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In the framework of the analytical theory of electrocapillarity phenomena that arise in atomic
force microscopy (AFM) experiments, the formation of a water meniscus under the AFM
probe has been considered, and its dependence on the applied voltage has been analyzed. The
non-uniformity of the electric field produced by the AFM probe, the influences of gravitation
forces on the meniscus height, and the dependence of the surface energy of a meniscus on its
shape are taken into account self-consistently. The influence of a strong non-uniform electric
field of the probe on the emergence conditions, size, and shape of the water meniscus is ana-
lyzed for the first time. The Euler–Lagrange partial differential equation and the corresponding
boundary conditions making allowance for the non-uniform electric field of an AFM probe, the
gravitation force, the meniscus surface tension, and the environmental humidity and describing
the thermodynamics of the water meniscus formation in a self-consistent way are derived. The
obtained numerical results are in agreement with known experimental data.
K e yw o r d s: electrocapillarity, atomic force microscopy, water meniscus, Euler–Lagrange
equation.

1. Introduction

Scanning probe atomic force microscopy (AFM) 1 is a
unique, very powerful, and, at the same time, widely
applied method of researches dealing with the surface
morphology of various materials, as well as relevant
electric, magnetic, and mechanical forces [1]. Various
modifications of this method make it possible to in-
vestigate the properties of the near-surface layer in an
arbitrary medium (not only in a solid) ranging from
organic polymers, biological RNA and DNA speci-
mens, liquid crystals, ferromagnets, and ferroelectrics
to metals, graphene, and diamond. In the modern
AFM, the surface morphology and the forces are stud-
ied with the nano-, subnano-, and even atomic reso-
lution. This is a considerable advantage in compari-
son with ordinary optical microscopy, the resolution
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of which is determined by half an optical wavelength
(about 250–400 nm). The resolution of the AFM op-
erating in the topographical mode is determined by
the curvature radius of the probe tip (about 5–25 nm
for modern probes). Force and current measurements
are characterized by a considerably better resolution
owing to the dielectric enhancement effect for electric
fields, because, while estimating the resolution, the
probe curvature radius is multiplied by the dielectric
permittivity of the medium around the probe (𝜀 . 10)
and divided by the effective dielectric permittivity of
the specimen, which can largely exceed unity [2].

The atomic force microscope was invented by
Calvin Quate and Christoph Gerber in 1986, al-
most immediately after the invention of the scan-

1 Below, the abbreviation AFM is used for both the atomic
force microscopy and the atomic force microscope, depending
on the context.
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ning tunnel microscope by Gerd Binnig and Heinrich
Rohrer in 1982. This device is intended for studying
the atomic structure of the surface. It consists of a
probe and a mirror, the both being mounted on a
cantilever, a light source (laser), a quadrant photode-
tector, and an electronic amplifier. A light beam pro-
duced by the laser falls on the mirror and is reflected
to the photodetector. The latter, using the amplifi-
cation system, transforms the probe vibrations into
electric current oscillations (see Fig. 1).

Both the quantitative and qualitative interpreta-
tions of experimental results obtained with the use
of AFM methods (in particular, the force structure
and the screening of electric fields), as well as their
resolution, substantially depend on the probe en-
vironment. A possibility or a requirement to carry
out AFM experiments in the vacuum or a nonpolar
medium (of the inert-gas type) is not always available,
because the corresponding preparation procedure is
expensive, long-term, and often inexpedient; espe-
cially in the case where the surface has to be studied
under “environmental conditions”. The overwhelming
majority of AFM experiments are performed in the
air environment with a humidity from 30 to 90%. It
was found experimentally and shown theoretically
that, if the air humidity exceeds 40%, superthin layers
of water are condensed on hydrophilic surfaces, which
are typical of the overwhelming majority of metals,
semiconductors, ferroelectrics, and ferromagnets. In
the damp air, a water meniscus several hundreds of
nanometers and even several micrometers in height
can easily be formed between the hydrophilic surfaces
of the metal probe and the specimen owing to the
capillary effects [3]. If an electric voltage is applied to
the probe, water starts to be pulled into the region
of the non-uniform electric field created by the probe
(Fig. 2). It is natural that the conditions of menis-
cus formation, as well as the meniscus parameters,
depend on the voltage applied to the probe.

The literature analysis [4, 5] revealed that the self-
consistent theory of electrocapillarity phenomena in
the AFM, although being challenging, had been de-
veloped insufficiently. As a rule, the authors consider
either the cases where no electric voltage is applied
to the probe and the meniscus is essentially spheri-
cal [4] or the case of a flat capacitor with a uniform
electric field [5]. Some authors, instead of finding the
real shape and parameters of the meniscus, assume
it to be cylindrical [6]. Moreover, in those works, no

Fig. 1. Schematic diagram of the scanning atomic force mi-
croscope (AFM)

Fig. 2. Water hump “pulled in” by the probe electric field
a. Gravitation counteracts this process and “spread” the menis-
cus along the hydrophilic surface of the specimen. Water menis-
cus formed under the probe, when the latter approaches the
surface or when the electric voltage applied to the probe in-
creases b

gravitation force was taken into account, which can
considerably affect the dimensions of the meniscus
when it achieves micron heights.

The facts presented above served an impetus for
this work. Here, a self-consistent analytical theory of
the electrocapillarity phenomenon in the AFM exper-
iment, namely, the formation of a water meniscus un-
der the AFM probe tip, is developed, and the influ-
ence of the electric voltage applied to the probe is
analyzed. The work is aimed at making allowance for
the electrocapillarity phenomena in the non-uniform
electric field of AFM probe, the influence of the grav-
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Fig. 3. Water vapor condensation in the electric field

itation force on the water meniscus height, and the
dependence of the surface energy of the meniscus
on its real shape, which must be determined self-
consistently. This formulation of the problem, which
takes into account the most important experimental
factors, is relevant for both basic researches and ap-
plications, because, in most cases, even for micro-
scopes with protective caps, the environmental hu-
midity turns out sufficiently high for water to con-
dense in the nanometer-sized gap between the probe
and the studied surface.

2. Capillary Forces and Kelvin Equation

Plenty of substances are transformed from the va-
por state into the liquid one in small cracks and
pores. This phenomenon is called the capillary con-
densation. It originates forn the pressure difference
under the curved surface and above it, which equals
[7–9]

Δ𝑃 = 𝛾

(︂
1

𝑅1
+

1

𝑅2

)︂
, (1)

where 𝛾 is the surface tension coefficient, and 𝑅1 and
𝑅2 are the principal radii of curvature of the sur-
face. This equality often referred to as the Young–
Laplace formula [9]. Analyzing the problem from the
thermodynamic viewpoint, one can understand that
the pressure difference brings about a variation in the
free energy of the system. Provided that the temper-
ature 𝑇 and the molar volume 𝑉𝜇 are constant, this
variation can be written as follows:

Δ𝐺𝜇𝑝 = 𝑉𝜇𝛿𝑃 = 𝑉𝜇𝛾

(︂
1

𝑅1
+

1

𝑅2

)︂
. (2)

Using the equation of state for the ideal gas, 𝑃𝑉𝜇 =
= 𝑅𝑇 , where 𝑅 is the universal gas constant, we ob-
tain that 𝑑𝐺𝜇𝑝 = 𝑅𝑇 𝑑𝑃

𝑃 . Integrating this expression,

we have 𝐺𝜇𝑝 = 𝐺0 +𝑅𝑇 ln
(︁
𝑃
𝑃0

)︁
. Then, from Eq. (2),

taking into account that 𝐺𝜇𝑝−𝐺0 = Δ𝐺𝜇𝑝, we obtain
the Kelvin equation [10]

𝑅𝑇 ln

(︂
𝑃

𝑃0

)︂
= 𝛾𝑉𝜇

(︂
1

𝑅1
+

1

𝑅2

)︂
, (3)

where 𝑃0 is the normal pressure above a flat surface
of vapor, and 𝑃 the pressure outside the liquid sur-
face. From this equation, if 𝑇 and 𝑃

𝑃0
are known, one

can find the so-called Kelvin radius 𝑟K[10]:

𝑟−1
K = 𝛾

(︂
1

𝑅1
+

1

𝑅2

)︂
=

𝑅𝑇

𝛾𝑉𝜇
ln

(︂
𝑃

𝑃0

)︂
. (4)

The Kelvin equation was applied in work [4] to deter-
mine the shape of a meniscus formed under the AFM
probe.

3. Kelvin Equation Making
Allowance for the Electrocapillarity Effect

The Kelvin equation, in which the electrocapillarity
effect in a uniform electric field was taken into ac-
count, but the contribution made by the potential
energy of the gravitation force was neglected, was
derived in work [5]. The density of the electrostatic
energy (the energy per unit volume) looks like

𝑢 =
𝜀𝜀0
2

𝐸2, (5)

where 𝜀0 = 8.85× 10−12 F/m is the electric constant
(the vacuum permittivity), 𝜀 the relative dielectric
permittivity of the medium, and 𝐸 the electric field
strength.

Let us consider a condenser system that is in con-
tact with vapor at the pressure 𝑃 . The pressure of
saturated vapor in the absence of electric field equals
𝑃0. At first, let 𝑃 < 𝑃0, i.e. the vapor is not con-
densed. Now, let an electric field be applied in a cer-
tain volume of vapor (Fig. 3). The condensation must
evidently begin in this volume, because excess (5) of
the electric energy (the principle of conservatism of
the system) has to be compensated by reducing the
number of free molecules.

The Gibbs thermodynamic potential 𝛿𝐺𝜇 changes
when the substance is “pulled” into the region of a
strong electric field (condensation in the field). The
corresponding variation per mole can be written as
follows:

Δ𝐺𝜇𝐸 = − (𝜀− 1)𝜀0
2

𝐸2𝑉𝜇. (6)
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If the system is in the equilibrium state, the Gibbs
energy for liquid equals the Gibbs energy for vapor. In
the case of vapor, this energy depends on the pressure,
and the balance equation in the absence of an electric
field looks like [5]

𝐺𝜇 = 𝐺0 +𝑅𝑇 ln𝑃𝐸0, (7)

where the term 𝐺0 does not depend on the pres-
sure. In the region of electric field action, Eq. (7)
reads [5]

𝐺𝑚𝐸 = 𝐺𝑚0
+𝑅𝑇 ln𝑃𝐸0. (8)

At equilibrium, the variation of the Gibbs energy for
vapor is equal to that for liquid; i.e. 𝐺𝜇𝐸 − 𝐺0 =
= Δ𝐺𝜇𝐸 and

ln

(︂
𝑃𝐸0

𝑃0

)︂
= −𝑉𝜇(𝜀− 1)𝜀0𝐸

2

2𝑅𝑇
. (9)

Since 𝜀 > 1 for any liquid, the right-hand side of
Eq. (9) is always negative, and the pressure of satu-
rated vapor diminishes in the electric field.

Expression (9) is valid only for plane liquid sur-
faces. To take the effect of surface bending into ac-
count, we should add the term 𝛾𝑉𝜇𝐶 to its right-
hand side. Here, 𝐶 is the surface bending described
by two principal radii of curvature, 𝑅1 and 𝑅2: 𝐶 =
= 1/𝑅1 + 1/𝑅2. The bending of a concave surface is
considered to be positive, and that of a convex sur-
face to be negative. The surface bending results in
the pressure change [5],

ln

(︂
𝑃𝐸0

𝑃0

)︂
= − 𝑉𝜇

𝑅𝑇

[︂
(𝜀− 1)𝜀0𝐸

2

2
− 𝛾

(︂
1

𝑅1
+

1

𝑅2

)︂]︂
.

(10)

Equation (10) is the modified Kelvin equation, in
which the influence of a uniform electric field on
the shape of a spherical meniscus is taken into ac-
count. However, it does not make allowance for a local
variation of the meniscus shape and the gravitation
force.

4. Non-Uniformity of Electric
Field Created by the AFM Probe.
Model of Effective Point Charge

Let us modify the approach applied in Section 3 and
take into consideration that the electric field of the

Fig. 4. Point charge 𝑞 near the interface between two insula-
tors and its image 𝑞′

AFM probe is strongly non-uniform. In the frame-
work of the effective point charge model, when the
electric field of the probe is approximated by the field
of an effective point charge with an accuracy sufficient
for the semiquantitative analysis [11], the problem is
reduced to the known problem dealing with the field
of an electric point charge near the interface between
two dielectric media. In this case, the tensor of the
specimen dielectric permittivity can be anisotropic,
and this variant was analyzed in work [12]. For the
sake of simplicity and to make the result more il-
lustrative, the specimen in the presented work was
considered in the isotropic-insulator approximation.

The magnitude 𝑞 of the effective charge, the field
of which approximates the field of the probe, is pro-
portional to the electric voltage 𝑈 applied to the
probe. The corresponding coefficient of proportional-
ity (the mutual capacitance) depends on the spatial
region, in which the probe field is intended to be the
best approximated.

The solutions of the problem concerning the electric
potential of a point charge 𝑞 near the interface of two
insulators look like [13]

𝜙1(𝑧 > 0) =
𝑞

4𝜋𝜀0𝜀1𝑟1
+

𝜀1 − 𝜀2
𝜀1 + 𝜀2

𝑞

4𝜋𝜀0𝜀1𝑟2
, (11a)

𝜙2(𝑧 < 0) =
2

(𝜀1 + 𝜀2)

𝑞

4𝜋𝜀0𝑟1
. (11b)

The dielectric permittivity of the medium equals 𝜀1
at 𝑧 > 0 and 𝜀2 at 𝑧 < 0. The choice of vectors r1 =
= (𝑥, 𝑦, 𝑧+𝑎) and r21 = (𝑥, 𝑦, 𝑧−𝑎) is shown in Fig. 4.

The electric field E = −∇𝜙1 for the potential dis-
tribution (11a) is non-uniform. In particular,

𝐸𝑥 = − 𝜕

𝜕𝑥
𝜙1 = − 𝑞𝑥

4𝜋𝜀0𝜀1

(︂
−1

𝑟21
+

𝜀2 − 𝜀1
𝜀1 + 𝜀2

1

𝑟22

)︂
, (12a)
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𝐸𝑦 = − 𝜕

𝜕𝑦
𝜙1 = − 𝑞𝑦

4𝜋𝜀0𝜀1

(︂
−1

𝑟21
+

𝜀2 − 𝜀1
𝜀1 + 𝜀2

1

𝑟22

)︂
, (12b)

𝐸𝑧 = − 𝜕

𝜕𝑧
𝜙1 = − 𝑞

4𝜋𝜀0𝜀1

(︂
−𝑧 + 𝑎

𝑟21
+

𝜀2 − 𝜀1
𝜀1 + 𝜀2

𝑧 − 𝑎

𝑟22

)︂
.

(12c)

At the same time, Eq. (10) was derived for a uniform
electric field, so that its further modification is re-
quired. The matter is that the non-uniformity in the
Gibbs energy,

𝛿𝐺𝑚

𝑉𝑚
=

(𝜀− 1)𝜀0
2

𝐸2,

has to be averaged over the meniscus volume, and
only this averaged value should be substituted into
the Gibbs thermodynamic potential (10). The expres-
sion for the averaged value of non-uniform electric
field obtained from Eqs. (12) looks like

𝐸2 = 𝐸2
𝑥 + 𝐸2

𝑦 + 𝐸2
𝑧 =

𝑞2

16𝜋2𝜀20𝜀
2
1

×

×

[︃
(𝑥2 + 𝑦2)

(︂
𝜀2 − 𝜀1
𝜀1 + 𝜀2

1

𝑟22
− 1

𝑟21

)︂2
+

+

(︂
𝜀2 − 𝜀1
𝜀1 + 𝜀2

𝑧 − 𝑎

𝑟22
− 𝑧 + 𝑎

𝑟21

)︂2]︃
. (13)

The value of 𝐸2 depends on the shape of the menis-
cus and its volume 𝑉 . In turn, the latter depend on
the local meniscus radii of curvature. Hence, in or-
der to determine the local bending and the position
of the meniscus, it is necessary to solve a nonlinear
differential equation of the second order. The results
of its numerical solution are presented in the next
Section.

5. Electrocapillarity Effect
on the Meniscus Shape in the AFM:
Direct Variational Method

Provided that the probe tip can be approximated by a
spherical surface and the specimen surface by a plane,
the meniscus surface can be regarded as axially sym-
metric with the local radius 𝑅𝑚 depending on the al-
titude coordinate 𝑧 (Fig. 5). Hence, the dependence
𝑅𝑚(𝑧) has to be sought.

While analyzing the results obtained in the pre-
vious sections, a conclusion can be drawn that the

Fig. 5. Gap between the probe and the specimen after the wa-
ter meniscus formation. Notations: 𝑧𝑚 is the meniscus height,
𝑅𝑚 is the contact radius, 𝑅0 is the probe tip radius of curva-
ture, 𝑏 is the distance between the probe tip and the specimen
surface. The electric field of the probe is simulated by the ef-
fective charge 𝑄 located at the distance 𝑎 from the specimen
surface

free energy of an axially symmetric meniscus with
unknown shape 𝑅𝑚(𝑧) is a sum of several terms,

Δ𝐺[𝑅𝑚(𝑧)] = Δ𝐺𝐻 +Δ𝐺𝑔 +Δ𝐺𝑆 +Δ𝐺el. (14)

The expression for the energy associated with the ex-
cess vapor pressure (humidity) looks like [6]

Δ𝐺𝐻 =
𝑅𝑇

𝑉𝜇
ln

(︂
1

𝐻

)︂
𝑉𝑚 ≡

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜋
𝑅𝑇

𝑉𝜇
ln

(︂
1

𝐻

)︂ 𝑧𝑚∫︁
0

𝑑𝑧𝑅2
𝑚(𝑧), 𝑧𝑚 < 𝑏,

𝜋
𝑅𝑇

𝑉𝜇
ln

(︂
1

𝐻

)︂(︂ 𝑧𝑚∫︁
0

𝑑𝑧𝑅2
𝑚(𝑧)−

−
𝑧𝑚∫︁
𝑏

𝑑𝑧𝑅2
𝑡𝑖𝑝(𝑧)

)︂
, 𝑧𝑚 > 𝑏.

(15)

Here, 𝐻 = 𝑃/𝑃0 is the relative humidity in the envi-
ronment (0 < 𝐻 < 1). The formula for the meniscus
volume 𝑉𝑚 depends on whether the meniscus height
𝑧𝑚 is lower or higher than the distance 𝑏 between the
probe and the surface. In the case 𝑧𝑚 > 𝑏, we have
to take into account the probe volume surrounded by
the meniscus, 𝑉𝑝 = 𝜋

∫︀ 𝑧𝑚
𝑏

𝑑𝑧𝑅2
𝑝(𝑧), where the func-

tion 𝑅𝑝(𝑧) describes the probe shape.

800 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 8



Influence of Electrocapillarity on the Water Meniscus Shape

The potential energy Δ𝐺𝑔 in the gravitation field
equals

Δ𝐺𝑔 =

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜋𝜌𝑤𝑔

𝑧𝑚∫︁
0

𝑅2
𝑚(𝑧)𝑧𝑑𝑧, 𝑧𝑚 < 𝑏,

𝜋𝜌𝑤𝑔

(︂ 𝑧𝑚∫︁
0

𝑅2
𝑚(𝑧)𝑧𝑑𝑧 −

𝑧𝑚∫︁
𝑏

𝑅2
𝑝(𝑧)𝑧𝑑𝑧

)︂
, 𝑧𝑚 > 𝑏,

(16)

where 𝜌𝑤 is the water density, and 𝑔 = 9.8 m/s2 is
the free fall acceleration.

The surface energy Δ𝐺𝑆 [6] is proportional to the
surface area and the surface tension coefficient. It
consists of three terms,

Δ𝐺𝑆 = 𝜋𝛾LV𝑆𝑚 + 𝛾LP𝑆𝑝 + 𝛾LS𝑆𝑐 ≡

≡ 2𝜋𝛾LV

𝑧𝑚∫︁
0

𝑑𝑧𝑅𝑚(𝑧)

√︃
1 +

(︂
𝑑𝑅(𝑧)

𝑑𝑧

)︂2

+𝛾LP𝑆𝑝+𝛾LS𝑆𝑐.

(17)

Here, 𝛾LV, 𝛾LP, and 𝛾LS are the surface tension
coefficients for the liquid–vapor (LV), liquid–probe
(PL), and liquid–specimen (LS) interfaces. The area
of meniscus contact with the specimen equals 𝑆𝑐 =
= 𝜋𝑅2

𝑐 . The contact area between the meniscus and
the spherical probe segment is 𝑆𝑝 = 2𝜋𝑅0(𝑧𝑚 − 𝑏) in
the case 𝑧𝑚 > 𝑏 and 𝑆𝑝 = 0 in the case 𝑧𝑚 < 𝑏. The
areas 𝑆𝑐 and 𝑆𝑝 are unknown and have to be deter-
mined self-consistently. The meniscus height 𝑧𝑚 is a
single-valued function of the area 𝑆𝑝, the probe ra-
dius of curvature 𝑅0, and the distance 𝑏 between the
probe tip and the specimen surface.

The electrostatic energy Δ𝐺el looks like

Δ𝐺el =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜋𝜀0(𝜀− 1)

𝑧𝑚∫︁
0

𝑑𝑧

𝑅𝑚(𝑧)∫︁
0

𝜌𝑑𝜌𝐸2(𝜌, 𝑧), 𝑧𝑚 < 𝑏,

−𝜋𝜀0(𝜀− 1)

(︃ 𝑏∫︁
0

𝑑𝑧

𝑅𝑚(𝑧)∫︁
0

𝜌𝑑𝜌𝐸2(𝜌, 𝑧)+

+

𝑧𝑚∫︁
𝑏

𝑑𝑧

𝑅𝑚(𝑧)∫︁
𝑅𝑝(𝑧)

𝜌𝑑𝜌𝐸2(𝜌, 𝑧)

)︃
, 𝑧𝑚 > 𝑏.

(18)

Here, 𝜀 = 81 is the relative dielectric permittivity of
water, 𝜌 =

√︀
𝑥2 + 𝑦2 is the polar radius, and 𝐸(𝜌, 𝑧)

is the probe field strength (𝐸2 = 𝐸𝑖𝐸𝑖).
In the effective point charge models [11,12,14], the

electric potential of the probe looks like [12]

𝜙 =
𝑄

4𝜋𝜀0𝜀

(︂
𝜅− 𝜀

𝜅+ 𝜀

1

𝑟2
− 1

𝑟1

)︂
.

The squared electric field strength equals

𝐸2(𝜌, 𝑧) =

(︂
𝑄

4𝜋𝜀0𝜀

)︂2[︃
𝜌2
(︂
𝜅− 𝜀

𝜅+ 𝜀

1

𝑟32
− 1

𝑟31

)︂2
+

+

(︂
𝜅− 𝜀

𝜅+ 𝜀

𝑧 − 𝑎

𝑟32
− 𝑧 + 𝑎

𝑟31

)︂2]︃
. (19)

Here, the effective charge 𝑄 is proportional to the
voltage 𝑈 applied to the probe,

𝑄(𝑈, 𝑧𝑚) ≈ 𝐶𝑡𝑈

[︂
𝜀− (𝜀− 1) exp

(︂
− 𝑧𝑚
ℎ𝑚

)︂]︂
,

𝐶𝑡 is the probe capacitance, and ℎ𝑚 the characteristic
meniscus height [15]. The effective dielectric constant
of the specimen that is isotropic in the transverse
cross-section equals 𝜅 =

√
𝜀11𝜀33. The lengths of ra-

dius vectors for the real (r1) and image (r2) charges
are

𝑟1 =

√︁
𝜌2 + (𝑧 + 𝑎)

2
, 𝑟2 =

√︁
𝜌2 + (𝑧 − 𝑎)

2
, (20)

where 𝑎 is the coordinate of the effective charge 𝑄
simulating the electric field created by the probe
tip. According to the results of work [15],

𝑎(𝑧𝑚) = 𝑎∞ − (𝑎∞ − 𝑎0) exp

(︂
− 𝑧𝑚
ℎ𝑚

)︂
,

where 𝑎0 is the position of 𝑄 in the case of dry air,
i.e. at 𝐻 = 0, and 𝑎∞ the position of 𝑄 in the case of
saturated water vapor, i.e. at 𝐻 = 1 and 𝑧𝑚 → ∞.

The Euler–Lagrange equation [16] for the unknown
shape function 𝑅𝑚(𝑧) looks like

𝜕𝑔

𝜕𝑅
− 𝑑

𝑑𝑧

𝜕𝑔

𝜕 (𝑑𝑅/𝑑𝑧)
= 0,

where 𝑔 is the free energy density (see Eq. (14)). In
our case, it reads

2𝑅𝑚 (𝑧)

[︂
𝑅𝑇

𝑉𝜇
ln

(︂
1

𝐻

)︂
+ 𝜌𝑤𝑔𝑧

]︂
−
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Fig. 6. Dependences of the meniscus height on the relative
environmental humidity 𝐻 for various electric voltages 𝑈 ap-
plied to the AFM probe a. Meniscus shapes for various applied
voltages and humidities b. Parameters used in numerical sim-
ulation calculations are quoted in Table

− 𝜀0 (𝜀− 1)𝑅𝑚(𝑧)𝐸2 (𝑅𝑚(𝑧), 𝑧)+

+2𝛾LV

⎡⎣√︃1 +

(︂
𝑑𝑅𝑚

𝑑𝑧

)︂2
− 𝑑

𝑑𝑧

𝑅𝑚(𝑑𝑅𝑚/𝑑𝑧)√︀
1 + (𝑑𝑅𝑚/𝑑𝑧)2

⎤⎦ = 0.

(21)

Equation (21) is a nonlinear differential equation of
the second order for the function 𝑅𝑚(𝑧). The non-
linearity is provided by the second term, which is
responsible for the electrocapillarity action, and the
third one describing the contribution made by the
meniscus surface energy. The first term is associated
with the excess vapor pressure and the gravitation
force; it is linear in 𝑅𝑚(𝑧). Note that the contribu-
tions made by electrocapillarity and gravitation have
opposite signs. Simple estimations testify that, in the
overwhelming majority of cases, the contribution of
the gravitation force can be neglected in comparison
with the energy of excess vapor pressure, because the
inequality

𝑅𝑚(𝑧)
𝑅𝑇

𝑉𝜇
ln

(︂
1

𝐻

)︂
≫ 𝜌𝑤𝑔𝑧𝑚

Parameter
𝛾LV, 𝜀 𝑅0, 𝑏, 𝑎, 𝜌𝑤,

𝜅mN/m 𝜀 nm nm nm kg/m3

Value * 72 81 50 10 20 103 10−∞

* All data correspond to a room temperature of 20 ∘C. There
is a relation 𝛾PV = 𝛾LV + 𝛾LP cos(𝜃LP) between the wetting
angles and then surface tension coefficients [7]. At the comple-
te wetting, 𝜃LS ≈ 𝜃LP ≈ 0.

is satisfied at 𝑧𝑚 < 10 𝜇m and the humidity 𝐻 < 0.9.
If the electric field is applied, its energy dominates at
high electric voltages. Note that, in the space regions
where the derivative 𝑑𝑅/𝑑𝑧 can be neglected, Eq. (21)
acquires a form similar to that of the modified Kelvin
equation (10), namely,

2𝜌𝑤

(︂
𝑅𝑇

𝑉𝜇
ln

(︂
1

𝐻

)︂
+ 𝑔𝑧

)︂
− 𝜀0(𝜀− 1)𝐸2(𝑅𝑚(𝑧), 𝑧) =

= − 2𝛾LV
𝑅𝑚(𝑧)

. (22)

In the general case, the derivative 𝑑𝑅/𝑑𝑧 can-
not be neglected, especially near the points, where
the meniscus contacts the probe and the specimen
surface, so that the differential equation (21) has
to be solved. Two boundary conditions should be
given. They fix the wetting angles at the circular
boundaries of the contact between the meniscus and
the surface (𝜃LS at 𝑧 = 0 and 𝜌 = 𝑅𝑐), and the menis-
cus and the probe (𝜃LP at 𝑧 = 𝑧𝑚 and 𝜌 = 𝑅𝑝); those
angles are tabulated data [17]. Hence, the boundary
conditions look like

𝑑𝑅𝑚/𝑑𝑧√︁
1 + (𝑑𝑅𝑚/𝑑𝑧)

2

⃒⃒⃒⃒
⃒⃒
𝑧=0

= cos 𝜃LS,

√︀
𝑅2

0 − (𝑧𝑚 − 𝑏)2 − (𝑧𝑚 − 𝑏) (𝑑𝑅𝑚/𝑑𝑧)

𝑅0

√︁
1 + (𝑑𝑅𝑚/𝑑𝑧)

2

⃒⃒⃒⃒
⃒⃒
𝑧=𝑧𝑚

=

= cos 𝜃LP.

(23)

As for Eq. (23), we used the geometric reasoning, ac-
cording to which the vector n normal to the sphere
has the components

n =
1√︁

1 + (1− (𝑧𝑚 − 𝑏)/𝑅0)
2
(𝑧𝑚 − 𝑏, 𝑅0).

The solution of the boundary problem (21)–(23)
depends on the meniscus height 𝑧𝑚. The latter can
be determined afterward by minimizing functional
(14), in which one must take into account that
𝑆𝑝 = 2𝜋𝑅0(𝑧𝑚 − 𝑏). Actually, 𝑧𝑚 is the Lagrange
multiplier.

The physical analysis of numerical solutions of the
boundary problem (21)–(23) brought us to the fol-
lowing results. The shape of a water meniscus (at
𝑧𝑚 > 𝑏) or hump (at 𝑧𝑚 < 𝑏) is governed by the
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air humidity 𝐻, the distance 𝑏 between the probe
tip and the specimen surface, the electric voltage 𝑈
applied to the probe, and other geometric and ma-
terial parameters, which are indicated in Table. For
the hydrophilic specimen and probe surfaces, i.e. in
the case 𝜃LS < 90∘ and 𝜃LP < 90∘, and for a non-zero
voltage 𝑈 , a small water hump always emerges on
the surface at first. However, if the distance between
the probe and the surface does not exceed a value of
an order of 100 nm (probably, a certain critical value
may exist in this case; however, almost in all experi-
ments, this distance did not exceed tens of nanome-
ters, so that its exact value is not essential) and the
humidity exceeds a critical value, which is maximum
at 𝑈 = 0 and rapidly decreases as 𝑈 grows, there
emerges a water meniscus instead of a hump. The
meniscus parameters do not depend on the sign of
𝑈 , because the squared electric field strength en-
ters Eq. (21). For the parameters quoted in Table, the
meniscus height rapidly grows in the humidity inter-
val 40% < 𝐻 < 70% and reaches values from sev-
eral hundreds of nanometers at 𝑈 = 0 to 10 𝜇m at
𝑈 = 5 V (Fig. 6, a). The dependence of the meniscus
height 𝑧𝑚 on the humidity 𝐻 is very steep (quasiex-
ponential) at a fixed voltage 𝑈 . The meniscus shape
deviates more and more from the spherical one, when
the applied voltage and the humidity grow, and it is
the increase of the electric voltage that gives rise to
the shape modification (Fig. 6, b).

6. Comparison with Experimental Results

The experimental dependences [3] of the meniscus
height on the relative air humidity 𝐻 are shown in
Fig. 7, a. In the cited experiment, no electric volt-
age was applied to the probe (𝑈 = 0), but the air
humidity and the specimen material were varied. In
Fig. 7, a, the circles correspond to the meniscus height
between a SiN probe tip and a Si specimen, and the
squares to the meniscus height between a SiN probe
tip and an Au specimen. The measurement error con-
siderably grows for higher humidity values. The dot-
ted curves were calculated theoretically from Eq. (21)
for various dielectric permittivities 𝜀 of the specimen:
𝜀 = 11.68 for Si and 𝜀 → ∞ for Au. Wetting for those
substances can be regarded as almost complete. The
calculated dependences qualitatively and quantita-
tively describe the experimental dependences of the
meniscus height on the humidity obtained for both
types of specimens.

Fig. 7. Dependences of the meniscus height under the AFM
probe on the relative humidity 𝐻 meniscus. Symbols corre-
spond to experimental data for the meniscus height between
a SiN probe tip and a Si (circles) or Au (squares) specimen
at 𝑈 = 0 [3]. The dotted curves were calculated us theoreti-
cally from Eq. (21) for various dielectric permittivities of the
specimens: 𝜀 = 11.68 (Si) and 𝜀 → ∞ (Au). Meniscus images
obtained at a humidity of 60 (b) and 99% (c). The dashed
curves were calculated theoretically from Eq. (21)

The meniscus images obtained experimentally [3]
at a humidity values of 60 and 99% are shown in
Figs. 7, b and c, respectively. The dashed curves were
calculated theoretically from Eq. (21) for Si and Au
specimens. One can see that the meniscus shapes cal-
culated theoretically agree well with the experimental
ones.

7. Conclusions

To summarize, the electrocapillarity phenomena in
AFM experiments, which attract attention nowadays,
have been studied. In particular, the conditions re-
quired for a water meniscus to emerge in the gap be-
tween the hydrophilic surfaces of a nano-sized AFM
probe tip and an examined specimen are consid-
ered. For the first time, the influence of such a spe-
cific factor as a strong non-uniformity of the electric
field created by the AFM probe on the emergence
conditions, the dimensions, and the shape of a wa-
ter meniscus was analyzed. Moreover, for the first
time, the Euler–Lagrange partial differential equation
and the corresponding boundary conditions are de-
rived, which involve the non-uniform electric field of
the AFM probe, gravitation forces, the meniscus sur-
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face tension, and the environmental humidity and de-
scribe the process of formation, the dimensions, and
the water meniscus shape self-consistently. A direct
variational method of solution of the Euler–Lagrange
equation is proposed. The dependence of the local ra-
dius of the axially symmetric meniscus on its altitude
coordinate is selected as the sought function. In this
case, the maximum meniscus height is a variational
parameter, which is determined by minimizing the en-
ergy functional of the meniscus in external fields. The
obtained numerical results agree well with available
experimental data.
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Є.А.Єлiсєєв

ВПЛИВ ЕЛЕКТРОКАПIЛЯРНОСТI
НА ФОРМУ ВОДЯНОГО МЕНIСКА
В АТОМНО-СИЛОВIЙ МIКРОСКОПIЇ

Р е з ю м е

В роботi розглянутi актуальнi питання аналiтичної те-
орiї явищ електрокапiлярностi, що виникають в АСМ-
експериментi, а саме утворення водяного менiска пiд зон-
дом АСМ та дослiджено вплив прикладеної електричної
напруги. Враховано явища електрокапiлярностi в неоднорi-
дному електричному полi зонда АСМ, впливу сили тяжiння
на висоту менiска та його поверхневу енергiю в залежностi
вiд реальної форми, що має знаходитися самоузгодженим
чином. Вперше проаналiзовано вплив такого специфiчного
фактора, як сильна неоднорiднiсть електричного поля зон-
да, на умови виникнення, розмiри та форму водяного менi-
ска. З урахуванням неоднорiдного електричного поля зонда
АСМ, сили тяжiння, сили поверхневого натягу менiска та
вологостi оточуючого середовища виведено диференцiйне
рiвняння Ейлера–Лагранжа в частинних похiдних з грани-
чними умовами, яке описує термодинамiку утворення во-
дяного менiска самоузгодженим чином. Одержанi чисельнi
результати описують вiдомi експериментальнi данi.
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