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GENERALIZATION
OF THE VAN DER WAALS EQUATION
FOR ANISOTROPIC FLUIDS IN POROUS MEDIAPACS 61.43.Gt, 64.70.F

The generalized van der Waals equation of state for anisotropic liquids in porous media con-
sists of two terms. One of them is based on the equation of state for hard spherocylinders in
random porous media obtained from the scaled particle theory. The second term is expressed
in terms of the mean value of attractive intermolecular interactions. The obtained equation
is used for the investigation of the gas-liquid-nematic phase behavior of a molecular system
depending on the anisotropy of molecule shapes, anisotropy of attractive intermolecular inter-
actions, and porosity of a porous medium. It is shown that the anisotropic phase is formed
by the anisotropy of attractive intermolecular interactions and by the anisotropy of molecular
shapes. The anisotropy of molecular shapes shifts the phase diagram to lower densities and
higher temperatures. The anisotropy of attractive interactions widens significantly the coexis-
tence region between the isotropic and anisotropic phases and shifts it to the region of lower
densities and higher temperatures. It is shown that, for sufficiently long spherocylinders, the
liquid-gas transition is localized completely within the nematic region. For all the considered
cases, the decrease of the porosity shifts the phase diagram to the region of lower densities and
lower temperatures.
K e yw o r d s: fluids in random porous media, gas-liquid-nematic phase transitions, van der
Waals equation, scaled particle theory, hard spherocylinders.

1. Introduction

It is a great pleasure for us to present our paper for
publication in this special issue dedicated to the 70-
th anniversary of Academician L.A. Bulavin, a known
Ukrainian scientist in the physics of liquid state. His
contribution to the development of the physics of liq-
uid state is important. Some results obtained by him
are partially summarized in books [1–5]. At the same
time, the progress of his former students inside and
outside of Ukraine illustrates the importance of the
scientific school created by L.A. Bulavin.

The first understanding of the nature of the liq-
uid state of matter is connected with the van der
Waals equation formulated nearly 150 years ago [6].
This equation provided the possibility to describe
the phase transition from the gaseous to the liquid
state and to account for the presence of the criti-
cal point beyond which the gaseous phase can not
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be transformed into a liquid. It also provided the
possibility to describe the coexistence between the
liquid and gaseous phases, and to predict the ex-
istence of metastable states, namely a supercooled
gas and a superheated liquid. The background of the
van der Waals equation is based on the idea of dif-
ferent treatments of short-range repulsive and long-
range attractive intermolecular interactions. The re-
pulsive interactions fix the size and the shape of
molecules and essentially determine the structural
and entropic properties. The contribution of attrac-
tive interactions is mainly energetic and can be de-
scribed in the framework of the mean field approxi-
mation. The first strong statistical mechanics treat-
ment of the van der Waals equation was done about
50 years ago for the hard sphere model with attractive
interactions in the form of the Kac potential [7, 8]

𝑈att(𝑟) = 𝛾3𝑈(𝛾𝑟), (1)

where 𝑟 is the interparticle distance.
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In the limit 𝛾 → 0, the equation of state can be
presented in the form [7–9]
𝛽𝑃

𝜌
=

(︂
𝛽𝑃

𝜌

)︂
HS

− 12𝑎𝜂𝛽, (2)

where 𝛽 = 1/(𝑘𝑇 ), 𝑘 is the Boltzmann constant, 𝑇 is
the temperature, 𝑃 is the pressure of the fluid, 𝜌 is the
density,

(︁
𝛽𝑃
𝜌

)︁
HS

is the contribution of hard spheres

(HS), 𝜂 = 1
6𝜋𝜌𝐷

3 is the fluid packing fraction, and
𝐷 is the diameter of a hard sphere. The second term
in Eq. (2) describes the contribution from attractive
interactions through the constant 𝑎:

𝑎 = − 1

𝐷3

∞∫︁
𝐷

𝛾3𝑈(𝛾𝑟)𝑟2d𝑟. (3)

The equation of state in the form (2) is a gener-
alization of the van der Waals equation. It coincides
with it exactly in the one-dimensional case where the
contribution from hard spheres is described by the
Tonks equation [10]. However, we can use a more cor-
rect description of the hard sphere contribution such
as, for example, the Carnahan–Starling equation [11].
The equation of state in the form (2) can be used
also for the description of non-spherical molecules and
can be generalized for the description of isotropic and
anisotropic fluids in porous media. This is the aim of
this paper.

To this end, we will use the Madden–Glandt model
[12]. According to this model, a porous medium is
presented as a quenched configuration of randomly
distributed hard spheres forming a matrix, in the free
space of which there are fluid molecules. A specific
description of a fluid in such porous media is related
to double quenched-annealed averages: the annealed
average is taken over all the fluid configurations and
an additional quenched average should be taken over
all realizations of the matrix.

The analytical results for a hard sphere fluid in
hard sphere matrices [15,16] obtained recently by ex-
tending the scaled particle theory (SPT) [13, 14] pro-
vide a strong basis for a generalization of the van
der Waals equation for simple fluids in porous me-
dia [16]. The generalization of the results obtained
in [15, 16] to non-spherical molecules in porous me-
dia [17, 18] allowed us to generalize the van der
Waals equation [17] to anisotropic fluids in porous
media. The investigations of the gas-liquid-nematic
phase equilibria in the framework of the generalized

van der Waals equation show a rich variety of phase
behaviors that depends on the molecular shape, value
of attractive intermolecular interactions, and poros-
ity of porous media. In this paper, we will continue
this investigation. We will focus on the role of the
anisotropy of attractive interactions.

The paper has the following structure. In Section 2,
we present the results for a hard spherocylinder fluid
in porous media. In Section 3, we use these results to
generalize the van der Waals equation. In Section 4,
we study the influence of the anisotropy of intermolec-
ular interactions on the phase behavior of a molecular
fluid in a porous medium, by using the generalized
van der Waals equation.

2. Application of the Scaled
Particle Theory to the Description
of Thermodynamic Properties
of a Spherocylinder Fluid
in a Random Porous Medium

A hard spherocylinder fluid is widely used for the
description of the influence of the molecular shape
on the orientational ordering in anisotropic fluids
[19, 20]. In this section, we apply the scaled parti-
cle theory to the description of the thermodynamic
properties of hard spherocylinders in random porous
media created by hard spheres. The key point of the
SPT theory is based on the derivation of the chem-
ical potential of an additional scaled particle of a
variable size inserted into a fluid. This excess chem-
ical potential is equal to the work needed to cre-
ate a cavity in a fluid, which is free from any other
particles. The theory combines the exact considera-
tion of an infinitely small particle with the thermo-
dynamic consideration of a scaled particle of a suffi-
ciently large size. The exact result for a point scaled
particle in a hard sphere fluid confined in a random
porous medium was obtained in [21]. However, this
approach named SPT1 contains a subtle inconsis-
tency appearing, when the size of matrix particles
is quite large compared to the size of fluid parti-
cles. Later on, this inconsistency was eliminated in
a new approach known as SPT2 [15]. In this section,
we generalize this approach for hard spherocylinder
fluids in random porous media.

Following [17, 22, 23], we introduce an additional
spherocylinder with the scaling diameter 𝐷𝑠 and the
scaling length 𝐿𝑠 into a spherocylinder fluid in a
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porous medium:

𝐷𝑠 = 𝜆𝑠𝐷1, 𝐿𝑠 = 𝛼𝑠𝐿1, (4)

where 𝐷1 and 𝐿1 are, respectively, the diameter and
the length of the fluid spherocylinder. The excess
chemical potential for a small scaled particle can be
written in the form [17]

𝛽𝜇ex
𝑠 = − ln 𝑝0(𝛼𝑠, 𝜆𝑠)− ln

[︃
1− 𝜂1

𝑉1𝑝0(𝛼𝑠, 𝜆𝑠)
×

×

(︃
𝜋

6
𝐷3

1(1 + 𝜆𝑠)
3 +

𝜋

4
𝐷2

1𝐿1(1 + 𝜆𝑠)
2(1 + 𝛼𝑠)+

+
𝜋

4
𝐷1𝐿

2
1(1 + 𝜆𝑠)𝛼𝑠 ×

×
∫︁
𝑓(Ω1)𝑓(Ω2) sin𝜗12𝑑Ω1𝑑Ω2

)︃]︃
, (5)

where 𝜂1 = 𝜌1𝑉1 is the fluid packing fraction, 𝜌1 is the
fluid density, 𝑉1 is the spherocylinder volume, and

𝑝0(𝛼𝑠, 𝜆𝑠) = exp[−𝛽𝜇0
𝑠(𝛼𝑠, 𝜆𝑠)] (6)

is the probability to find a cavity created by a scaled
particle in the empty matrix. It is defined by the ex-
cess chemical potential 𝜇0

𝑠(𝛼𝑠, 𝜆𝑠) of the scaled parti-
cle in the limit of an infinite dilution, Ω = (𝜗, 𝜙) de-
notes the orientation of particles and is defined by the
angles 𝜗 and 𝜙; 𝑑Ω = 1

4𝜋 sin𝜗𝑑𝜗𝑑𝜙 is the normalized
angle element, 𝜗12 is the angle between orientational
vectors of two molecules, and 𝑓(Ω) is the singlet ori-
entational distribution function normalized in such a
way that∫︁

𝑓(Ω)𝑑Ω = 1. (7)

We note that, here and below, we use conventional
notations [15–18], where the index “1” is used to de-
note a fluid component, the index “0” denotes matrix
particles, while, for the scaled particles, the index “s”
is used.

For a large scaled particle, the excess chemical po-
tential is given by the thermodynamic expression for
the work needed to create a macroscopic cavity inside
a fluid and can be presented in the form

𝛽𝜇ex
𝑠 = 𝑤(𝛼𝑠, 𝜆𝑠) + 𝛽𝑃𝑉𝑠/𝑝0(𝜆𝑠, 𝛼𝑠), (8)

where 𝑃 is the pressure of the fluid, and 𝑉𝑠 is
the volume of the scaled particle. The multiplier

1/𝑝0(𝛼𝑠, 𝜆𝑠) appears due to an excluded volume occu-
pied by matrix particles. The probability 𝑝0(𝛼𝑠, 𝜆𝑠) is
directly related to two different types of porosity in-
troduced by us in [15–18]. The first one corresponds
to the geometrical porosity

𝜑0 = 𝑝0 (𝛼𝑠 = 𝜆𝑠 = 0), (9)

characterizing the free volume for a fluid. For a hard
sphere matrix,

𝜑0 = 1− 𝜂0, (10)

where 𝜂0 = 1
6𝜋𝐷

3
0𝜌0 is the packing fraction of the

matrix, 𝜌0 is the density of matrix particles, and 𝐷0

is the diameter of matrix particles.
The second type of porosity corresponds to the case

𝜆𝑠 = 𝛼𝑠 = 1 and leads to the thermodynamic porosity

𝜑 = 𝑝0(𝛼𝑠 = 𝜆𝑠 = 1) = exp(−𝛽𝜇0
1) (11)

defined by the excess chemical potential of fluid parti-
cles 𝜇0

1 in the limit of infinite dilution. It characterizes
the adsorption of a fluid in the empty matrix. In the
case under consideration,

𝜑 = (1− 𝜂0) exp

[︃
− 𝜂0
1− 𝜂0

𝜏

(︂
3

2
(𝛾1 + 1) + 3𝛾1𝜏

)︂
−

− 𝜂20
(1− 𝜂0)2

9

2
𝛾1𝜏

2 −

− 𝜂0
(1− 𝜂0)3

(3𝛾1 − 1)
1

2
𝜏3(1 + 𝜂0 + 𝜂20)

]︃
, (12)

where 𝜏 = 𝐷1

𝐷0
, and 𝛾1 = 1 + 𝐿1/𝐷1.

In accordance with the ansatz of the SPT theory
[13–18], 𝑤(𝜆𝑠, 𝛼𝑠) can be presented in the form

𝑤(𝜆𝑠, 𝛼𝑠) = 𝑤00 + 𝑤10𝜆𝑠 +

+𝑤01𝛼𝑠 + 𝑤11𝛼𝑠𝜆𝑠 +
𝑤20𝜆

2
𝑠

2
. (13)

The coefficients of this expansion can be found from
the continuity of 𝜇ex

𝑠 and the corresponding deriva-
tives 𝜕𝜇ex

𝑠 /𝜕𝜆𝑠, 𝜕𝜇ex
𝑠 /𝜕𝛼𝑠, 𝜕2𝜇ex

𝑠 /(𝜕𝛼𝑠)(𝜕𝜆𝑠) and
𝜕2𝜇ex

𝑠 /𝜕𝜆2
𝑠 at 𝜆𝑠 = 𝛼𝑠 = 0. After setting 𝜆𝑠 = 𝛼𝑠 = 1,

we found the relation between the pressure 𝑃 and the
excess chemical potential 𝜇ex

1 of a fluid:

𝛽
(︀
𝜇ex
1 − 𝜇0

1

)︀
= − ln (1− 𝜂1/𝜑0) +𝐴(𝜏(𝑓))×

× 𝜂1/𝜑0

1− 𝜂1/𝜑0
+𝐵(𝜏(𝑓))

(𝜂1/𝜑0)
2

(1− 𝜂1/𝜑0)2
+

𝛽𝑃

𝜌1

𝜂1
𝜑
, (14)
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where

𝐴(𝜏(𝑓)) = 6 +
6 (𝛾1 − 1)

2
𝜏(𝑓)

3𝛾1 − 1
−

− 𝑝′0𝜆
𝜑0

(︃
4 +

3 (𝛾1−)2 𝜏(𝑓)
3𝛾1 − 1

)︃
− 𝑝′0𝛼

𝜑0

(︂
1 +

6𝛾1
3𝛾1 − 1

)︂
−

− 𝑝′′0𝛼𝜆
𝜑0

− 1

2

𝑝′′0𝜆𝜆
𝜑0

+ 2
𝑝′0𝛼𝑝

′
0𝜆

𝜑2
0

+

(︂
𝑝′0𝜆
𝜑0

)︂2
, (15)

𝐵(𝜏(𝑓)) =

(︂
6𝛾1

3𝛾1 − 1
− 𝑝′0𝜆

𝜑0

)︂(︃
3 (2𝛾1 − 1)

3𝛾1 − 1
+

− 3 (𝛾1 − 1)
2
𝜏(𝑓)

3𝛾1 − 1

𝑝′0𝛼
𝜑0

− 1

2

𝑝′0𝜆
𝜑0

)︃
, (16)

𝜏(𝑓) =
4

𝜋

∫︁
𝑓(Ω1)𝑓(Ω2) sin𝜗12𝑑Ω1𝑑Ω2. (17)

𝑝′0𝜆 = 𝜕𝑝0(𝛼𝑠,𝜆𝑠)
𝜕𝜆𝑠

, 𝑝′0𝛼 = 𝜕𝑝0(𝛼𝑠,𝜆𝑠)
𝜕𝛼𝑠

, 𝑝′′0𝛼𝜆 = 𝜕2𝑝0(𝛼𝑠,𝜆𝑠)
𝜕𝛼𝑠𝜕𝜆𝑠

,

𝑝′′0𝜆𝜆 = 𝜕2𝑝0(𝛼𝑠,𝜆𝑠)
𝜕𝜆2

𝑠
are the corresponding derivatives

at 𝛼𝑠 = 𝜆𝑠 = 0.
Using the Gibbs–Duhem equation, which relates

the pressure 𝑃 of a fluid to its total chemical potential
𝜇1 = ln(Λ3

1Λ1𝑅) + 𝜇ex
1 ,(︂

𝜕𝑃

𝜕𝜌1

)︂
𝑇

= 𝜌1

(︂
𝜕𝜇1

𝜕𝜌1

)︂
𝑇

, (18)

one derives the fluid compressibility in the form

𝛽

(︂
𝜕𝑃

𝜕𝜌1

)︂
𝑇

=
1

(1− 𝜂1/𝜑)
+

+ (1 +𝐴(𝜏(𝑓)))
𝜂1/𝜑0

(1− 𝜂1/𝜑) (1− 𝜂1/𝜑0)
+

+ (𝐴(𝜏(𝑓)) + 2𝐵(𝜏(𝑓)))
(𝜂1/𝜑0)

2

(1− 𝜂1/𝜑) (1− 𝜂1/𝜑0)
2 +

+2𝐵(𝜏(𝑓))
(𝜂1/𝜑0)

3

(1− 𝜂1/𝜑) (1− 𝜂1/𝜑0)
3 , (19)

where Λ1 is the fluid thermal wave length, and
Λ−1
1𝑅 is the rotational partition function of a single

molecule [24].
After the integration of relation (19) over 𝜌1, one

obtains the expressions for the chemical potential and
for the pressure in the SPT2 approximation [15–17]:

𝛽(𝜇ex
1 − 𝜇0

1) = − ln(1− 𝜂1/𝜑) + (𝐴(𝜏(𝑓)) + 1)×

× 𝜑

𝜑− 𝜑0
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0
+

+(𝐴(𝜏(𝑓)) + 2𝐵(𝜏(𝑓)))
𝜑

𝜑− 𝜑0

(︂
𝜂1/𝜑0

1− 𝜂1/𝜑0
−

− 𝜑

𝜑− 𝜑0
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0

)︂
+ 2𝐵(𝜏(𝑓))×

× 𝜑

𝜑− 𝜑0

[︂
1

2

(𝜂1/𝜑0)
2

(1− 𝜂1/𝜑0)2
− 𝜑

𝜑− 𝜑0

𝜂1/𝜑0

1− 𝜂1/𝜑0
+

+
𝜑2

(𝜑− 𝜑0)2
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0

]︂
, (20)

𝛽𝑃

𝜌1
= − 𝜑

𝜂1
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0
+ (1 +𝐴(𝜏(𝑓)))×

× 𝜑

𝜂1

𝜑

𝜑− 𝜑0
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0
+

+(𝐴(𝜏(𝑓)) + 2𝐵(𝜏(𝑓)))
𝜑

𝜑− 𝜑0

[︂
1

1− 𝜂1/𝜑0
−

− 𝜑

𝜂1

𝜑

𝜑− 𝜑0
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0

]︂
+

+2𝐵(𝜏(𝑓))
𝜑

𝜑− 𝜑0

[︂
1

2

𝜂1/𝜑0

(1− 𝜂1/𝜑0)2
− 2𝜑− 𝜑0

𝜑− 𝜑0
×

× 1

1− 𝜂1/𝜑0
+

𝜑

𝜂1

𝜑2

(𝜑− 𝜑0)2
ln

1− 𝜂1/𝜑

1− 𝜂1/𝜑0

]︂
, (21)

where
𝜎(𝑓) =

∫︁
𝑓(Ω) ln 𝑓(Ω)𝑑Ω. (22)

As noted in [15–18], expressions (20)-(21) have diver-
gences at 𝜂1 = 𝜑 and 𝜂1 = 𝜑0. Since 𝜑 < 𝜑0, the
divergence at 𝜂1 = 𝜑 occurs at lower densities and
should be removed. Different corrections improving
the SPT2 results were proposed in [20–22]. In this
paper, we consider only the SPT2b approach, which
can be derived if 𝜑 is replaced by 𝜑0 everywhere in
(19) except the first term. In consequence, the chem-
ical potential and the pressure of the fluid can be
presented in the form

𝛽(𝜇ex
1 − 𝜇0

1)
SPT2b = 𝜎(𝑓)− ln(1− 𝜂1/𝜑)+

+ (1 +𝐴(𝜏(𝑓)))
𝜂1/𝜑0

1− 𝜂1/𝜑0
+

+
1

2
(𝐴(𝜏(𝑓)) + 2𝐵(𝜏(𝑓)))

(𝜂1/𝜑0)
2

(1− 𝜂1/𝜑0)2
+

+
2

3
𝐵(𝜏(𝑓))

(𝜂1/𝜑0)
3

(1− 𝜂1/𝜑0)3
, (23)(︂

𝛽𝑃

𝜌1

)︂SPT2b

= − 𝜑

𝜂1
ln

(︂
1− 𝜂1

𝜑

)︂
+

𝜑0

𝜂1
ln

(︂
1− 𝜂1

𝜑0

)︂
+

+
1

1− 𝜂1/𝜑0
+

𝐴(𝜏(𝑓))

2

𝜂1/𝜑0

(1− 𝜂1/𝜑0)2
+

+
2𝐵(𝜏(𝑓))

3

(𝜂1/𝜑0)
2

(1− 𝜂1/𝜑0)3
, (24)
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which reproduces quite well the results of computer
simulations [15–18, 25].

From the thermodynamic relation

𝛽𝐹

𝑉
= 𝛽𝜇1𝜌1 − 𝛽𝑃, (25)

one can obtain the expression for the free energy:

𝛽𝑉 −1𝐹 SPT2b = 𝜌1𝜎(𝑓) + 𝜌1(ln(Λ
3
1𝜌1)− 1)+

+𝛽𝜇0
1𝜌1 − 𝜌1 ln(1− 𝜂1/𝜑)+

+
𝜌1𝜑

𝜂1
ln(1− 𝜂1/𝜑)−

𝜌1𝜑0

𝜂1
ln(1− 𝜂1/𝜑0)+

+ 𝜌1
𝐴(𝜏(𝑓))

2

𝜂1/𝜑0

1− 𝜂1/𝜑0
+

+ 𝜌1
𝐵(𝜏(𝑓))

3

(︂
𝜂1/𝜑0

1− 𝜂1/𝜑0

)︂2
. (26)

By minimizing the free energy with respect to the
variation of the distribution function 𝑓(Ω), we obtain
the integral equation

ln 𝑓(Ω1) + 1 + 𝐶

∫︁
𝑓(Ω2) sin𝜗12𝑑Ω2 = 0, (27)

where

𝐶 =
𝜂1/𝜑0

1− 𝜂1/𝜑0

[︂
3(𝛾1 − 1)2

3𝛾1 − 1

(︂
1− 𝑝′0𝜆

2𝜑0

)︂
+

+
𝜂1/𝜑0

(1− 𝜂1/𝜑0)

(𝛾1 − 1)2

3𝛾1 − 1

(︂
6𝛾1

3𝛾1 − 1
− 𝑝′0𝜆

𝜑0

)︂]︂
. (28)

This equation can be solved numerically, by us-
ing an iteration procedure according to the algorithm
proposed in [26]. We note that, in the Onsager limit
𝐿1 → ∞, 𝐷1 → 0 [19],

𝐶 → 𝑐 =
1

4
𝜋𝐿2

1𝐷1𝜌1, (29)

where 𝑐 is finite.
From the bifurcation analysis, it is found that

Eq. (27) has two characteristic points [27]:

𝑐𝑖 = 3.290, 𝑐𝑛 = 4.191, (30)

where 𝑐𝑖 corresponds to the highest density of a sta-
ble isotropic fluid, and 𝑐𝑛 is related to the minimum
density of a stable nematic fluid.

In the presence of a porous medium within the On-
sager model, we have

𝑐𝑖/𝜑0 = 3.290, 𝑐𝑛/𝜑0 = 4.191. (31)

For finite 𝐿1 and 𝐷1,

𝐶𝑖 = 3.290, 𝐶𝑛 = 4.191, (32)

where 𝐶𝑖 and 𝐶𝑛 are defined by (28). These values
of 𝐶𝑖 and 𝐶𝑛 define the isotropic-nematic phase dia-
gram depending on the ratio 𝐿1/𝐷1 and the matrix
parameters for a hard spherocylinder fluid in a ma-
trix. As was shown in [17], the obtained theoretical
results are in agreement with the data of computer
simulations [28].

3. Generalization of the van der Waals
Equation for Anisotropic Fluids in Random
Porous Media

We will use the results for a hard spherocylinder fluid
presented in the previous section as a reference system
for the generalization of the van der Waals equation
for anisotropic fluids in random porous media.

Such generalization includes the non-spherical
shape of molecules, anisotropy of the intermolecular
interaction, and presence of a porous medium. As a
result, we will have a more general form of Eq. (2)
[17]:

𝛽𝑃

𝜌1
=

(︂
𝛽𝑃

𝜌1

)︂
HSC

− 12𝜂1𝑎𝛽, (33)

where
(︁
𝛽𝑃
𝜌1

)︁
HSC

is the contribution from hard sphero-
cylinders (HSC) in porous media, which is described
by expression (24). The contribution from attractive
interactions is described by a constant 𝑎, which can
be presented in the form

𝑎 = − 1

𝜑0𝑉1

∫︁
𝑓(Ω1)𝑓(Ω2)𝑈

att(𝑟12Ω1Ω2)𝑑𝑟12𝑑Ω1𝑑Ω2,

(34)

where the factor 1
𝜑0

excludes the volume occupied by
matrix particles, 𝑉1 is the volume of a molecule, 𝜂1 =
𝜌1𝑉1, and 𝑈attr(𝑟12Ω1Ω2) is the attractive part of the
intermolecular interaction.

Similarly to [17], we present the potential
𝑈attr(𝑟12Ω1Ω2) in the form of a modified Lennard-
Jones potential

𝑈att(𝑟12Ω1Ω2) = 𝑈LJ

(︂
𝜎(Ω1Ω2Ω𝑟)

𝑟12

)︂
×

× [1 + 𝜒𝑃2(cos𝜗12)] , (35)
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𝑈LJ

(︂
𝜎(Ω1Ω2Ω𝑟)

𝑟12

)︂
= 4𝜖0

[︃(︂
𝜎(Ω1Ω2Ω𝑟)

𝑟12

)︂12
−

−
(︂
𝜎(Ω1Ω2Ω𝑟)

𝑟12

)︂6]︃
, 𝑟12 ≥ 𝜎(Ω1Ω2Ω𝑟),

𝑈LJ

(︂
𝜎(Ω1Ω2Ω𝑟)

𝑟12

)︂
= 0, 𝑟12 < 𝜎(Ω1Ω2Ω𝑟),

(36)

where 𝑃2(cos𝜗12) = 1
2 (3 cos

2 𝜗12 − 1) is the sec-
ond Legendre polynomial, 𝜗12 is the angle be-
tween the principal axes of two interacting molecules,
and 𝜎(Ω1Ω2Ω𝑟) is the contact distance between
molecules. It depends on the orientations of two
molecules, Ω1 and Ω2, as well as on the orientation
of the distance vector 𝑟12 between their centers. In
the case where the repulsive part of the interaction
is spherical (𝐷1 = 𝜎), this potential reduces to the
Maier–Saupe potential [28]. We note that potential
(36) is the sum of two Lennard-Jones potentials. The
first one is related to the isotropic attraction, and the
second one to the anisotropic attraction. The ratio
of the well depths of these two potentials 𝜒 = 𝜖2/𝜖0
specifies the degree of anisotropy in the attraction of
the total potential.

Following the traditional scheme [30], taking into
account that 𝑑𝑟 = 𝑟2𝑑𝑟𝑑Ω𝑟, and using a dimension-
less intermolecular distance 𝑟* = 𝑟/𝜎(Ω1Ω2Ω𝑟), one
obtains

𝑎 = − 1

𝜑0𝑉1

∫︁
𝑑Ω1𝑑Ω2𝑓(Ω1)𝑓(Ω2) [1+𝜒𝑃2(cos𝜗12)]×

×𝑉 exc
1 (Ω1Ω2)3

∞∫︁
0

𝑟*2𝑑𝑟*𝛽𝑈LJ(𝑟
*), (37)

where
𝑉exc(Ω1Ω2) =

1

3

∫︁
𝑑Ω𝑟[𝜎(Ω1Ω2Ω𝑟)]

3 (38)

is the excluded volume formed by two spherocylinders
with orientations Ω1 and Ω2.

The following expressions for the chemical potential
and the free energy correspond to Eq. (33):

𝛽(𝜇ex
1 − 𝜇0

1) = 𝜎(𝑓)− ln(1− 𝜂1/𝜑)+

+ (1 +𝐴(𝜏(𝑓)))
𝜂1/𝜑0

1− 𝜂1/𝜑0
+

+
1

2
(𝐴(𝜏(𝑓)) + 2𝐵(𝜏(𝑓)))

(𝜂1/𝜑0)
2

(1− 𝜂1/𝜑0)2
+

+
2

3
𝐵(𝜏(𝑓))

(𝜂1/𝜑0)
3

(1− 𝜂1/𝜑0)3
− 24𝛽𝜂1𝑎 (39)

𝛽𝐹

𝑉
= 𝜌1𝜎(𝑓) + 𝜌1(ln(Λ

3
1𝜌1)− 1) + 𝛽𝜇0

1𝜌1 −

− 𝜌1 ln(1− 𝜂1/𝜑) +
𝜌1𝜑

𝜂1
ln(1− 𝜂1/𝜑)−

− 𝜌1𝜑0

𝜂1
ln(1− 𝜂1/𝜑0) + 𝜌1

𝐴(𝜏(𝑓))

2

𝜂1/𝜑0

1− 𝜂1/𝜑0
+

+ 𝜌1
𝐵(𝜏(𝑓))

3

(︂
𝜂1/𝜑0

1− 𝜂1/𝜑0

)︂2
− 12𝜌1𝑎𝜂1𝛽. (40)

From the last expression, we have the following inte-
gral equation for the singlet distribution function:

ln 𝑓(Ω1) + 1 + 𝐶

∫︁
𝑓(Ω2) sin𝜗12𝑑Ω2 +

+

∫︁
𝑓(Ω2)𝑃2(cos𝜗12)𝑑Ω2 ×

× 𝛽𝜌1𝜒

𝜑0

∫︁
𝑈LJ

(︂
𝜎(Ω1Ω2Ω𝑟)

𝑟

)︂
𝑑𝑟 = 0, (41)

where 𝐶 is given by expression (28).
The obtained singlet distribution function 𝑓(Ω) is

used in (34) for the calculation of the parameter 𝑎.

4. Influence of Anisotropic
Attractive Intermolecular Interactions
on the Phase Behavior of Anisotropic
Fluids in Porous Media

Now, we apply the developed theory to the descrip-
tion of the gas-liquid-nematic phase behavior of the
considered molecular fluids in porous media created
by a random configuration of hard spheres. Given the
chemical potential and the pressure as functions of
the density 𝜌1 at different temperatures, one can cal-
culate the coexistence curves from the conditions of
thermodynamic equilibrium:

𝜇1(𝜌
1
1, 𝑇 ) = 𝜇1(𝜌

2
1, 𝑇 ),

𝑃 (𝜌11, 𝑇 ) = 𝑃 (𝜌21, 𝑇 ),
(42)

where 𝜌11 and 𝜌21 are the fluid densities of two different
phases 1 and 2. The numerical solution of these equa-
tions is realized with the use of the Newton–Raphson
algorithm.

In contrast to [17], where our investigations were
concentrated on the influence of the molecular shape
on the phase behavior of molecular fluids with 𝜒 = 0,
we will focus more on the influence of the anisotropy
of attractive intermolecular interactions. The corre-
sponding results of our investigation of the influence
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of parameter 𝜒 at different values of porosity 𝜑0 and
different values of parameter 𝐿1/𝐷1 are presented in
Figs. 1–4. The results are presented in the form of the
phase diagram in the coordinates “dimensionless den-
sity 𝜂1 – dimensionless temperature 𝑇 * = 𝑘𝑇/𝜖0”. In
order to compare the influence of the parameter 𝜒, we
also present the results for 𝜒 = 0. We note that, in
accordance with (37), the contribution of anisotropic
attractive interactions is proportional to∫︁

𝑓(Ω1)𝑓(Ω2)𝑃2(cos𝜗12)𝑑Ω1𝑑Ω2 = 𝑆2
2 , (43)

where

𝑆2 =

∫︁
𝑃2(cos𝜗)𝑓(Ω)𝑑Ω (44)

is the order parameter.
Since 𝑆2 = 0 in the isotropic phase, the influence of

anisotropic attractions in the isotropic phase is negli-
gible in the van der Waals approximation. In order to
check the law of corresponding states in each figure,
we present the phase diagrams also in the reduced
variables 𝜂1/𝜂1𝑐 − 𝑇 */𝑇 *

𝑐 , where 𝜂1𝑐 and 𝑇 *
𝑐 are the

corresponding values of critical density and critical
temperature for the gas-liquid phase transition.

We start from the hard sphere model with attrac-
tive interactions in the form (36). In this case, 𝐿 = 0,
and 𝐷 = 𝜎 is the diameter of hard spheres. The cor-
responding phase diagram is presented in Fig. 1. In
the region of small densities, we have the gas phase 𝐺,
which changes, as the density increases, to the liquid
phase 𝐿 and, at higher densities, to the anisotropic
nematic phase 𝑁 . The nematic phase appears due to
the anisotropy of attractive interactions, and the bi-
furcation line of the nematic phase is proportional
to 𝜌1𝛽𝜒

𝜑0
, according to (41). This means that the

phase transition appears at higher densities and vice
versa, as the temperature increases. As the tempera-
ture decreases, the phase transition appears at lower
densities. At sufficiently low temperatures, the region
of the gas-liquid transition converges to the tricriti-
cal gas-liquid-nematic (𝐺− 𝐿−𝑁) point. Below the
tricritical point, only the gas-nematic (𝐺𝑁) coexis-
tence is seen. At temperatures higher than the tricrit-
ical one, the anisotropic attractive interaction does
not change the gas-liquid coexistence line in the van
der Waals approximation. But, for lower tempera-
tures, the anisotropic attraction slightly widens the
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Fig. 1. Temperature-density phase diagram calculated from
the generalized van der Waals equation for hard spheres with
isotropic and anisotropic attractive interactions (𝜒 = 0.3) in
random porous media with the porosity 𝜑0 = 0.8 and 𝜏 =

= 1/3. For the purpose of comparison, the phase diagram in
the absence of a porous medium 𝜑0 = 1.0 is also presented. The
dashed lines correspond to the case 𝜒 = 0. On the top (case
𝑎), the phase diagram in the coordinates 𝑇 * = 𝑘𝑇/𝜖0 and
𝜂1 = 𝜌1𝑉1 is presented. At the bottom (case 𝑏), the phase
diagram is presented in the coordinates 𝑇 */𝑇 *

𝑐 and 𝜂1/𝜂1,𝑐

gas-liquid coexistence and leads to a strong widen-
ing for larger densities. The presence of a porous
medium shifts the phase diagram to the region of
lower densities and lower temperature, as the poros-
ity 𝜑0 decreases. In contrast to the usual gas-liquid
phase transition [31], the law of corresponding states
in the considered case is more or less valid in the
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Fig. 2. Temperature-density phase diagram calculated from
the generalized van der Waals equation for hard spherocylin-
ders with the anisotropy of sizes 𝐿1/𝐷1 = 3 and with isotropic
and anisotropic attractive interactions (𝜒 = 0.3) in random
porous media with the porosity 𝜑0 = 0.8 and 𝜏 = 1/6. For the
purpose of comparison, the phase diagram in the absence of a
porous medium 𝜑0 = 1.0 is also presented. The dashed lines
correspond to the case 𝜒 = 0. On the top (case 𝑎), the phase
diagram in the coordinates 𝑇 * = 𝑘𝑇/𝜖0 and 𝜂1 = 𝜌1𝑉1 is pre-
sented. At the bottom (case 𝑏), the phase diagram is presented
in the coordinates 𝑇 */𝑇 *

𝑐 and 𝜂1/𝜂1,𝑐

region of small densities. But, at higher densities,
the coexistence curve becomes wider, as the poros-
ity decreases.

The influence of the parameter 𝐿1/𝐷1 responsible
for the anisotropy of a molecular shape is presented

in Figs. 2–4. Comparing Fig. 1 and Fig. 2, we can see
that the non-sphericity of a molecular shape leads
to a shift of the phase diagram to lower densities and
higher temperatures. The increase of the ratio 𝐿1/𝐷1

leads to an increase of the critical temperature and
a decrease of the critical density for the gas-liquid
transition. The tricritical temperature increases also,
and the gas-liquid region is essentially narrower than
in the case of spherical molecules. Similarly as for
𝐿1/𝐷1 = 0 (Fig. 1), the anisotropic phase appears
in the case 𝐿1/𝐷1 = 3 (Fig. 2) due to the anisotropy
of attractive intermolecular interactions. However,
the anisotropy of molecule shapes highly modifies
the region of the coexistence of isotropic and ne-
matic phases. The liquid-nematic coexistence region
becomes wider and is not very sensitive to the tem-
perature. Similarly as for 𝐿1/𝐷1 = 0 below the tri-
critical temperature, the anisotropic attractive in-
teraction does not change the gas-liquid coexistence
line. For lower temperatures, the coexistence region
slightly widens at lower densities and widens signifi-
cantly at higher densities. We note that, at 𝜒 = 0, the
nematic phase does not appear. In agreement with
the data of computer simulations [32], the nematic
phase in the fluid of hard spherocylinders appears
at 𝐿1/𝐷1 > 3.7. For 𝐿1/𝐷1 = 3 similarly as for
𝐿1/𝐷1 = 0, the decrease of the porosity 𝜑0 shifts
the phase diagram to lower densities and lower tem-
peratures. In contrast to the case 𝐿1/𝐷1 = 0, the
corresponding law in the case 𝐿1/𝐷1 = 3 is more or
less satisfied for all densities, including the region of
the isotropic-nematic transition.

The phase diagram for the case 𝐿1/𝐷1 = 5 is pre-
sented in Fig. 3. Such asymmetry of the shape of
molecules is sufficient for the nematic ordering. As
we noted in [17], the anisotropic attractive interac-
tion expands the region of orientational ordering. The
liquid-nematic region widens significantly if 𝜒 in-
creases. As a consequence, the gas-liquid transition
disappears for a sufficiently large anisotropy, and only
the isotropic-nematic transition takes place. Such sit-
uation for 𝐿1/𝐷1 = 5 is observed at 𝜒 = 0.3. Due
to this fact, we put 𝜒 = 0.1 in Figs. 3 and 4. As we
can see from Fig. 3, similarly to Figs. 1 and 2, the
gas-liquid coexistence line below the tricritical tem-
perature does not depend on the anisotropic attrac-
tive interaction. The anisotropic attractive interac-
tion leads to an increase of the tricritical temperature
and a decrease of the tricritical density. As a result,
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Fig. 3. Temperature-density phase diagram calculated from
the generalized van der Waals equation for hard spherocylin-
ders with the anisotropy of sizes 𝐿1/𝐷1 = 5 and with isotropic
and anisotropic attractive interactions (𝜒 = 0.3) in random
porous media with the porosity 𝜑0 = 0.8 and 𝜏 = 0.1. For
the purpose of comparison, the phase diagram in the absence
of a porous medium, 𝜑0 = 1.0, is also presented. The dashed
lines correspond to the case 𝜒 = 0. On top (case 𝑎), the phase
diagram in the coordinates 𝑇 * = 𝑘𝑇/𝜖0 and 𝜂1 = 𝜌1𝑉1 is pre-
sented. At the bottom (case 𝑏), the phase diagram is presented
in the coordinates 𝑇 */𝑇 *

𝑐 and 𝜂1/𝜂1,𝑐

the gas-liquid region is narrower, while the liquid-
nematic region covers a wide range of densities. The
presence of a porous medium shifts the phase diagram
to lower densities and lower temperatures. The cor-
responding law is satisfied rather well. In the region

5

6

7

8

9

10

11

0.04 0.08 0.12 0.16 0.20

=0.8 =1.0

G-NII

NII

NI-NII

NI

NI-NII

G-NII

NII
NI-NII

NI

NII

NI

G-NII

T*

G-NI

L1/D1=80

G-NI

7.502

7.504

7.506

7.508

7.510

7.512
0.087 0.090 0.093 0.096 0.099 0.102 0.105

G-NII

NI-NII NII

NI

a

0.7

0.8

0.9

1.0

1.1

1.2

0.5 1.0 1.5 2.0 2.5 3.0

=0.8 =1.0

c

T* /T
* c

b
Fig. 4. Temperature-density phase diagram calculated from
the generalized van der Waals equation for hard spheres
𝐿1/𝐷1 = 80 with isotropic and anisotropic attractive inter-
actions (𝜒 = 0.3) in random porous media with the porosity
𝜑0 = 0.8 and 𝜏 = 0.01. For the purpose of comparison, the
phase diagram in the absence of a porous medium, 𝜑0 = 1.0,

is also presented. The dashed lines correspond to the case
𝜒 = 0. On top (case 𝑎), the phase diagram in the coordinates
𝑇 * = 𝑘𝑇/𝜖0 and 𝜂1 = 𝜌1𝑉1 is presented. At the bottom (case
𝑏), the phase diagram is presented in the coordinates 𝑇 */𝑇 *

𝑐

and 𝜂1/𝜂1,𝑐

of the anisotropic transition, the corresponding law is
satisfied separately for 𝜒 = 0 and for 𝜒 = 0.1.

Finally, we consider Fig. 4, where the phase dia-
gram for 𝐿1/𝐷1 = 80 is presented. As we noted in
[17], the transition into the nematic phase shifts in
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this case at 𝜒 = 0 to the region of small densities. As a
consequence, the gas-liquid transition appears in the
nematic region. In accordance with the classification
in [33], the gas phase in the nematic region is marked
as 𝑁𝐼 , and the liquid phase in the nematic region is
marked as 𝑁𝐼𝐼 . In contrast to the previous figures,
in the case considered in Fig. 4, the influence of an
anisotropic attractive interaction is of importance for
the entire phase diagram. The anisotropic attractive
interaction does not change significantly the critical
density of the gas-liquid transition, but it changes
strongly the value of critical temperature. In contrast
to the case 𝐿1/𝐷1 = 5, the anisotropic attractive in-
teraction in the considered case 𝐿1/𝐷1 = 80 leads to
a strong increase of the tricritical temperature and
to the expansion of the gas-liquid coexistence. The
region of coexistence of the isotropic and nematic
phases is also expanded and shifts to lower densi-
ties. In the presence of a porous medium, the phase
diagram is shifted to lower densities and lower tem-
peratures, as the porosity 𝜑0 decreases. The corre-
sponding law is satisfied quite well for the isotropic
phase independently of the value of 𝜒. However, the
values of 𝜒 and porosity 𝜑0 have a strong influence
on the phase diagram in the anisotropic region. At
the critical point, the corresponding law is satisfied,
but, for higher densities, the behavior of the phase
diagram depends significantly on the value of poros-
ity 𝜑0.

5. Conclusion

In this paper, we have presented the generalized van
der Waals equation for anisotropic molecular fluids
in porous media. This generalization is based on an-
alytical expressions for the equation of state and the
chemical potential of a hard spherocylinder fluid in
a random porous medium obtained in the framework
of the scaled particle theory. The second term of the
generalized van der Waals equation is the mean value
of attractive intermolecular interactions. By minimiz-
ing the free energy of the fluid, we have obtained a
nonlinear integral equation for the singlet distribution
function, which describes the orientational ordering in
the system. This ordering is connected with the non-
sphericity of molecular shapes and the anisotropy of
intermolecular attractive interactions.

The investigations based on the generalized van der
Waals equation demonstrate a wide variety of gas-

liquid-nematic phase behaviors in molecular systems
depending on the anisotropy of a shape of molecules,
anisotropy of attractive interparticle interactions, and
porosity of a porous medium. Here, we have focused
our attention on the influence of the anisotropy of at-
tractive interactions, which is the main reason for the
orientational ordering in quasispherical molecules. It
is shown that the anisotropy of molecular shapes
leads to a shift of the critical point of the gas-liquid
transition to lower densities and higher tempera-
tures and to an increase in the tricritical temper-
ature. The anisotropy of molecular shapes also ex-
pands significantly the region of coexistence of the
isotropic and nematic phases. It is shown that, for a
larger anisotropy, the nematic phase can appear due
to the anisotropy of molecular shapes. In this case,
the anisotropy of attractive intermolecular interac-
tions expands significantly the region of coexistence
between the isotropic and nematic phases and shifts
it to the region of lower densities and higher tem-
peratures. Finally, at a sufficiently large anisotropy
of molecular shapes, the transition into the nematic
phase takes place at very low densities. As a result,
the gas-liquid transition takes place in the nematic
region. In all the considered cases, the decrease of
the porosity of a porous medium shifts the phase di-
agram to the region of lower temperatures and lower
densities.

The authors express their gratitude to Taras Pat-
sahan and Ivan Kravtsiv for useful discussions and
important suggestions during the preparation of this
paper.
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УЗАГАЛЬНЕННЯ РIВНЯННЯ
ВАН-ДЕР-ВААЛЬСА НА АНIЗОТРОПНI
РIДИНИ В ПОРИСТИХ СЕРЕДОВИЩАХ

Р е з ю м е

Представлене узагальнене рiвняння Ван-дер-Ваальса на
анiзотропнi рiдини в пористих середовищах складається з
двох доданкiв. Перший з них базується на рiвняннi стану
твердих сфероцилiндрiв у випадковому пористому середо-
вищi, отриманий в рамках методу узагальнення масшта-
бної частинки. Другий доданок виражається через середнє
значення потенцiалу притягальної мiжмолекулярної взає-
модiї. На основi отриманого рiвняння проведено дослiдже-
ння фазової поведiнки газ–рiдина–нематик молекулярних
систем у залежностi вiд анiзотропiї форми молекул, анiзо-
тропiї притягальної взаємодiї та пористостi пористого сере-
довища. Показано, що анiзотропна фаза формується як за
рахунок анiзотропної притягальної взаємодiї, так i за раху-
нок анiзотропiї форми молекул. Анiзотропiя форми моле-
кул приводить до зсуву фазової дiаграми в область менших
густин та вищих температур, а анiзотропiя притягальної
взаємодiї значно розширює область спiвiснування iзотро-
пної та нематичної фаз i також зсовує її в область нижчих
густин i вищих температур. Показано, що при достатньо
великiй асиметрiї форми молекул фазовий перехiд рiдина–
газ знаходиться повнiстю в областi нематичної фази. У всiх
випадках, що розглядаються, пониження пористостi пори-
стого середовища зсовує фазову дiаграму в область нижчих
густин i температур.
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