
Large Scale Monte Carlo Simulations of Fluids Under Gravity

doi: 10.15407/ujpe60.08.0737

A. BRANDT,1 V. ILYIN,1 A. SKARBOVIYCHUK 2

1 Weizmann Institute of Science
(234, Herzl Str., Rehovot 76100, Israel; e-mail: achi.brandt@weizmann.ac.il,
valery.ilyin@weizmann.ac.il)

2 National University of Food Technology
(68, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: alex.skarb@gmail.com)

LARGE SCALE MONTE CARLO
SIMULATIONS OF FLUIDS UNDER GRAVITY

PACS 02.70.Uu, 05.10.Lu,
05.20.Jj

A multilevel Monte Carlo method for simulations of fluids under gravity is developed. The
approach is based on the Conditional Probability of a state that can be treated as the stochastic
equation for the simulated system. The method is illustrated for test cases of a perfect gas and
hard-core fluids in one- and two-dimensions, by using model Conditional Probability functions.
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Introduction

The Monte Carlo technique is widely used to simu-
late many-body systems. In the framework of the con-
ventional approach, the current locations of particles
are generated with the probability proportional to the
Gibbs distribution function [1]. The process is local;
one particle is shifted at a time, and this leads to very
slow changes of large scale features. Thus, the follow-
ing inefficiency is inherent to the conventional Monte
Carlo method: the larger the scale (that is necessary
to approach the thermodynamic limit), the slower the
change and the longer (per particle) is the process re-
quired to produce new independent features.

In practice, the application of the Monte Carlo
technique is restricted to a small, on the macroscopic
scale, volume of the system under consideration. For
the simulation of a bulk system, the periodic bound-
ary conditions are supposed [1]. It follows from the
periodicity conditions that the real system is replaced
by a superlattice with the same configurations in each
cell. As a result, the fluctuations of the particle num-
ber on scales comparable with or larger than the sim-
ulation domain are cut off.

The conventional Monte Carlo process leads to rea-
sonable results for many-body systems at high tem-
peratures (when the short-range repulsive contribu-
tion to the inter-particle interaction dominates and
the correlation length is small). In the neighborhood
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of a phase change, especially in the critical region, the
growth of the correlation size causes a loss of accu-
racy due to the slowing down of the simulation pro-
cess [2, 3]. An approach, which allows to overcome
this drawback of conventional Monte Carlo methods,
consists of a multilevel view of the system [2, 4]. The
efficiency of multilevel methods in solving the prob-
lems of statistical physics has been shown on exam-
ples with sufficiently simple systems [2, 5].

The realistic treatment of critical phenomena is
complicated by gravity, which induces a density gra-
dient [6–8]. The method of neutron scattering enables
the direct determination of the concentration distri-
bution in the gravitational field near a critical point
[8–11]. The density profile changes on the macro-
scopic (or mesoscopic) scale, and the simultaneous
consideration of microscopic features in simulations is
difficult because of the large difference in scales. This
problem can be avoided in the case of a perfect gas
[12, 13]. For more realistic systems, analytical solu-
tions are known only for hard rods under gravity [14–
16]. The range of density changes is comparable with
the particle size in the case of granular materials [17],
and such small systems were successfully studied by
simulations [14, 18]. Nevertheless, the small rate of
particle exchange between the dense and more dilute
regions results in a very slow equilibration [6], i.e.,
again in the slowing down. Therefore, it is suitable to
apply the multilevel Monte Carlo approach to study-
ing the large scale phenomena in many-body systems
under gravity.
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The aim of the present paper is the development of
a general multilevel method for simulations of fluids
under gravity. A preliminary version may be found
in the Gauss Minerva technical report gmc-15.pdf

1. Multilevel Monte Carlo Method

The Monte Carlo method in the statistical theory is
used to evaluate numerically the average 𝐴 of any
functional 𝐴, defined by:

𝐴 =

∫︁
Ω

𝐴(X)𝑤(X)𝑑X ≈ 1

𝑀

𝑀∑︁
𝑖=1

𝐴(Xi), (1)

where 𝑤(X) is the probability density of the state X
(the state, or the configuration, is defined by the set
of 𝑁 variables X = {𝑥1, 𝑥2, ..., 𝑥𝑁} ) in the configu-
ration space Ω, and the nodes Xi are generated by a
random walk in Ω that satisfies detailed balance [1].

The simplest definition of the probability to pass
from node X to X′ in detailed balance is given by:

𝜔(X → X′) = min

[︂
1,
𝑤(X′)

𝑤(X)

]︂
. (2)

The probability density in statistical physics given
by Gibbs in the canonical ensemble is [19]:

𝑤(X) = const · exp
(︂
−𝑈(X)

𝑘B𝑇

)︂
, (3)

where 𝑘B is the Boltzmann constant, 𝑇 is the tem-
perature, and 𝑈 is the potential energy of the sys-
tem. The meaning of variables 𝑥𝑖 is defined by the
system under consideration (e.g., for simple fluids,
these variables are particle locations, while they are
spin signs at gridpoints in the Ising model).

The transition between states in the conventional
Monte Carlo process is made, in accordance with
Eq. (2), by the random change of one variable 𝑥𝑖
at a time. Therefore, the conventional Monte Carlo
simulation is a local process, with the result that the
main trouble of this process is its slowness. A slowing-
down is inherent not only in the conventional Monte
Carlo algorithm, it is a common problem for all lo-
cal processes (e.g., Gauss–Seidel relaxation for dis-
cretized partial differential equations). The solution
to this problem lies in introducing system changes of
a more collective nature. In the case of partial dif-
ferential equations, the fast convergence of solutions

had been attained by multigrid algorithms [20]. These
algorithms are looking for the solution representa-
tion on a sequence of lattices with increasingly larger
meshsizes (coarser scales), combining the local pro-
cessing on each scale with various interscale (interlat-
tice) interactions.

A similar technique can be applied to the simula-
tion of liquids. The space is discretizied, and the sets
of coarse-level variables are defined at gridpoints of
a sequence of lattices. The main idea of the multi-
level approach is to equilibrate, on each level, only the
modes with short (comparable with the level’s mesh-
size) wave lengths. Long-wave modes with slow con-
vergence at a given level are equilibrated at coarser
levels, where their wave lengths are comparable with
the meshsize. As a result, the multilevel process leads
to the fast equilibration of all modes.

In order to realize the multilevel Monte Carlo algo-
rithm, it is necessary to introduce the set of coarse-
level variables and the probability density of the state
defined by this set.

There are many possible ways to choose the set of
coarse variables. A general criterion for the quality
of this set is the speed of equilibration of a compati-
ble Monte Carlo (CMC). By this, we mean a Monte
Carlo process on the fine level, which is restricted
to the subset of fine-level configurations compatible
with a fixed coarse-level configuration. For example,
if each coarse variable is defined as a certain local spa-
tial average of several fine-level variables, the CMC
should be confined to steps that keep all these local
spatial averages invariant (by, e.g., changing a pair of
fine-level variables at a time, keeping their sum un-
altered). A fast CMC equilibration implies that, up
to local processing, all equilibrium configurations are
fully determined by their coarse-level representations
(their local spatial averages).

In the framework of the multilevel Monte Carlo al-
gorithm, only a local process is performed at each
level, being defined in terms of the corresponding
variables. For changing the variable with the num-
ber 𝑖, say, one can see from Eq. (2) that it is enough
to use, instead of the Gibbs function defined by (3),
the conditional probability 𝑃 (𝑥𝑖 | Ri), which defines
the probability of the given value for the variable 𝑥𝑖,
when the values of all other variables defined by the
set Ri = {𝑥1, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑁} are fixed.

For example, in the case of simple fluids, on the
finest (particle) level, the definition of conditional
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probability follows from Eq. (2) and Eq. (3):

𝑃 (r𝑖 | Ri) = const · exp
(︂
−𝑢𝑖(Ri)

𝑘B𝑇

)︂
, (4)

where r𝑖 is the location of the 𝑖-th particle and

𝑢𝑖(Ri) =
∑︁

𝑗, (𝑗 ̸=𝑖)

𝜑(|r𝑖 − r𝑗 |). (5)

Here, 𝜑(| r𝑖 − r𝑗 |) corresponds to the energy of a
two-body interaction.

The Conditional Probability is defined exactly only
on the finest level, where the motion of particles
is continuous. In order to calculate the transition
probabilities defined by Eq. (2) on coarse levels, the
conditional probabilities should be derived for each
coarse level. These conditional probabilities can be
expressed in the form of a Conditional Probability
(CP) table, which, in principle, tabulates numerically
the probability distribution of any coarse-level vari-
able, given the values of all others. Of course, not all
other variables should be taken into account in prac-
tice: only a certain small neighborhood counts, due
to the near locality property of the conditional proba-
bility. This property results from the fast CMC equi-
libration: see the discussion of near locality in [21].
The CP tables for any coarse level 𝑘 are calculated by
gathering the appropriate statistics during the Monte
Carlo simulation at the next finer level 𝑘−1. Because
of the near-locality property, no global equilibration
is needed; the local equilibration is enough to provide
the correct CP values.

Due to the property of near locality, on coarse levels
with large meshsize, the states of neighbor gridpoints
can sometimes be considered to be independent of
their environment. In this case, an analytical approx-
imation for a Conditional Probabilities (CP) function
can be developed. Examples of CP functions will be
considered in the next sections.

2. Perfect Gas Under Gravity

In order to introduce coarse-level variables, the sim-
ulation domain is divided into 𝑀 disjoint parts (e.g.,
cubes) 𝑉 1

𝑖 of equal volume with linear size ℎ1, 1 ≤
𝑖 ≤ 𝑀 (each 𝑉 1

𝑖 , being associated with a gridpoint 𝑖
of the first coarse-level lattice). Configurations of the
finest (particle) level are mapped to the first coarse
level by the operation of coarsening; this operation

Fig. 1. Coarsening from the finest level to the first coarse
level, ∘ denotes a gridpoint

creates the coarse-level variable set. For example, at
any instant, the corresponding coarse-level variables
can be defined in terms of the particle number:

𝑛1𝑖 = Number of particles in 𝑉 1
𝑖 (6)

with
∑︀𝑀
𝑖=1 𝑛

1
𝑖 = 𝑁 , where 𝑁 is the total number of

particles in the simulation domain.
The set {𝑛1𝑖 } defines the current configuration on

the first coarse-level: instead of particle locations,
the occupation numbers at gridpoints are used (see
Fig. 1).

The extension of the coarsening operation given by
Eq. (6) to coarser levels leads to the following defini-
tion of the coarse-variable at the level 𝑘:

𝑛𝑘𝑗 =
∑︁

𝑉 𝑘−1
𝑖 ⊂𝑉 𝑘

𝑗

𝑛𝑘−1
𝑖 , 𝑘 > 1 (7)

for each volume element 𝑉 𝑘𝑗 of level 𝑘, assuming
it to be a union of volume elements of the level
𝑘 − 1. The coarsening can be repeated to the coars-
est level, whose choice depends on the scale of the
phenomena one wants to compute.

In the case of perfect gas, all coarse-level variables
defined by Eq. (6) and Eq. (7) are essentially statis-
tically independent. This means that the neighboring
coarse-level variables in Fig. 2 can be treated inde-
pendently of all other variables. Under the assump-
tion that the sum:

𝑁𝑖 = 𝑛𝑖 + 𝑛𝑖+1 (8)
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Fig. 2. Neighboring coarse-level variables

is fixed, the probability that the value of the coarse-
level variable at gridpoint 𝑖 is 𝑛𝑖 follows from the
usual consideration of the distribution of molecules
of a perfect gas between two subdomains [22]:

𝑃 (𝑛𝑖 | 𝑁𝑖) =
𝑁𝑖!

𝑛𝑖!𝑛𝑖+1!
𝑝𝑛𝑖
𝑖 𝑝

𝑛𝑖+1

𝑖+1 , (9)

where 𝑝𝑖 is the probability that any given particle is
in the subdomain 𝑖, i.e. is ascribed to the gridpoint 𝑖 (
obviously, 𝑝𝑖+𝑝𝑖+1 = 1). The probability 𝑝𝑖 is a one-
particle property; in the uniform gas, 𝑝𝑖 = 𝑝𝑖+1 = 0.5.

In a uniform gravitational field of acceleration 𝑔,
each particle, which is placed at distance 𝑥 from a
reference point, has the energy

𝑈(𝑥) = 𝑚𝑔𝑥, (10)

where 𝑚 is the mass of a particle.
For two horizontally neighboring gridpoints (see

Fig. 2) on a coarse level with meshsize ℎ, in accor-
dance with the Gibbs distribution given by Eq. (3),
we have

𝑝𝑖 =
1

1 + 𝑞
, 𝑝𝑖+1 =

𝑞

1 + 𝑞
, (11)

where

𝑞 = 𝑒
− 𝑚𝑔

𝑘B𝑇 ℎ. (12)

The quantity

𝛼 = 𝑘B𝑇/𝑚𝑔 (13)

is called the gravitational length.

The approximation given by Eq. (12) is a conse-
quence of the discretization of the space and coincides
with the gravitational part of the lattice gas free en-
ergy functional [23].

In order to define a state of the two neighboring
gridpoints shown in Fig. 2, it is convenient to intro-
duce, in addition to Eq. (8), the variable

Δ𝑖 = 𝑛𝑖 − 𝑛𝑖+1. (14)

Substituting Eq. (11) into Eq. (9) and taking Eq. (14)
into account, we find the desired form for the CP
function:

𝑃 (Δ𝑖 | 𝑁𝑖) = C · 𝑞−
Δ𝑖
2

(𝑁𝑖+Δ𝑖

2 )!(𝑁𝑖−Δ𝑖

2 )!
, (15)

where the quantity

C = 𝑁𝑖!

(︂
𝑞1/2

1 + 𝑞

)︂𝑁𝑖

(16)

is independent of the difference Δ𝑖 and, therefore,
is unimportant for the calculation of the transition
probability given by Eq. (2).

One can use the Stirling formula in order to trans-
form Eq. (15) to a form suitable for numerical calcu-
lations at large occupation numbers:

𝑃 (Δ𝑖 | 𝑁𝑖) = const · 𝑒−0.5𝑁𝑖𝜓(𝛿𝑖), (17)

where 𝛿𝑖 = Δ𝑖/𝑁𝑖 and

𝜓(𝛿𝑖) = (1 + 𝛿𝑖) ln(1 + 𝛿𝑖)+

+ (1− 𝛿𝑖) ln(1− 𝛿𝑖) + ln(𝑞)𝛿𝑖. (18)

The most probable state is defined by the condition
𝜓′(𝛿𝑖) = 0, which leads to the following deterministic
equation in finite differences:

Δ𝑖 = th

(︂
𝑚𝑔

2𝑘B𝑇
ℎ

)︂
𝑁𝑖. (19)

The CP function in the form given by Eq. (17) can
be treated as the stochastic equation.

In the limit ℎ → 0, the usual differential equation
for the density profile of a perfect gas in the external
gravitational field follows from Eq. (19):

𝑑𝜌(𝑥)

𝑑𝑥
= − 𝑚𝑔

𝑘B𝑇
𝑡𝜌(𝑥), (20)

where 𝜌(𝑥) is the local particle number density.
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Fig. 3. Free perfect gas. The dashed line on the right-hand side corresponds to the bulk
value of particle number fluctuation

In the case of a gas column of height 𝐿𝑥, the solu-
tion of this equation is:

𝜌(𝑥) = 𝜌
𝐿𝑥

𝛼(1− exp(−𝐿𝑥/𝛼))
exp(−𝑥/𝛼), (21)

where 𝜌 is the mean value of the particle number
density.

In a coarse-level Monte Carlo run, each trial move
on the level 𝑘 consists of the particle exchange be-
tween two neighboring gridpoints, i.e. 𝑛𝑘𝑖 → 𝑛𝑘

′

𝑖 =

= 𝑛𝑘𝑖 + Δ𝑛, 𝑛𝑘𝑖+1 → 𝑛𝑘
′

𝑖+1 = 𝑛𝑘𝑖+1 − Δ𝑛, where Δ𝑛
is a random integer in the range | Δ𝑛 |< Δ𝑛max,
the acceptance rate of new configurations depends on
the value of Δ𝑛max. The acceptance probability for
this move is defined by Eq. (2). The CP function de-
fined by Eq. (17) is used on all levels. This means
that, in this case, the finest (particle) level is not
included in the multilevel cycle. If the exchange of
particles is done in the direction perpendicular to the
𝑥-axis, the gravitational term in the CP function is
omitted.

The multilevel cycle begins from the coarsest level,
and the runs are started from an initial uniform dis-

tribution of particles between gridpoints confined by
the 𝑥 = 0 and 𝑥 = 𝐿𝑥 planes (in general, in the pres-
ence of gravity, it is enough to restrict the particle
motion by the 𝑥 = 0 plane). On the coarsest level,
one can use a so large meshsize that the number of
gridpoints will be relatively small; therefore, the equi-
libration is fast. To pass from a coarse level to the
next finer level, one needs first to interpolate, i.e., to
produce the fine level configurations represented by
the current coarse level configuration. The interpola-
tion is performed by CMC sweeps at the fine level
(the meshsize at the next fine level is half the current
one, and the number of gridpoints is larger by the fac-
tor 2𝑑, where 𝑑 is the space dimension. Nevertheless,
a small number of sweeps is enough, due to the fast
CMC equilibration). The finest level is defined by the
desired resolution.

After the equilibration on the fine level, the config-
uration is coarsened and returned to the coarse level,
where simulations are resumed. The ensemble aver-
age properties of a system are estimated during these
simulations at each level. When the coarsest level is
attained, the multilevel cycle repeats, if necessary.
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Fig. 4. Perfect gas under gravity. The dashed line on the left side corresponds to the exact
density profile defined by Eq. (21). On the right side, the dashed line corresponds to the bulk
value of the particle number fluctuation of a free gas

In order to test the multilevel algorithm, it was
first applied to the simulation of a one-dimensional
perfect gas in the absence of gravity. There is no rel-
evant length scale in the free perfect gas. Therefore,
an arbitrary length unit a is used. The simulation was
performed for a system of 106 particles contained in a
domain of size 𝐿𝑥 = 125000 · a, which corresponds to
the particle number density 𝜌 · a = 8. Ten gridpoints
are introduced on the coarsest level numbered as level
#1. The next fine level is numbered as level #2, etc.

The total number of levels in the simulation equals
10. The meshsize on the coarsest level is ℎ1, the mesh-
size on the 𝑖-th level is ℎ𝑖 = ℎ1/2

𝑖. The multilevel run
consists of 500 cycles, which corresponds to 30000
Monte Carlo sweeps on each level. Half of them is
used for the calculation of average values of the parti-
cle number density and the fluctuation of the particle
number:

𝜈𝑘𝑖 =

(︀
⟨𝑛𝑘𝑖

)︀2⟩ − ⟨𝑛𝑘𝑖 ⟩2

⟨𝑛𝑘𝑖 ⟩
(22)

at each gridpoint 𝑖 of level 𝑘.

Results of the simulation are shown in Fig. 3. The
mean value of the particle number density at each
gridpoint slightly deviates from the average value over
the whole simulation domain 𝜌 ·a = 8. This disagree-
ment decreases with increasing the amount of statis-
tics. The same is true for the fluctuation of the par-
ticle number with one exception: the average value
of the fluctuation on coarse levels is smaller than the
bulk value of a perfect gas 𝜈bulk = 1 [22]. This is
caused by the finite-size effect; in the case of a perfect
gas, the correction to the bulk value of the particle
number fluctuation is given by [25]:

𝜈𝑘 = 𝜈bulk

(︂
1− ℎ𝑘

𝐿𝑥

)︂
, (23)

where ℎ𝑘 is the meshsize of level 𝑘. The result of the
calculation of the average fluctuation at each level
is shown in Fig. 5. One can see that the result is in
agreement with Eq. (23).

Results for the example of a perfect gas under grav-
ity in the case ℎ1/𝛼 = 0.125 are shown in Fig. 4. The
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simulation was performed under the same conditions
as for the free perfect gas. The characteristic feature
of the gas influenced by gravity is the nonuniform den-
sity profile. Therefore, the optimal choice of Δ𝑛max

has to be associated with the local particle number
density. In the algorithm, the following simple rela-
tion between this quantity and the sum of the particle
number at the two neighboring gridpoints under the
trial move was used:

Δ𝑛max = 𝑛𝑐
√︀
𝑁𝑖, (24)

where 𝑛𝑐 is a constant.
One can see from Fig. 4 that the density profile

calculated by the Multilevel Monte Carlo method co-
incides with the exact result given by Eq. (21). The
fluctuation of the particle number on finer levels is
the same as in the free system. On the coarser levels,
the fluctuation profile is nonuniform and increases in
the low density tail. Nevertheless, the average fluctu-
ations also conform to Eq. (23) (see Fig. 5).

3. Hard-Core Particle Fluids

In contrast to the case of a perfect gas, one can ex-
pect that the CP function for systems, which consist
of finite-size particles, is reduced for the large values
of particle number density. Therefore, the binomial
distribution given by Eq. (3) has to be corrected. It
was shown that the distribution of molecules between
two subdomains in a lattice gas model is given by the
hypergeometric distribution [26]. A further analysis
has shown that the asymptotic representation of this
distribution can be used successfully for the descrip-
tion of particle number fluctuations in continuous sys-
tems of hard disks and spheres [27]. Therefore, it is
reasonable to use this approximation to develop the
CP function for hard-sphere fluids.

In the framework of the lattice model, the distri-
bution of particles between two subdomains is given
by [26]:

𝑃 (𝑛𝑖 | 𝑁𝑖) =
(︂
𝑁𝑖
𝑛𝑖

)︂(︀
𝑀𝑖−𝑁𝑖

𝐾𝑖−𝑛𝑖

)︀(︀
𝑀𝑖

𝐾𝑖

)︀ , (25)

where 𝑀𝑖 is the total number of lattice sites in the
two subdomains (see Fig. 2), and 𝐾𝑖 is the number
of lattice cites in the subdomain 𝑖 (𝐾𝑖+𝐾𝑖+1 =𝑀𝑖),
𝑁𝑖 = 𝑛𝑖 + 𝑛𝑖+1, being fixed.

Fig. 5. Dependence of the particle number fluctuation in a
subdomain on the meshsize for a free perfect gas (top panel)
and a perfect gas under gravity (bottom panel)

The fluctuation of the particle number in the sub-
domain 𝑖 follows from the dispersion for the distribu-
tion given by Eq. (25):

𝜈𝑖 =
𝑁𝑖
𝑛𝑖

𝐾𝑖

𝑀𝑖

𝐾𝑖+1

𝑀𝑖

1

1− 1/𝑀𝑖

(︂
1− 𝑁𝑖

𝑀𝑖

)︂
. (26)

If one subdomain, say 𝑖, is much smaller than the
other one, i.e., under the condition 𝐾𝑖 ≪ 𝑀𝑖, 𝑀𝑖 →
→ ∞, the fluctuation of the particle number can be
associated with the isothermal compressibility 𝜅 [19]:

𝜈𝑖 = 𝜌𝑘B𝑇𝜅. (27)
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The interpretation of the quantity 𝑀𝑖 for nonlattice
models follows from Eq. (26) and Eq. (27):

𝑀𝑖 =
𝑁𝑖

1− 𝜒
, (28)

where 𝜒 = 𝜌𝑘B𝑇𝜅 is the dimensionless isothermal
compressibility.

Under the assumption that the relation defined by
Eq. (28) is valid in continuous models (the interac-
tion between particles results in the dependence of
the isothermal compressibility on the particle num-
ber density), the CP function follows from Eq. (25)
and Eq. (28), assuming 𝐾𝑖 =𝑀𝑖/2:

𝑃 (Δ𝑖 | 𝑁𝑖) = C · 1

(𝑁𝑖+Δ𝑖

2 )!(𝑁𝑖−Δ𝑖

2 )!
×

× 1

(
𝑁𝑖

𝜒
1−𝜒+Δ𝑖

2 )!(
𝑁𝑖

𝜒
1−𝜒−Δ𝑖

2 )!
. (29)

The isothermal compressibility of a perfect gas is
𝜒 = 1 [22]; in this case, Eq. (29) is reduced to Eq. (15)
in the absence of an external field (𝑞 = 1). Therefore,
the last term in Eq. (29) can be considered as a cor-
rection due to the finite particle size.

After applying the Stirling formula to Eq. (29),
one obtains the CP function in the form of Eq. (17)
with the following corrected definition of the function
𝜓(𝛿𝑖):

𝜓(𝛿𝑖) = (1 + 𝛿𝑖) ln(1 + 𝛿𝑖) + (1− 𝛿𝑖) ln(1− 𝛿𝑖)+

+ (1 +
1− 𝜒

𝜒
𝛿𝑖) ln(1 +

1− 𝜒

𝜒
𝛿𝑖)+

+ (1− 1− 𝜒

𝜒
𝛿𝑖) ln(1−

1− 𝜒

𝜒
𝛿𝑖)− ln(𝑞)𝛿𝑖. (30)

The deterministic equation in finite differences, which
corresponds to Eq. (30), is defined by:

Δ𝑖 =
1

𝑎

1−
√︀

1− 4(1− 𝜒)𝜒𝑎2

2(1− 𝜒)
𝑁𝑖, (31)

where 𝑎 = th( 𝑚𝑔
2𝑘B𝑇

ℎ). If the gravitational length is
much larger than the meshsize, Eq. (31) is reduced to
the equation

Δ𝑖 =
𝑚𝑔

2𝑘B𝑇
ℎ𝑖𝜒𝑁𝑖. (32)

In the continuum limit ℎ𝑖 → 0, one obtains the usual
nonlinear differential equation for the density profile
in a system of hard-core particles:

𝑑𝜌(𝑥)

𝑑𝑥
= − 𝑚𝑔

𝑘B𝑇
𝜒𝜌(𝑥). (33)

This equation coincides with the result of the density
functional approach [14] and the consideration of the
osmotic pressure in the sedimentation equilibrium of
colloids [28, 29].

In order to use the CP function defined by Eq. (17)
and Eq. (30) in the Multilevel Monte Carlo cycle,
the isothermal compressibility should be derived. For
that purpose, the following thermodynamical relation
can be used [19]:

1

𝜒
=
𝜕𝑃/𝑘B𝑇

𝜕𝜌

⃒⃒⃒⃒
𝑇

, (34)

where 𝑃 is the pressure.
In the one-dimensional case, the exact equation of

state is known [30]:

𝑃

𝑘B𝑇
=

𝜌

1− 𝜌𝜎
, (35)

where 𝜎 is the diameter of a particle. The exact
isothermal compressibility for this system follows
from Eq. (34) and Eq. (35):

𝜒 = (1− 𝜌𝜎)2. (36)

The differential equation for the density profile for
a system of hard rods follows from Eq. (33) and
Eq. (36):

𝑑𝜌(𝑥)

𝑑𝑥
= (1− 𝜌(𝑥)𝜎)2𝜌(𝑥). (37)

Equation (37) can be integrated, and the density pro-
file is defined by [14]

𝑥/𝛼 = C− 1

1− 𝜌(𝑥)𝜎
+ ln

1− 𝜌(𝑥)𝜎

𝜌(𝑥)𝜎
, (38)

where the coefficient C is defined by the wall contact
value of local particle number density 𝜌𝑤 :

C =
1

1− 𝜌𝑤𝜎
− ln

1− 𝜌𝑤𝜎

𝜌𝑤𝜎
,

𝜌𝑤𝛼 =
𝑁tot

1 +𝑁tot𝜎/𝛼
,

(39)

where 𝑁tot is the total number of particles in the
system.

The solution given by Eq. (38) is valid in semiinfi-
nite space. Therefore, the comparison with the Monte
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Fig. 6. Results of the multilevel Monte Carlo simulation for a system of hard rods. The
dashed line on the left side corresponds to the analytical solution defined by Eq. (38). On
the right side, the dashed line corresponds to the local estimation of the particle number
fluctuation

Carlo result of a simulation in the confined space must
be done carefully.

Results of the simulation for the mean value of par-
ticle number density 𝜌𝜎 = 0.5 and ℎ1/𝛼 = 2 after five
multilevel cycles (500 Monte Carlo sweeps at each
level) are shown in Fig. 6. The density profile is in
a very good agreement with the exact (for Eq. (37))
solution. The fluctuation of the particle number on
the coarsest level considerably exceeds the expected
value calculated by the particle number density at
the subdomain in accordance with Eq. (36) (the lo-
cal approximation). On finer levels, at least at the
dense part of the density profile, this quantity coin-
cides with the local estimation.

The exact equation of state for the system of hard
disks is not available, but many empirical functions
have been proposed. The simplest one follows from
the scale particle theory [31]:
𝑃spt

𝑘B𝑇
=

𝜌

(1− 𝜂)2
, (40)

where 𝜂 = 𝜋
4 𝜌𝜎

2.

The expression for the isothermal compressibility
is defined, in accordance with Eq. (34) and Eq. (40),
by:

𝜒spt(𝜌) =
(1− 𝜂)3

1 + 𝜂
. (41)

The compressibility defined by Eq. (41) is zero at
𝜂 = 1, which corresponds to the density 𝜌𝜎2 =
= 1.273. However, the hard disk fluid crystallizes into
the hexagonal structure at the density 𝜌𝑐 = 1.155
(𝜂 = 0.907) [18]. Therefore, the isothermal compress-
ibility for the hard disk fluid was defined by

𝜒 =

{︂
𝜒spt(𝜌), 𝜌 ≤ 𝜌𝑐

0, 𝜌 > 𝜌𝑐.
(42)

A six-level Multilevel Monte Carlo simulation was
performed for the system of hard disks with the
mean particle number density 𝜌𝜎2 = 0.5 and ℎ1/𝛼 =
= 7.07. The system is confined in the 𝑥-direction;
gravity acts along this axis. Periodic boundary condi-
tions along the 𝑦-axis are assumed, the square simu-
lation domain of the linear size 𝐿 = 141.42𝜎 contains
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Fig. 7. Results of the multilevel Monte Carlo simulation for the system of hard disks. The
dashed line corresponds to the local estimation of the particle number fluctuation. The den-
sity profile and the particle number fluctuation are averaged over the 𝑦-direction

106 particles. The equilibration of density profiles and
fluctuations is attained after one multilevel cycle (200
Monte Carlo sweeps on each level), and the following
modifications are small.

Results are shown in Fig. 7. A close-packing struc-
ture is formed at the bottom. Similar to the one-
dimensional case, fluctuations at the dense part of the
density profile coincide with the evaluation by the lo-
cal approximation. This simulation result is in agree-
ment with experimental data on the two-dimensional
granular medium [32]. A clear disagreement is ob-
served at the low density tail. The larger the scale,
the larger the fluctuations.

4. Conclusions

The theoretical investigation of a number of prob-
lems in the physics of liquids, colloids, and fluidized
granular materials is connected with the considera-
tion of the external gravitational field. The present
results show that the multilevel Monte Carlo method

can be successfully applied for the investigation of a
many-body system under gravity.

The conditional probability (CP) functions are de-
veloped, and it is shown that the correct determin-
istic differential equations can be derived from them
in the continuum limit. At the same time, the CP
function can be considered as the stochastic equation
of state, which can be realized in multilevel Monte
Carlo simulations. As a result, in addition to the av-
erage values of thermodynamic quantities (which can
be obtained as the solution of the deterministic equa-
tion, if known), it is possible to estimate fluctuations.

It is known that fluctuations reflect the atomic
structure of the matter [25]. In the CP function ap-
proach, the matter is considered via the isothermal
compressibility, which is defined by the microscopic
structure. For simple systems considered here, the
isothermal compressibility can be derived from first
principles. In the more widespread case, this quantity
is unknown and can be obtained by simulation. In
this case, the multilevel approach can again be ap-
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plied, using CP tables [21], [24] instead of the CP
function. The isothermal compressibility obtained in
this way can be used in the CP function in order to
simulate a system on the mesoscopic or macroscopic
scale.
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ВЕЛИКОМАСШТАБНЕ МОДЕЛЮВАННЯ
РIДИН ПIД ДIЄЮ СИЛИ ТЯЖIННЯ

Р е з ю м е

Розроблено багатоторiвневий метод Монте-Карло для мо-
делювання рiдин пiд дiєю сили тяжiння. В основi пiдходу
умовнi ймовiрнiстi станiв, якi можуть розглядатися як сто-
хастичнi рiвняння для модельованої системи. Метод про-
iлюстровано для прикладiв iдеального газу i систем части-
нок з жорстким кором в одно- i двовимiрюваннях, з вико-
ристовуванням модельної функцiї умовної ймовiрностi.
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