝐽𝑛 (kv/𝜔0) exp (𝑖𝑛𝜔0𝑡). (40)

In the framework of Kun Huang’s long-wave macro-
scopic theory, the estimate kv/𝜔0 ≪ 1 is valid.
Therefore, owing to a non-zero (by a characteristic
distance 𝑟𝑠 = 1/

√
𝛽𝑚𝜔0 ∼ 10−9 cm) thermally in-

duced root-mean-square deviation from the equilib-
rium position, there emerge the vibration modes sim-
ilar to the Bernstein ones [17]. However, it is easier to
expand the exponential function in a power series of
its small argument and to take the first three terms:

𝑒±𝑖kO ≈ 1± 𝑖kO− (kO)
2
/2. (41)

The term with odd power exponents disappears after
the averaging with function (35) over an interval with
symmetric limits.

Let us consider the first term in expansion (41). It
corresponds to the well-studied limit 𝑘 = 0 (see, e.g.,
works [9, 12]). Then 𝑀2 disappears from Eq. (39),
and we obtain⟨̂
𝑗𝑚 (𝑘 = 0, 𝜔) �̂�𝑙 (0)

⟩
= 𝑒2

∫︁
𝑑3𝑣𝑑3𝑟

∞∫︁
−∞

𝑑𝑡𝑒−𝑖𝑡𝜔 ×

× 𝑣𝑚(𝑣𝑙 cos (𝜔0𝑡)− 𝑟𝑙 sin (𝜔0𝑡)𝜔0)𝑓 (𝑣, 𝑟). (42)

The integral containing the product 𝑣𝑚𝑟𝑙 equals zero
as an integral of an odd function. So, we have⟨
�̂�𝑚 (𝑘 = 0, 𝜔) �̂�𝑙 (0)

⟩
=

= 𝑒2𝜋 (𝛿 (𝜔 − 𝜔0) + 𝛿 (𝜔 + 𝜔0))

∫︁
𝑑3𝑣𝑑3𝑟𝑣𝑚𝑣𝑙𝑓 (𝑣, 𝑟).

(43)

Now, Green’s function from Eq. (33) can be written
in the form

𝐺(+)
𝑛𝛼 (𝜔, 𝑘 = 0) =

1

2𝜋𝑇

∞∫︁
−∞

𝑑𝜛𝛿𝑛𝛼 (𝑚𝛽)
−1

𝑒2𝑛𝜋×

× (𝛿 (𝜛 − 𝜔0) + 𝛿 (𝜛 + 𝜔0))

(︂
−1− 𝜔

𝜛 − 𝜔 − 𝑖0

)︂
.

(44)

After the trivial integration with the delta-function,
we obtain

𝐺(+)
𝑛𝛼 (𝜔, 𝑘 = 0) =

1

4𝜋
𝛿𝑛𝛼Ω

2

(︂
−1− 𝜔2

𝜔2
0 − 𝜔2

)︂
. (45)

Here, notation (3) is used. Substituting formula (45)
into the dispersion equation (30), we have

𝑐2
(︀
𝛿𝑛𝛼𝑘

2 − 𝑘𝑛𝑘𝛼
)︀
− 𝜔𝛼(𝑘)

2

𝜔2
0 − 𝜔𝛼(𝑘)2

𝛿𝑛𝛼Ω
2 −

− 𝜀∞𝜔𝛼(𝑘)
2𝛿𝑛𝛼 = 0. (46)

The dispersion equation 46) coincides with the well-
known one (see, e.g., work [9, (17)–(18)]); i.e. it gives
standard solutions for phonon-polaritons.

In the same approximation, let us determine the
frequency 𝜔0. For this purpose, we should compare
the Maxwell equation in the quasistationary limit
𝜔 → 0 with the use of the static dielectric permittivity
𝜀0. Substituting Green’s function (45) into Eq. (29),
we obtain

−𝜔𝛼(𝑘)
2𝜀∞𝐸𝑘𝑛 = 𝑐2 [k× [k×E𝑘]]𝑛 − 𝐸𝑘𝑛Ω

2 −

− 4𝜋

~
𝐸𝛼𝑘𝐺

(+)
𝑛𝛼 (𝜔𝛼(𝑘), 𝑘 = 0). (47)

On the other hand, the quasistationary approxima-
tion for the Maxwell equations gives

−𝜔𝛼(𝑘)
2𝜀0𝐸𝑘𝑛 = 𝑐2 [k× [k×E𝑘]]𝑛,

which results in

𝜔𝛼(𝑘)
2𝜀0𝐸𝑘𝑛 = 𝜔𝛼(𝑘)

2𝜀∞𝐸𝑘𝑛 − 𝐸𝑘𝑛Ω
2 −

− 4𝜋

~
𝐸𝛼𝑘𝐺

(+)
𝑛𝛼 (𝜔𝛼(𝑘), 𝑘 = 0). (48)

Then, using expression (45) for Green’s function, we
obtain

𝜔𝛼(𝑘)
2𝜀0 = 𝜔𝛼(𝑘)

2𝜀∞ +
𝜔𝛼(𝑘)

2

𝜔2
0 − 𝜔𝛼(𝑘)2

Ω2. (49)

Hence, as 𝜔𝛼(𝑘) → 0, we have the Lyddane–Sachs–
Teller relation [18]

𝜀0 = 𝜀∞ +
Ω2

𝜔2
0

, (50)

which determines 𝜔0 in the standard way [9].
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Now, let us take the thermal motion into account.
Let us consider the second-order term in the expan-
sion of expression (39),

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩
2
= −𝑒2

∫︁
𝑑3𝑣𝑑3𝑟

∞∫︁
−∞

𝑑𝑡 exp(−𝑖𝑡𝜔)×

× (𝑚2
−(𝑖k(r(cos (𝜔0𝑡)−1)+v sin (𝜔0𝑡) /𝜔0)𝑚−/𝑀)2 +

+𝑚−𝑚+(𝑖k(r(cos (𝜔0𝑡) +𝑚+/𝑚−)+

+v sin (𝜔0𝑡) /𝜔0)𝑚−/𝑀)2 +

+𝑚−𝑚+(−𝑖k(r(cos (𝜔0𝑡) +𝑚−/𝑚+)+

+v sin (𝜔0𝑡) /𝜔0)𝑚+/𝑀)2 +

+𝑚2
+(−𝑖k(r(cos (𝜔0𝑡)−1)+v sin (𝜔0𝑡)/𝜔0)𝑚+/𝑀)2)×

× 𝑣𝑚(𝑣𝑙 cos (𝜔0𝑡)− 𝑟𝑙 sin (𝜔0𝑡)𝜔0)𝑓 (𝑣, 𝑟)/2𝑀2. (51)

Introducing the notations 𝑎 = (𝑚2
− − 𝑚−𝑚+ +

+𝑚2
+)/2𝑀

2 and 𝑏 = (𝑚2
− − 𝑚2

+)
2/𝑀4, and taking

the evenness of the integrand into account, we obtain
three terms:

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩1
2
= −𝑒2

∫︁
𝑑3𝑣𝑑3𝑟

∞∫︁
−∞

𝑑𝑡 exp(−𝑖𝑡𝜔)×

× (kr)2𝑎𝑣𝑚𝑣𝑙 cos (𝜔0𝑡) 𝑓 (𝑣, 𝑟), (52)

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩2
2
= −𝑒2

∫︁
𝑑3𝑣𝑑3𝑟

∞∫︁
−∞

𝑑𝑡 exp(−𝑖𝑡𝜔)×

× (((kr)2 cos2 (𝜔0𝑡) + (kv)2 sin2 (𝜔0𝑡) /𝜔
2
0)×

× 𝑣𝑚𝑣𝑙 cos (𝜔0𝑡)− 2𝑣𝑚𝑟𝑙 sin
2 (𝜔0𝑡) (kr)(kv)×

× cos (𝜔0𝑡))𝑎𝑓 (𝑣, 𝑟), (53)

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩3
2
= −𝑒2

∫︁
𝑑3𝑣𝑑3𝑟

∞∫︁
−∞

𝑑𝑡 exp(−𝑖𝑡𝜔)×

×((kr)2𝑣𝑚𝑣𝑙 cos
2 (𝜔0𝑡)− (kr)(kv)𝑣𝑚𝑟𝑙 sin

2 (𝜔0𝑡))×

× (−1)𝑏𝑓 (𝑣, 𝑟). (54)

The Poisson integrals with the Maxwellian distribu-
tion are easily calculated. Let us write down them
for the velocity (for the coordinate or the symmetric
velocity projections, the values will be the same). Let

the third axis (𝑧) of the coordinate systems be di-
rected along the wave vector. Then

∞∫︁
−∞

𝑑𝑣𝑧𝑣
2
𝑧

∞∫︁
−∞

𝑑𝑣𝑥𝑣
2
𝑥

∞∫︁
−∞

𝑑𝑣𝑦𝑓
(︀
𝑣2𝑧 + 𝑣2𝑥 + 𝑣2𝑦

)︀
=

= 𝑛 (𝑚𝛽)
−2

= 𝑛𝑣4𝑠 , (55)

∞∫︁
−∞

𝑑𝑣𝑧𝑣
4
𝑧

∞∫︁
−∞

𝑑𝑣𝑥

∞∫︁
−∞

𝑑𝑣𝑦𝑓
(︀
𝑣2𝑧 + 𝑣2𝑥 + 𝑣2𝑦

)︀
=

= 3𝑛 (𝑚𝛽)
−2

= 3𝑛𝑣4𝑠 . (56)

Therefore, Eqs. (52)–(54) yield

𝑘𝑚𝑘𝑙

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩3
2
= 𝑘4𝑛 (𝑣𝑠𝑟𝑠)

2
𝑒2 ×

×
∞∫︁

−∞

𝑑𝑡 exp(−𝑖𝑡𝜔)(cos2 (𝜔0𝑡)− sin2 (𝜔0𝑡))𝑏, (57)

(𝛿𝑚𝑙𝑘
2 − 𝑘𝑚𝑘𝑙)

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩3
2
= 2𝑘4𝑛 (𝑣𝑠𝑟𝑠)

2
𝑒2 ×

×
∞∫︁

−∞

𝑑𝑡 exp(−𝑖𝑡𝜔) cos2 (𝜔0𝑡) 𝑏, (58)

𝑘𝑚𝑘𝑙

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩1
2
=

= (𝛿𝑚𝑙𝑘
2 − 𝑘𝑚𝑘𝑙)

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩1
2
/2 =

= −𝑘4𝑛 (𝑣𝑠𝑟𝑠)
−2

𝑒2
∞∫︁

−∞

𝑑𝑡 exp(−𝑖𝑡𝜔) cos (𝜔0𝑡) 𝑎, (59)

where

𝑘𝑚𝑘𝑙

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩1
2
= 𝑘𝑚𝑘𝑙

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩2
2
=

= (𝛿𝑚𝑙𝑘
2 − 𝑘𝑚𝑘𝑙)

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩2
2
/2, (60)

since cos2 (𝜔0𝑡)+sin2 (𝜔0𝑡) = 1. Hence, the third har-
monic is absent in this approximation. In addition,
if the masses of ions in the pair are identical, the
coefficient 𝑏 = 0, and the second harmonic is also
absent. However, the latter variant is improbable for
real chemical compounds.

Introducing the delta-function by the rule

𝛿 (𝜔) = 2𝜋

∞∫︁
−∞

𝑑𝑡 exp(−𝑖𝑡𝜔),
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we have from Eqs. (57)–(59) that

𝑘𝑚𝑘𝑙

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩1
2
= (𝛿𝑚𝑙𝑘

2 − 𝑘𝑚𝑘𝑙)×

×
⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩1
2
/2 = −𝑘4𝜋𝑛 (𝑣𝑠𝑟𝑠)

−2
𝑒2 ×

× (𝛿 (𝜔 − 𝜔0) + 𝛿 (𝜔 + 𝜔0))𝑎, (61)

𝑘𝑚𝑘𝑙

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩3
2
= 𝑘4𝜋𝑛 (𝑣𝑠𝑟𝑠)

2
𝑒2 ×

× (𝛿 (𝜔 − 2𝜔0) + 𝛿 (𝜔 + 2𝜔0))𝑏, (62)

(𝛿𝑚𝑙𝑘
2−𝑘𝑚𝑘𝑙)

⟨̂
𝑗𝑚 (𝑘, 𝜔) �̂�𝑙 (0)

⟩3
2
= 2𝑘4𝜋𝑛 (𝑣𝑠𝑟𝑠)

2
𝑒2 ×

× (2𝛿 (𝜔) + 𝛿 (𝜔 − 2𝜔0) + 𝛿 (𝜔 + 2𝜔0)) 𝑏/2. (63)

Now, we can return to sum (41), which gives, after the
summation, the longitudinal and transverse Green’s
functions.

4. Dispersion Laws for Optical Vibrations

The transverse part of Green’s function can be ob-
tained by substituting the correlation function of cur-
rents, which consists of terms (43), (61), (60), and
(63), into Eq. (33):

2𝐺(+)(𝜔𝛼(𝑘), 𝑘)
⊥ =

(︁
𝛿𝑛𝛼 − 𝑘𝑛𝑘𝛼

)︁
𝐺(+)

𝑛𝛼 (𝜔, 𝑘) =

=
1

2𝜋𝑇

∞∫︁
−∞

𝑑𝜛𝑒2𝑛𝜋𝑣2𝑠 ×

× ((𝛿 (𝜛 − 𝜔0) + 𝛿 (𝜛 + 𝜔0))− 2𝑘2𝑟2𝑠 ×

× (𝛿 (𝜛 − 𝜔0) + 𝛿 (𝜛 + 𝜔0)) 2𝑎+ 𝑘2𝑟2𝑠 ×

× (𝛿 (𝜛 − 2𝜔0) + 𝛿 (𝜛 + 2𝜔0) + 2𝛿 (𝜛)) 𝑏)×

×
(︂
−1− 𝜔

𝜛 − 𝜔 − 𝑖0

)︂
. (64)

It is seen after the integration that the imaginary part
is equal to zero:

𝐺(+)(𝜔𝛼(𝑘), 𝑘)
⊥ =

Ω2

4𝜋

(︃(︂
−1− 𝜔2

𝜔2
0 − 𝜔2

)︂
− 2𝑎𝑘2𝑟2𝑠 ×

×
(︂
−1− 𝜔2

𝜔2
0 − 𝜔2

)︂
+ 𝑏𝑘2𝑟2𝑠

(︂
−2− 𝜔2

4𝜔2
0 − 𝜔2

)︂
/2

)︃
.

(65)

Fig. 1. Low-frequency transverse modes for NaF

Substituting formula (65) into the transverse part of
dispersion equation (30), we obtain

𝑐2𝑘2 +Ω2𝑘2𝑟2𝑠 ×

×
(︂
2𝑎

𝜔2
0

𝜔2
0 − 𝜔⊥(𝑘)2

− 𝑏/2− 𝑏/2
4𝜔2

0

4𝜔2
0 − 𝜔⊥(𝑘)2

)︂
−

− 𝜔⊥(𝑘)
2

𝜔2
0 − 𝜔⊥(𝑘)2

Ω2 − 𝜀∞𝜔⊥(𝑘)
2 = 0. (66)

For Kun Huang’s continual theory to be applicable,
the inequality 𝑘2𝑟2𝑠 ≪ 1 must be satisfied. However, it
is the condition 𝑘2𝑟2𝑠 ̸= 0, under which a new phonon-
polariton mode arises.

The most typical representatives of diatomic ionic
crystals are halides of alkaline metals. For lithium
compounds, the second-harmonic phonon does not in-
teract with a photon, because 2𝜔0 < 𝜔𝐿, although it
may probably merge with the upper phonon-polari-
ton. But, e.g. for NaF, an additional phonon-polari-
ton branch is obtained. For sodium fluoride, we have
𝜀∞ = 1.7, 𝜔0 = 45 THz (see Table 5.1 in work [19]),
and Ω/

√
𝜀∞ = 63 THz (see Table 1 in work [20]). The

introduced mass-dependent constants are 𝑎 ≈ 0.13
and 𝑏 ≈ 0.01. In addition, we put 𝑟𝑠 ∼ 10−9 cm−1.

The plot for the upper phonon-polariton intersects
all possible resonances; i.e. we obtain a series of pho-
non-polaritons following in the sequence “phonon–
photon–next phonon” and not crossing one another.
For sodium fluoride (see Fig. 1), within the con-
sidered accuracy, the phonon-polariton transforms
into the second harmonic of a transverse phonon,
as the wave number increases (the solid curve). At
the same time, the second harmonic of a transverse
phonon becomes a phonon-polariton (the short-da-
shed curve). The lower phonon-polariton branch re-
mains standard (the long-dashed curve). Figure 2 ex-
hibits a scaled-up section of Fig. 1, where the up-
per phonon-polariton branches in NaF approach each
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Fig. 2. Mutual approach of upper phonon-polaritons in NaF

other. It testifies to the absence of intersection be-
tween those branches.

Similarly to Fig. 1, the cyclotron resonances in a
magnetized plasma are intersected by an extraordi-
nary wave [21, p. 247] following the same rule. In
other words, the presented plot is similar to the plot
of the Bernstein modes. The transverse phonon-pola-
ritons on a piezoelectric superlattice are also charac-
terized by a similar plot [3].

The longitudinal part of Green’s function consists
of parts (43), (61), (60), and (62): (61), (60) та (62)

𝐺(+)(𝜔, 𝑘)‖ = 𝑘𝑛𝑘𝛼𝐺
(+)
𝑛𝛼 (𝜔, 𝑘) =

1

2𝜋𝑇

∞∫︁
−∞

𝑑𝜛𝑒2𝑛𝜋𝑣2𝑠 ×

× (((𝛿 (𝜛 − 𝜔0) + 𝛿 (𝜛 + 𝜔0))− 𝑘2𝑟2𝑠 ×
× (𝛿 (𝜔 − 𝜔0) + 𝛿 (𝜔 + 𝜔0))2𝑎+ 𝑘2𝑟2𝑠 ×

× (𝛿 (𝜔 − 2𝜔0) + 𝛿 (𝜔 + 2𝜔0))𝑏)

(︂
−1− 𝜔

𝜛 − 𝜔 − 𝑖0

)︂
.

(67)

After the integration over the frequency 𝜛, we obtain
the expression

𝐺(+)(𝜔, 𝑘)‖ =
Ω2

4𝜋

(︃(︂
−1− 𝜔2

𝜔2
0 − 𝜔2

)︂
− 2𝑎𝑘2𝑟2𝑠 ×

×
(︂
−1− 𝜔2

𝜔2
0 − 𝜔2

)︂
+ 𝑏𝑘2𝑟2𝑠

(︂
−1− 𝜔2

4𝜔2
0 − 𝜔2

)︂)︃
, (68)

which gives rise to the dispersion equation

𝑘2Ω2𝑟2𝑠

(︂
2𝑎

(︂
𝜔2
0

𝜔2
0 − 𝜔‖(𝑘)2

)︂
− 𝑏

(︂
4𝜔2

0

4𝜔2
0 − 𝜔‖(𝑘)2

)︂)︂
−

−
𝜔‖(𝑘)

2

𝜔2
0 − 𝜔‖(𝑘)2

Ω2 − 𝜀∞𝜔‖(𝑘)
2 = 0. (69)

The solution of Eq. (69) has three branches:

𝜔‖1(𝑘)=0, 𝜔‖2(𝑘)=±
√︁
𝜔2
0+Ω2, 𝜔‖3(𝑘)=±2𝜔0. (70)

The main result of Eqs. (70) consists in that, be-
sides a standard long-wave longitudinal phonon with
𝜔‖2(𝑘) =

√︀
𝜔2
0 +Ω2, there appears an infinite series

of harmonics (if all terms in sum (40) are taken into
account) with the frequencies starting from twice the
lattice frequency, 𝜔‖3(𝑘) = 2𝜔0.

We should separately emphasize that the new mo-
des are similar to the second harmonic, i.e. to a non-
linear effect, which usually follows from nonlinear
equations of motion. However, Eq. (26) is linear.

In the limiting case where the period of lattice vi-
brations considerably exceeds the characteristic time
of the analyzed process, i.e. 𝜔0 ≪ 𝜔, the trigono-
metrical functions in dependences (34) should be ex-
panded to obtain

𝑟𝑎𝑛 (𝑡) = 𝑟𝑎𝑛 + 𝑣𝑎𝑛𝜔0𝑡/𝜔0, 𝑣𝑎𝑛 (𝑡) = 𝑣𝑎𝑛, (71)

which brings us back to the well-known scenario of a
Maxwellian plasma with damping [8, 22].

5. Conclusions

To summarize, the dispersion laws for phonon-polari-
tons and longitudinal optical phonons in the macro-
scopic model of diatomic ionic crystal are general-
ized. In particular, in the second-order approximation
with respect to the standard deviation of a harmonic
oscillator from the equilibrium, a new branch of lon-
gitudinal optical phonon with a frequency that coin-
cides with the second harmonic of lattice vibrations
is obtained. In the transverse case, two upper pho-
non-polaritons are found. The infinite series of pho-
non-polaritons and longitudinal optical phonons that
arise similarly to the Bernstein modes in a magnetized
plasma are predicted. The transverse frequency of op-
tical lattice vibrations is determined in the main ap-
proximation from the electrostatic equilibrium condi-
tion. The presented consideration generalizes the re-
sults of work [9], where the thermal motion of the
lattice was not taken into account.
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ДОВГОХВИЛЬОВI ОПТИЧНI
КОЛИВАННЯ У ДВОХАТОМНИХ
IОННИХ КРИСТАЛАХ

Р е з ю м е

Розглянуто довгохвильовi фонон-поляритони i поздовжнi
оптичнi фонони як власнi хвилi електромагнiтного поля в
iонних кристалах з двома атомами в елементарнiй комiрцi.
Використано модель Хуана Куня для опису пiдґраток то-
чкових зарядiв, що осцилюють з частотою 𝜔0. Узагальнено
закони дисперсiї для оптичних коливань в кристалах завдя-
ки врахуванню теплового руху зарядiв. У другому порядку
по вiдношенню середньоквадратичного вiдхилення до дов-
жини хвилi знайдено додатковий поздовжнiй фонон з ча-
стотою 2𝜔0 та два верхнi фонон-поляритони.
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