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DEVELOPMENT OF THE BETHE METHOD
FOR THE CONSTRUCTION OF TWO-VALUED SPACE
GROUP REPRESENTATIONS AND TWO-VALUED
PROJECTIVE REPRESENTATIONS OF POINT GROUPSPACS 02.20.-a

A procedure of calculation of two-valued space group representations and two-valued projec-
tive representations of point groups is considered. A method of construction of factor systems
𝜔2(𝑟2, 𝑟1), which reflect the transformations of half-integer spin quantum wave functions and
are required in order to find the two-valued irreducible projective representations of the point
groups, is presented. This method is based on the introduction of an operation 𝑞, firstly used
by Bethe, as an additional symmetry element. The pathway of introducing the relations, which
permit to make a one-valued algebra of double groups and, particularly, their multiplication
tables, is shown by the examples of the 222 (𝐷2) and 32 (𝐷3) groups. The construction of a
standard factor-system 𝜔′

(1)(𝑟2, 𝑟1) of the projective class 𝐾1 for the group 222 on the base of
the discussed relations is presented for the first time. The whole role and the possibilities of
Bethe’s method and its modifications for the construction of two-valued representations of the
point and space groups are discussed.
K e yw o r d s: Bethe’s method, two-valued space group representations, two-valued projective
representations of point groups.

Finding the spinor representations of space sym-
metry groups is required for solving a wide range
of crystal spectroscopy problems, in particular, the
spectroscopy of zones-indirect or indirect semicon-
ductors, with absolute extremes of electronic bands,
i.e. absolute maximum of the valence band and abso-
lute minimum of the conduction band located at the
different points of the Brillouin zone. These represen-
tations allow fulfilling the classification of the elec-
tronic states of crystals at any points of the Brillouin
zone, which is a basis, in its turn, for the classification
of their exciton states, which are often investigated by
using spectroscopy methods.

c○ V.O. GUBANOV, L.N. OVANDER, 2015

The irreducible representations of full space groups
D{k} possessing the irreducible star {k} are deter-
mined through the representations of the groups of
the wave vectors Dk, which are also called the small
representations. The general method of construction
of irreducible representations Dk of the groups of the
wave vectors 𝐺k, including spinor, in the form of the
projective representations of point groups of equiv-
alent directions 𝐹k of the groups of the wave vec-
tors, which are isomorphic to the factor-groups of the
group 𝐺k on the infinite invariant subgroup of trans-
lations, is presented in [1].

We recall that the projective representations or ray
representations satisfy the relations

D(𝑟2)D(𝑟1) = 𝜔(𝑟2, 𝑟1)D(𝑟2𝑟1), (1)
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where the set of numbers 𝜔(𝑟2, 𝑟1) named a factor-
system possesses the property

|𝜔(𝑟2, 𝑟1)| = 1. (2)

The irreducible representations of the wave vector
group Dk contain the infinite number of members
Dk(ℎ) for the elements ℎ ∈ 𝐺k. Each element ℎ can
be presented as ℎ = (𝛼+ a|𝑟), where 𝑟 – “rotational”
element, the aggregate of which forms the point group
𝐹k, 𝛼 is the vector of a nontrivial translation corre-
sponding to a rotational element 𝑟, and a is the vector
of a trivial translation on the periods of the Bravais
lattice.

The values of matrices Dk(ℎ) and their characters
𝜒Dk(ℎ) are given by the formulas

Dk(ℎ) = 𝑒−𝑖𝑘(𝛼+𝑎)𝑤(𝑟)D(𝑟) (3)

and

𝜒Dk(ℎ) = 𝑒−𝑖𝑘(𝛼+𝑎)𝑤(𝑟)𝜒D(𝑟), (4)

where for representations describing the state with-
out taking the spin into account (with integer spin),
𝑤(𝑟) = 𝑢(𝑟) ≡ 𝑢1(𝑟) is the function, which brings
the factor-system 𝜔(𝑟2, 𝑟1) ≡ 𝜔1(𝑟2, 𝑟1), which is
determined by the properties of the crystal spatial
group, to the standard form 𝜔′(𝑟2, 𝑟1) ≡ 𝜔′

1(𝑟2, 𝑟1);
for representations, describing the states involving
the spin (with a half-integer spin), 𝑤(𝑟) = 𝑢𝑠(𝑟) =
= 𝑢1(𝑟)𝑢2(𝑟) is the function, which brings the factor-
system 𝜔(𝑟2, 𝑟1) = 𝜔𝑠(𝑟2, 𝑟1) = 𝜔1(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1),
which is determined by the transformations of spinors
in the spatial group, to the standard form 𝜔′(𝑟2, 𝑟1) =
= 𝜔′

𝑠(𝑟2, 𝑟1) = 𝜔′
1(𝑟2, 𝑟1)𝜔

′
2(𝑟2, 𝑟1); 𝑢2(𝑟) is the func-

tion, which brings the factor-system 𝜔2(𝑟2, 𝑟1), which
is determined by the transformations of spinors at
the operations of symmetry of groups of directions
of groups of the wave vector 𝐹k, to the standard
form 𝜔′

2(𝑟2, 𝑟1); D(𝑟) – corresponding to the standard
factor-system the irreducible projective representa-
tions of that class, which the factor-system 𝜔(𝑟2, 𝑟1)
(as a rule, these classes are 𝐾0 and 𝐾1 ) belongs to,
and 𝜒D(𝑟) are characters of the irreducible projective
representations D(𝑟).

The construction of a factor-system 𝜔1(𝑟2, 𝑟1) is
performed by the formula

𝜔1(𝑟2, 𝑟1) = 𝑒𝑖(k−𝑟−1
2 k)𝛼1 (5)

and, for any point of the Brillouin zone, does not
cause any difficulties. It is easy to define the class, to
which this factor-system belongs [1].

The factor-system 𝜔2(𝑟2, 𝑟1) is determined by the
condition
𝜔2(𝑟2, 𝑟1) =

{︁
1 at 0 6 𝜗 < 2𝜋,

−1 at 2𝜋 6 𝜗 < 4𝜋, (6)

where 𝜗 is a rotation angle corresponding to the com-
position of elements 𝑟2𝑟1. The class, to which it be-
longs, can be also easy set [1].

There is a particular interest in the case where
both factor-systems 𝜔1(𝑟2, 𝑟1) and 𝜔2(𝑟2, 𝑟1) belong
to the class 𝐾1, i.e., when 𝐾(1) = 𝐾1 and 𝐾(2) = 𝐾1,
where the numerical indices in brackets indicate the
types of factor-system. In this case, the factor-system
𝜔𝑠(𝑟2, 𝑟1), as a composition of classes determined by
the relations 𝐾2

0 = 𝐾0, 𝐾0𝐾1 = 𝐾1𝐾0 = 𝐾1, and
𝐾2

1 = 𝐾0, belongs to the class 𝐾0, and the repre-
sentations describing the states taking the spin into
account (half-integer spin) are projectively equivalent
(p-equivalent) to a general vectorial, and representa-
tions describing the states without taking the spin
into account (with integer spin) are 𝑝-equivalent to
two-valued ones.

Thus, taking into account that the standard factor-
system of the class 𝐾0 completely consists of coeffi-
cients equal to 1, and matrices of representations cor-
responding to standard factor-systems, for the class
𝐾0, where they coincide with ordinary vectorial, and
for the class 𝐾1, where they can be easily calculated,
are known, the problem of construction of the ir-
reducible representations of complete spatial groups
and, in particular, the spinor ones, is reduced to the
tasks of construction of the factor-system 𝜔2(𝑟2, 𝑟1),
determination of the form of standard factor-systems
of the class 𝐾1, and finding the functions 𝑢2(𝑟) lead-
ing the factor-system 𝜔2(𝑟2, 𝑟1) to the 𝑝-equivalent
standard form.

We now describe the technique developed by us al-
lowing, in the general and particular cases, to solve
the above problems and thereby to build irreducible
two-valued representations of point groups in the
form of projective representations.

Bethe’s method of construction of double point
symmetry groups, which uses the operation 𝑞, is
widely used for considering the symmetry of quan-
tum systems with half-integer spin [2] (see, e.g., [3–
5]). The operation 𝑞 is a rotation by an angle of 2𝜋
around an arbitrary axis, which commutes with all
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other symmetry operations, acts on the wave func-
tion (spinor), determining the state of the quantum
system, and changes its sign. The unit operation 𝑒
is treated as a rotation around an arbitrary axis by
an angle of 4𝜋. Therefore, the equation 𝑞2 = 𝑒 is
fulfilled, which is the defining relation for the opera-
tion 𝑞.

The question of how the operator 𝑞 is associated
with the inversion 𝑖, which also commutes with all the
operations of symmetry point groups, with reflection
in an arbitrary plane 𝜎 and mirror rotation 𝑠𝑛 around
an axis of the 𝑛-th order, consisting of the rotation
𝑐𝑛 and the reflection 𝜎ℎ in a plane perpendicular to
the axis of rotation, remains unclear.

Indeed, the usual definition of inversion operation
is given by the formula 𝑖 ≡ 𝑠2 = 𝜎ℎ𝑐2

1, where 𝑐2
is a rotation around the second-order axis, and 𝜎ℎ –
reflection in a plane perpendicular to this axis. It is
assumed that the relation 𝜎ℎ = 𝑖𝑐2 is met, and the
relations 𝑖2 = 𝑒 and 𝜎2

ℎ = 𝑒, which are defining for the
operations of inversion and reflection, are also met. It
is easy to see that, when considering the symmetry
properties of quantum systems with half-integer spin
within the Bethe method from the equation 𝑖 = 𝜎ℎ𝑐2
by substituting the above expression 𝜎ℎ = 𝑖𝑐2, the
relation 𝑖 = 𝑖𝑐2𝑐2, i.e. 𝑖 = 𝑖𝑞, or 𝑖 = 𝑞𝑖 follows, which
is apparently wrong.

The authors are unaware of any attempts in the
literature to overcome the above-mentioned difficulty,
and this attempt is made in the present publication.

The aim is to reasonably introduce the operation
𝑞 into the group containing operations 𝑖, 𝜎. and
𝑠𝑛

2. This could be achieved, in general, in two ways.
The first way is to preserve the same definition of

inversion for the double groups as for the ordinary
ones

𝑖 = 𝜎ℎ𝑐2.

This way leads to a change in the definition of re-
flection operation in the double groups. Indeed, by

1 Here and further, as usual, the operation standing on the
right is performed first.

2 Double groups are not the direct products of the ordinary
groups, except containing only one element 𝑒 of the trivial
group 1 (𝐶1 or 𝐸), and the double group 1′(𝐶′

1 or𝐸
′) con-

sisting of the elements 𝑒 and 𝑞. This follows from the fact
that, otherwise, no power of the elements of the ordinary
group would not have to be equal to expanding the group
element 𝑞, which, in this case, is not so.

multiplying the equality 𝑖 = 𝜎ℎ𝑐2 by 𝑐2 on the right,
we can find that 𝑖𝑐2 = 𝜎ℎ𝑐2𝑐2, i.e. 𝑖𝑐2 = 𝜎ℎ𝑞 or
𝜎ℎ = 𝑞𝑖𝑐2. Thus, the following equations is noncon-
tradictory for the double groups:

𝑖 = 𝜎ℎ𝑐2 and 𝜎ℎ = 𝑞𝑖𝑐2. (7)

The second way is to preserve the same definition of
reflection for the double groups as for the ordinary
ones:

𝜎ℎ = 𝑖𝑐2.

This way leads to a change in the definition of in-
version operation for the double groups. Indeed, by
multiplying the equality 𝜎ℎ = 𝑖𝑐2 by 𝑐2 on the right,
we can find that 𝜎ℎ𝑐2 = 𝑖𝑐2𝑐2, i.e. 𝜎ℎ𝑐2 = 𝑖𝑞 or
𝑖 = 𝑞𝜎ℎ𝑐2. This means that the following equation
is also noncontradictory for double groups:

𝑖 = 𝑞𝜎ℎ𝑐2 and 𝜎ℎ = 𝑖𝑐2. (8)

For the certainty, we have to choose one of the con-
sidered above cases.

In our opinion, from the two options (without any
loss of generality), logically more preferable is the sec-
ond one, in which the inversion operation more com-
plex in interpretation for the double groups is over-
ridden, and the operation of reflection retains the for-
mer definition. Equations (8) can be considered thus
as postulating the definitions of the inversion and re-
flection operations in the double groups.

It should be noted that, in the above definition
of inversion preserving the conventional definition of
reflection for ordinary groups, inversion rotations,
which, along with reflections in double groups should
be chosen as the symmetry elements of the second
type, cannot be, as in the ordinary groups, replaced
by the mirror rotations, as the inversion rotations
𝑖𝑐𝑛 = 𝑞𝜎ℎ𝑐2𝑐𝑛 = 𝑞𝑐2𝜎ℎ𝑐𝑛 = 𝑞𝑐2𝑠𝑛 (here, 𝑖 ̸= 𝑠2, as
𝑠2 = 𝜎ℎ𝑐2, and 𝑖 = 𝑞𝜎ℎ𝑐2 = 𝑞𝑠2) qualitatively differ
from the mirror rotations 𝑠𝑛 by the multiplication by
the operation 𝑞.

In double groups, the defining relations (not to be
confused with definitions) for the operations of inver-
sion and reflection, which are expressed in conven-
tional groups by the equalities 𝑖2 = 𝑒 and 𝜎2 = 𝑒, are
also changed. Here, regardless of two above-described
ways to define the inversion and the reflection for both
of these, there are two possible options.

It is easy to see that, for two above-mentioned ways
to define the inversion and the reflection in the double
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groups, the equality 𝑖2 = 𝑞𝜎2
ℎ is fulfilled. This means

that the defining relations for the inversion and the
reflection can be written either in the form of

𝑖2 = 𝑒 and 𝜎2
ℎ = 𝑞 (𝜎4

ℎ = 𝑒), (9)

where the defining relation for the inversion used in
the ordinary groups is preserved, either in the form

𝜎2
ℎ = 𝑒 and 𝑖2 = 𝑞 (𝑖4 = 𝑒), (10)

where the defining relation for the reflection operation
is preserved.

In our opinion, easier and more convenient (with-
out loss of generality) are the defining relations ex-
pressed by the equations (9), in which the defining
relations are similar for the operations 𝑖 and 𝑞, which
commute with all other elements of symmetry.

Thus, in general, there are four possibilities for
the noncontradictory introduction of the operator 𝑞:
1) using Eqs. (7) and (9); 2) (7) and (10); 3) (8) and
(9); and 4) (8) and (10). Here, in our opinion, we
should be limited to the preferred choice defined by
Eqs. (8) and (9), i.e., the relations

𝑖 = 𝑞𝜎ℎ𝑐2 (this yields 𝜎ℎ = 𝑖𝑐2),

𝑖2= 𝑒
[︀
this yields 𝜎2

ℎ = 𝑞
(︀
𝜎4
ℎ = 𝑒

)︀]︀
.

(11)

It is convenient to have namely relations (11) as a ba-
sis of the systematics of irreducible double-valued pro-
jective representations of point symmetry groups and
the systematics of factor-systems of the classes 𝐾0

and 𝐾1 and the functions 𝑢(𝑟) bringing these factor-
systems to the 𝑝-equivalent standard form.

Let us consider the way of how the 𝑞-operator
is introduced into the groups containing several
axes. This can be conveniently done by the examples
of the groups 222 (𝐷2) and 32 (𝐷3).

Let us start with the group 𝐷2, where the con-
stituting elements are the elements 𝑎 = 𝑐2(𝑐2𝑧) and
𝑏 = 𝑢2(𝑐2𝑥). The group 𝐷2 contains only 4 ele-
ments: 𝑒, 𝑐2, 𝑢2, and 𝑢′

2. It is natural that the defin-
ing relations 𝑎4 = 𝑒 (𝑎2 = 𝑞) and 𝑏4 = 𝑒 (𝑏2 = 𝑞)
are valid for the constituting elements of the double
group 𝐷′

2. Let us clarify the question of how the op-
erator 𝑞 is included into the commuting defining re-
lation for the constituting elements of the group and
how the element 𝑢′

2(𝑐2𝑦) is related to the elements 𝑐2,
𝑢2, and 𝑞.

Let us find firstly the commuting defining rela-
tion for the constituting elements of the double group
𝐷′

2. For the ordinary group 𝐷2, it has a form 𝑎𝑏 = 𝑏𝑎.
Let us use the general relation for an infinite group

of rotations 𝐾:

𝑓−1𝑐ℓ(𝛼)𝑓 = 𝑐𝑓−1ℓ(𝛼), (12)

where 𝑐ℓ(𝛼) – rotation by angle 𝛼 around the axis
ℓ, and 𝑓 – any rotation. The extension of this rela-
tion onto the elements of the double groups included
into the double rotation group 𝐾 ′ can obviously be
done in two ways. The first one consists in postulat-
ing the feasibility of this relation for the elements of
the double groups with the treatment of the unit op-
eration like turning by 4𝜋 angle, and the second - in
postulating, with the same interpretation of the unit
operation, the feasibility of the relation

𝑓−1𝑐ℓ(𝛼)𝑓 = 𝑐𝑓−1ℓ(𝛼+ 2𝜋). (13)

Let us take as a postulate, as easier, the first case.
This again does not lead to any loss of generality.

Considering 𝑐2 as 𝑐ℓ(𝜋) (ℓ ‖ 𝑂z), assuming 𝑓 =
= 𝑞𝑢2 = 𝑞𝑐ℓ′(𝜋) (ℓ′ ‖ 𝑂𝑥), and taking into account
that 𝑓−1 = 𝑢2 = 𝑐ℓ′(𝜋), relation (12) for the dou-
ble group yields 𝑐ℓ′(𝜋)𝑐ℓ(𝜋)𝑞𝑐ℓ′(𝜋) = 𝑐𝑓−1ℓ(𝜋). Con-
sidering also 𝑓−1ℓ = 𝑐ℓ′(𝜋)ℓ = −ℓ, we can find
𝑞𝑐ℓ′(𝜋)𝑐ℓ(𝜋)𝑐ℓ′(𝜋) = 𝑐−ℓ(𝜋)

3. As 𝑐−ℓ(𝜋) = 𝑞𝑐ℓ(𝜋), we
obtain 𝑞𝑢2𝑐2𝑢2 = 𝑞𝑐2.

Multiplying this relation on the left by 𝑢2, we ob-
tain

𝑐2𝑢2 = 𝑞𝑢2𝑐2 or 𝑎𝑏 = 𝑞𝑏𝑎, (14)

which is a commuting defining relation for constituent
elements of the double group 𝐷′

2. It is essential that
the operation 𝑞 is included into the commuting defin-
ing relation for the double group 𝐷′

2, unlike for the
ordinary group 𝐷2.

The definition of the element 𝑢′
2 in the double group

𝐷′
2 can be also given on the basis of Eq. (12).
Indeed, the relation 𝑐4𝑢2𝑞𝑐

3
4 = 𝑢′

2 given in agree-
ment with relation (12) can be considered as the defi-
nition of the element 𝑢′

2 in the double group 𝐷′
2. Here,

𝑢2 = 𝑐ℓ(𝜋) (ℓ ‖ 𝑂𝑥), 𝑓 = 𝑞𝑐34 = 𝑞𝑐ℓ′(3𝜋/2) (ℓ′ ‖ 𝑂z),

3 Here, we could also select 𝑓 = 𝑢2 = 𝑐ℓ′ (𝜋) (ℓ′ ‖ 𝑂𝑥), and as
it would follow 𝑓−1 = 𝑞𝑢2 = 𝑞𝑐ℓ′ (𝜋). This would lead to the
same result, as, in this case, 𝑓−1ℓ = 𝑞𝑐ℓ′ (𝜋)ℓ = −ℓ.
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𝑓−1 = 𝑐4 = 𝑐ℓ′(𝜋/2), 𝑓−1ℓ = 𝑐ℓ′(𝜋/2)ℓ = ℓ′′ (ℓ′′ ‖
𝑂y), and 𝑢′

2 = 𝑐2y = 𝑐ℓ′′(𝜋).
From the same relation (12), we can obtain a com-

muting relation for the elements 𝑐4 and 𝑢2. Assuming
𝑐4 = 𝑐ℓ(𝜋/2) (ℓ ‖ 𝑂z) and 𝑓 = 𝑞𝑢2 = 𝑞𝑐ℓ′(𝜋)
(ℓ′ ‖ 𝑂𝑥) and taking into account that 𝑓−1 = 𝑢2 =
= 𝑐ℓ′(𝜋) and 𝑓−1ℓ = 𝑐ℓ′(𝜋)ℓ = −ℓ, we can obtain
𝑐ℓ′(𝜋)𝑐ℓ(𝜋/2)𝑞𝑐ℓ′(𝜋) = 𝑐−ℓ(𝜋/2). Since 𝑐−ℓ(𝜋/2) =
= 𝑞𝑐ℓ(3𝜋/2) = 𝑞𝑐3ℓ(𝜋/2), we obtain 𝑢2𝑐4𝑞𝑢2 = 𝑞𝑐34
or 𝑞𝑢2𝑐4𝑢2 = 𝑞𝑐34. Multiplying this relation by 𝑢2 on
the left, we can obtain the relation 𝑐4𝑢2 = 𝑞𝑢2𝑐

3
4,

which is commuting for the elements 𝑐4 and 𝑢2.
Using the commuting relation for the elements 𝑐4

and 𝑢2 from the relation 𝑢′
2 = 𝑞𝑐4𝑢2𝑐

3
4, which de-

fines the element 𝑢′
2, it is easy to show that 𝑢′

2 =
= 𝑞𝑞𝑢2𝑐

3
4𝑐

3
4 = 𝑢2𝑐

6
4 = 𝑢2𝑐

3
2 = 𝑞𝑢2𝑐2 = 𝑞𝑏𝑎, i.e.

𝑢′
2 = 𝑞𝑢2𝑐2 or 𝑢′

2 = 𝑞𝑏𝑎. (15)

It should be noted that the operation 𝑐4 = 𝑐ℓ(𝜋/2)
(ℓ ‖ 𝑂z) used for deriving the equation defining the
element 𝑢′

2 plays a supporting role. This operation
does not belong to the group 𝐷2, but it, as well as all
the elements of this group, is one of the operations of
the infinite group of rotations 𝐾, for all elements of
the double symmetry group 𝐾 ′ of which, the relation
(12) is correct.

With the defining relations for constituting ele-
ments and relations (14) and (15), it is easy to find
the factor-system 𝜔2(𝑟2, 𝑟1), which is defined by re-
lation (12) and describes the properties of spinors in
the group 𝐷2.

For example, the coefficient 𝜔2(𝑐2, 𝑢
′
2) = −1 in

the case 𝑟1 = 𝑢′
2 and 𝑟2 = 𝑐2, since the prod-

uct 𝑟2𝑟1 = 𝑐2𝑢
′
2 = 𝑎(𝑞𝑏𝑎) = 𝑞𝑎𝑏𝑎 = 𝑞(𝑎𝑏)𝑎 =

= 𝑞(𝑞𝑏𝑎)𝑎 = 𝑏𝑎2 = 𝑞𝑏 = 𝑞𝑢2 is the element, which
differs from the element 𝑢2 included into the group
𝐷2 by the factor 𝑞, i.e. by the additional rotation
by an angle of 2𝜋 [since the element 𝑞 is the rota-
tion by 2𝜋 angle around an arbitrary axis, in the
expressions of the form 𝑞𝑐ℓ(𝛼) it can always be in-
terpreted as an additional rotation around the same
axis ℓ]. For example, the coefficient 𝜔2(𝑢2, 𝑐2) = −1
in the case 𝑟1 = 𝑐2 and 𝑟2 = 𝑢2, since, in this case,
𝑟2𝑟1 = 𝑢2𝑐2 = 𝑏𝑎 = 𝑞(𝑞𝑏𝑎) = 𝑞𝑢′

2. Here, of course,
for all intrinsic rotations included into the infinite
group of rotations 𝐾, the values of angle 𝜗 are lim-
ited by 0 6 𝜗 < 2𝜋. Generally, since we can choose
either elements 𝑐ℓ(𝛼) or elements 𝑞𝑐ℓ(𝛼) in the tran-

sition from double to ordinary groups as their intrin-
sic rotations from the elements of double groups, the
difference between them in the ordinary groups dis-
appears, every intrinsic rotation can be interpreted
as the rotation by an angle of 𝜗 lying within the
range determined by the inequality 0 6 𝜗 < 2𝜋 or
2𝜋 6 𝜗 < 4𝜋. Without loss of generality, however,
for their intrinsic rotations in the ordinary groups,
we may postulate the feasibility of only one of these
inequalities. Preferring a simpler case, we postulate,
as was already noted above, that, for all intrinsic ro-
tations belonging to the infinite group of rotations
𝐾, the whole range of rotation angles 𝜗 is deter-
mined only by the inequality 0 6 𝜗 < 2𝜋. It can
be shown that this inequality holds for all nonin-
trinsic rotations, i.e. for all elements of the infinite
full orthogonal group 𝐾ℎ = 𝐾 × 𝐶𝑖. Indeed, as fol-
lows from the introduced defining relation for the in-
version (9) 𝜎2

ℎ = 𝑞, which means that, for the el-
ement 𝜎ℎ in the double groups, we should ascribe
a rotation by an angle of 𝜋 or 3𝜋 around an arbi-
trary axis (this corresponds to the existence in the
double group of two elements 𝜎ℎ and 𝑞𝜎ℎ). Then
the inversion operation itself, which is defined by
Eq. (8), must be, in accordance with this definition,
compared to the rotation depending on the angle of
the element 𝜎ℎ either by an angle equal to zero or
by an angle of 2𝜋 (this also corresponds to the ex-
istence in double groups of two elements – 𝑖 and
𝑞𝑖). Since the difference between the elements 𝑖 and
𝑞𝑖 disappears in the ordinary group, we can pos-
tulate, without loss of generality, that the rotation
only by an angle equal to zero or 2𝜋 corresponds
to the inversion operation. Again, preferring a sim-
pler version, we postulate that the inversion opera-
tion corresponds to the rotation by an angle equal
to zero. This means that, for all the nonintrinsic ro-
tations and for all the elements of the infinite com-
plete orthogonal group 𝐾ℎ, the entire range of the
values of rotation angles 𝜗 is defined by the inequal-
ity 0 6 𝜗 < 2𝜋.

It should be noted also that the possibility of
matching the inversion operation and rotation by an
angle equal to zero could be the basis for determining
the choice of the inversion operation in binary groups
and its defining relation. It is easy to see that this
feature is available, when we made, on the basis of
logical considerations, choice defined by relations (8)
and (9).
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The factor system 𝜔2(𝑟2, 𝑟1), which was found for
the group 𝐷2 in the above-mentioned way, can be
conveniently represented as a table

1

2

2 2 1

2 2 2

2

2

1 1
2

( , )

      

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

r r r

r u u

b a

b a

b a u

qb a u

c

c

e

e

 

r

r b u

K D

K

(16)

(left column shows the way, in which the elements
of symmetry in the double group 𝐷′

2 are defined in
terms of products of constituting elements in the cor-
responding powers and 𝑞-operator)

For each pair of the commuting elements 𝑟1 and
𝑟2 distinct from the unity in the group 𝐷2 (there
are three such pairs of elements in this group), for
example, for the pair of elements 𝑟1 = 𝑎 = 𝑐2 and
𝑟2 = 𝑏 = 𝑢2, the relation 𝜔2(𝑟2, 𝑟1)

𝜔2(𝑟1, 𝑟2)
= −1 holds. This

means that the factor system (16) belongs to the class
𝐾1, and the group 𝐷2 contains irreducible projective
representations belonging to the class 𝐾1.

The membership of the factor system (16) to the
projective class 𝐾1 could also be established by the
value of constant 𝛼′, which determines the projective
class of the factor-system 𝜔(𝑟2, 𝑟1) and, according to
[1], can be calculated for the groups 𝐷𝑛 by the for-
mula

𝛼′ =
𝜔(𝑎, 𝑏)𝜔(𝑎, 𝑎𝑛−1)

𝜔
2/𝑛
𝑎𝑛 𝜔(𝑏, 𝑎𝑛−1)

, (17)

where

𝜔𝑎𝑛 = 𝜔(𝑎, 𝑎)𝜔(𝑎2, 𝑎) ... 𝜔(𝑎𝑛−1, 𝑎).

It is easy to see that formula (17) for the factor-
system (16) and the relation (𝜔2)𝑐22 = 𝜔2(𝑐2, 𝑐2) =

= −1 lead to the value 𝛼′ = 𝜔2(𝑐2, 𝑢2)𝜔2(𝑐2, 𝑐2)
(𝜔2)𝑐22𝜔2(𝑢2, 𝑐2)

=

= 1·(−1)
(−1)·(−1) = −1, which characterizes namely the

projective class 𝐾1 in groups 𝐷𝑛.
Let us calculate the values of function 𝑢2(𝑟) for

all 𝑟 and bring the factor-system (16) to 𝑝-equivalent
standard form 𝜔′

2(𝑟2, 𝑟1), thereby constructing, for

the first time, a standard factor-system of the class
𝐾1 – the factor-system 𝜔′

(1)(𝑟2, 𝑟1) for the group 𝐷2

and all groups isomorphic to it, because, for all point
groups with projective representations of the class
𝐾1, of course, the equality 𝜔′

2(𝑟2, 𝑟1) = 𝜔′
(1)(𝑟2, 𝑟1)

is satisfied. Here, in the notation of factor-systems,
as well as previously, the strokes indicate that these
factor-systems are standard, and the lower numerical
index in parentheses indicates the class of a factor
system.

Let us use some formulas which are general for the
groups 𝐷𝑛 determining the values of functions 𝑢(𝑟)
and lead the factor-systems 𝜔(𝑟2, 𝑟1) to the standard
form. These formulas have a form [1]

𝑢(𝑎𝑝) =
𝜔
𝑝/𝑛
𝑎𝑛

𝜔𝑎𝑝
𝜀𝑝,

𝑢(𝑏𝑞) = − 𝜔𝑞/2(𝑏, 𝑏)

𝜔𝑎𝑚𝜔(𝑎, 𝑎)
, (18)

𝑢(𝑏𝑞𝑎𝑝) =
𝑢(𝑎𝑝)𝑢(𝑏𝑞)

𝜔(𝑏𝑞, 𝑎𝑝)
.

Since 𝛼′ = 𝜀𝑚2 = (𝑒𝑖2𝜋/2)𝑚 = (𝑒𝑖𝜋)𝑚 = (−1)𝑚 and, at
the same time, 𝛼′ = −1 for the factor-system (16), 𝑚
is an odd number for this factor system (for example,
one can assume 𝑚 = 1). For an odd 𝑚,

𝜀 = 𝑖
(𝛼′)1/2

𝜔(𝑎, 𝑎)
. (19)

For the factor-system (16), therefore, 𝜀 = 𝑖 (𝛼′)1/2

𝜔2(𝑐2, 𝑐2)
=

= 𝑖 (−1)1/2

−1 = 1. Taking into account that (𝜔2)
1/2
𝑐22

=

= 𝜔
1/2
2 (𝑐2, 𝑐2) = (−1)1/2 = 𝑖 and (𝜔2)𝑐21 = 1, we ob-

tain 𝑢2(𝑐2) =
(𝜔2)

1/2
𝑐22

(𝜔2)𝑐21
𝜀 = 𝑖, 𝑢2(𝑢2) = − 𝜔

1/2
2 (𝑢2, 𝑢2)

𝜔𝑐21𝜔2(𝑐2, 𝑐2)
=

= − (−1)1/2

−1 = 𝑖. Since 𝑢′
2 = 𝑢2𝑐2 for the ordinary

group 𝐷2, we have 𝑢2(𝑢
′
2) =

𝑢2(𝑐2)𝑢2(𝑢2)
𝜔2(𝑢2, 𝑐2)

= 1.
In view of the relation 𝑢2(𝑒) = 1 and the fact that

the function 𝑢2(𝑟) for the elements 𝑒, 𝑐2, 𝑢2 and 𝑢′
2

of the group 𝐷2 takes the values of 1, 𝑖, 𝑖 and 1,
respectively, the factor system (16) is reduced to the
𝑝-equivalent standard factor-system 𝜔′

2(𝑟2, 𝑟1), using
the transformation

𝜔′
2(𝑟2, 𝑟1) =

𝜔2(𝑟2, 𝑟1)𝑢2(𝑟2𝑟1)

𝑢2(𝑟1)𝑢2(𝑟2)
. (20)

This standard factor-system coincides with the stan-
dard factor-system of the class 𝐾1of the group 𝐷2
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and groups isomorphic to it, i.e., the factor-system
𝜔(1)(𝑟2, 𝑟1). It was obtained for the first time and has
the form

1

2

2 1(1)

2 2 2

2

2

2

( , )

      

1 1 1 1

1 1 1 1

1 1 1 1

r r r

r u u

u

u

c

c

e

e

D ( , )r r

( )u r

( ) D

D

( )

( ) K

K

(21)

Using the known [1] characters of the irreducible
projective representation 𝑃 (1) of the class 𝐾1 of the
group 𝐷2, the corresponding standard factor-system
𝜔′
(1)(𝑟2, 𝑟1) and the values of function 𝑢2(𝑟), which

are shown in Table 1, b), according to formula (4),
assuming k = kΓ = 0, we can easily find the char-
acters of the irreducible spinor representation Γ5(E

′)
of the group 𝐷 2 in the form of characters of its pro-
jective representation (Table 1, b). The characters
of irreducible representations of the double group 𝐷′

2

are given in Table 1, a) for comparison. It is easy to
see that the characters of the spinor representation
Γ5(E

′) shown in Table 1 а) coincide with the calcu-
lated characters of the two-valued projective repre-
sentation Γ5(E

′) of the class 𝐾1, which are given in
Table 1, b).

It should be noted that the characters of the irre-
ducible projective representation 𝑃 (1) corresponding
to a standard factor-system of the class 𝐾1 can be
obtained from readily calculated matrices of this rep-
resentation [1]. Furthermore, from the same matrices,
the matrices of the irreducible spinor representation
Γ5(E

′) can be easily found by formula (3).
It is interesting that, by applying formulas (17–

19) to the factor-system (21), we obtain the values
of function 𝑢′

2(𝑟) for the elements 𝑒, 𝑐2, 𝑢2, and 𝑢′
2,

which are 1, −1, −1, and 1 (for the factor-system (21),
as for the factor-system (16), of course, 𝛼′ = −1 and
𝜀 = −1), correspondingly, which, as it turns out for
transformation (20), leave the factor-system (21) in-
variant. This means, that the further reduction of the
factor-system (21) using formulas (17–19) to the stan-
dard form is impossible, and the factor-system (21),
indeed, is a standard factor-system of the class 𝐾1

of the group 222 (𝐷2). The functions 𝑢′′
2(𝑟) ≡ 𝑢2(𝑟),

or 𝑢′′
2(𝑟) = 𝑢2(𝑟)𝑢

′
2(𝑟) themselves become ambiguous,

as the complex values of coefficients for the reduction
of the factor-system (16) to the standard form 𝑢′′

2(𝑟)
can be taken with the sign “plus” or with the sign “mi-
nus” and, for the elements 𝑒, 𝑐2, 𝑢2, and 𝑢′

2, take the
values of 1, 𝑖, 𝑖 and 1 or 1, −𝑖, −𝑖 and 1, correspond-
ingly. It is also easy to notice that the values of reduc-
tion coefficients allowable by formulas (17–19) for the

Table 1. Characters of: 𝑎 – irreducible representa-
tions of the double point group (222)′(𝐷′

2) and 𝑏 –
irreducible one-valued vector representations and ir-
reducible two-valued projective representations of the
point group (222)(𝐷2). Upper part of table 1, b shows
the characters of irreducible projective representation
of the 𝐾1 class of the (222)(𝐷2) group, which corre-
spond to the standard factor-system of the class 𝐾1 of
the group (222)(𝐷2) – factor system 𝜔′

(1)
(𝑟2, 𝑟1) of the

group 222 (𝐷2) and the values of function 𝑢2(𝑟), cor-
responding to the factor-system 𝜔2(𝑟2, 𝑟1) of the class
𝐾1 of this group reduce it to the 𝑝-equivalent stan-
dard factor-system 𝜔′

2(𝑟2, 𝑟1) of the group 222 (𝐷2),
which, in this case, coincides with the factor-system
𝜔′

(1)
(𝑟2, 𝑟1)

a)

(222)′ (𝐷′
2) 𝑒 𝑞 𝑐2, 𝑞𝑐2 𝑢2, 𝑞𝑢2 𝑢′

2, 𝑞𝑢
′
2

Γ1 A1 1 1 1 1 1
Γ2 A2 1 1 1 −1 −1

Γ3 B1 1 1 −1 1 −1

Γ4 B2 1 1 −1 −1 1
Γ5 E′ 2 −2 0 0 0

b)

222 (𝐷2) 𝑒 𝑐2 𝑢2 𝑢′
2

P(1) 2 0 0 0

222 (𝐷2) 𝑒 𝑐2 𝑢2 𝑢′
2

𝑢2(𝑟) 1 𝑖 𝑖 1

222 (𝐷2) 𝑒 𝑐2 𝑢2 𝑢′
2

Γ1 A1 1 1 1 1
Γ2 A2 1 1 −1 −1

Γ3 B1 1 −1 1 −1

Γ4 B2 1 −1 −1 1
Γ5 E′ 2 0 0 0

956 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 9



Development of the Bethe Method

elements of the group 𝐷2, listed in the above order,
form two additional sets 1, −𝑖, 𝑖,−1 and 1, 𝑖, −𝑖,−1.
This also leads the factor system (16) to the standard
form (21). Without loss of generality, it is sufficient
to use only one of the above cases, and we will use, as
was done in Table 1, b), only the complex values of
the reduction coefficients with the “plus” sign for the
elements 𝑒, 𝑐2, 𝑢2, and 𝑢′

2, i.e., the values of 1, 𝑖, 𝑖
and 1, respectively.

Let us consider the group 𝐷3 containing 6 ele-
ments: 𝑒, 𝑐3, 𝑐23, (𝑢2)1, (𝑢2)2, and (𝑢2)3. The con-
stituting elements in this group are 𝑎 = 𝑐3(𝑐3z) and
𝑏 = (𝑢2)1(𝑐2𝑥). The obvious defining relations 𝑎6 = 𝑒
(𝑎3 = 𝑞) and 𝑏4 = 𝑒 (𝑏2 = 𝑞) for the constituting
element are fulfilled in the double group 𝐷′

3.
Let us find a commuting defining relation for the

constituting elements of the double group 𝐷′
3. For

the ordinary group 𝐷3, this relation has the form
𝑎𝑏 = 𝑏𝑎2.

Considering 𝑐3 as 𝑐ℓ(2𝜋/3) (ℓ ‖ 𝑂z), assum-
ing 𝑓 = 𝑞(𝑢2)1 = 𝑞𝑐ℓ′(𝜋) (ℓ′ ‖ 𝑂𝑥), and tak-
ing into account that 𝑓−1 = (𝑢2)1 = 𝑐ℓ′(𝜋) and
𝑓−1ℓ = 𝑐ℓ′(𝜋)ℓ = −ℓ, relation (12) for the dou-
ble groups yields 𝑐ℓ′(𝜋)𝑐ℓ(2𝜋/3)𝑞𝑐ℓ′(𝜋) = 𝑐−ℓ(2𝜋/3).
Since 𝑐−ℓ(2𝜋/3) = 𝑞𝑐ℓ(4𝜋/3) = 𝑞𝑐2ℓ(2𝜋/3), we find
𝑞(𝑢2)1𝑐3(𝑢2)1 = 𝑞𝑐23.

Multiplying this equation on the left by (𝑢2)1, we
obtain
𝑐3(𝑢2)1 = 𝑞(𝑢2)1𝑐

2
3 or 𝑎𝑏 = 𝑞𝑏𝑎2, (22)

which is a commuting defining relation for the con-
stituting elements of the double group 𝐷′

3. It is sig-
nificant that the operation 𝑞 is also included into the
commuting defining relation for constituting elements
of the double group 𝐷′

3, as well as into the commut-
ing defining relation for constituting elements of the
double group 𝐷′

2 (14).
In order to determine the elements (𝑢2)2 and (𝑢2)3

in the double group 𝐷′
3, in view of the definition of

the above-considered element 𝑢′
2 in the double group

𝐷′
2, Eq. (12) also can be used.
Indeed, the relations 𝑐3(𝑢2)1𝑞𝑐

2
3 = (𝑢2)2 and

𝑐23(𝑢2)1𝑞𝑐3 = (𝑢2)3 obtained on the basis of this equal-
ity can be considered as the definition of elements
(𝑢2)2 and (𝑢2)3 in the double group 𝐷′

3. Using rela-
tion (22), it is easy to obtain, from these relations,
that
(𝑢2)2 = 𝑞(𝑢2)1𝑐3 or (𝑢2)2 = 𝑞𝑏𝑎,

(𝑢2)3 = (𝑢2)1𝑐
2
3 or (𝑢2)3 = 𝑏𝑎2.

(23)

Having the defining relations for the constituting el-
ements and relations (22) and (23), it is not diffi-
cult to find the factor-system 𝜔2(𝑟2, 𝑟1) for the group
𝐷3. This factor-system has the form

2 2 1 1

2

2

2 1

1 1
2 2

1 2

( , )

  ( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

( ) 1 1 1 1 1 1

( ) 1 1 1 1 1 1

( ) 1 1 1 1 1 1

r r r

r c c u u u

b a

b a c

b a c

b a u

qb a u

b a u

e

e

K

D D n

K

r r

K D ( , )r r

e c ( ) ( ) ( ) i i i

( , ) ( , )r r r r

( )u r

D

( )u r

D

(24)

All factor-systems belonging to the class 𝐾0 and
all irreducible projective representations belonging
to the group 𝐷3 (group 𝐷𝑛 with an odd 𝑛) are 𝑝-
equivalent to the ordinary vectorial groups. As was
already mentioned, the factor-systems with all the
elements equal to 1 are standard factor-systems of
the class 𝐾0 in all groups. It is easy to see that the
factor-system (24) is reduced to the 𝑝-equivalent stan-
dard factor-system 𝜔′

2(𝑟2, 𝑟1) coinciding, in this case,
with the standard factor-system of the class 𝐾0 of
the group 𝐷3, i.e. the factor-system 𝜔′

(0)(𝑟2, 𝑟1) of the
group 𝐷3, all elements of which are equal to 1, using
transformation (20), where the function 𝑢2(𝑟) for the
elements 𝑒, 𝑐3, 𝑐23, (𝑢2)1, (𝑢2)2, and (𝑢2)3 has the
values of 1, −1, 1, 𝑖, 𝑖 and 𝑖, correspondingly [1],

𝑢2(𝑐
𝑝
3) = 𝑒𝑖𝑝𝜋(𝑝 = 0, 1, 2),

𝑢2[(𝑢2)
𝑞
ℓ ] = 𝜀𝑞4 =

(︁
𝑒𝑖2𝜋/4

)︁𝑞

= (25)

= 𝑒𝑖𝑞𝜋/2(ℓ = 1, 2, 3; 𝑞 = 0, 1).

The equality 𝜔′
2(𝑟2, 𝑟1) = 𝜔′

(0)(𝑟2, 𝑟1), which is ful-
filled in this case, is a criterion of correctness of the
above-determined values of the function 𝑢2(𝑟).

In accordance with formula (4), let us multiply the
characters (Table 2, b) of irreducible ordinary vec-
tor representations of the group 𝐷3 by the values of
function 𝑢2(𝑟) given in the top part of Table 2, b. We
get the characters of irreducible spinor representa-
tions (Table 2, b) of the group 𝐷3 in the form of
the characters of their projective representations. The
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characters of irreducible representations of the double
group 𝐷′

3 are given in Table 2, а for comparison. It is
easy to see that the characters of spinor representa-
tions given in Table 2, а coincide with the calculated
characters of two-valued projective representations of
the class 𝐾0, given in Table 2, b.

In the same manner, we can obtain the factor-
systems 𝜔′

2(𝑟2, 𝑟1) and 𝜔′
(1)(𝑟2, 𝑟1), and the values of

coefficients 𝑢2(𝑟) and to construct irreducible spinor
representations also in groups containing the axes of
higher orders.

Table 2. Characters of: 𝑎 – the irreducible repre-
sentations of the double point group (32)′(𝐷′

3) and
𝑏 – irreducible one-valued vector representations and
the irreducible two-valued projective representations
of the point group 32(𝐷3). Both parts of the table
shows the way of association of the representations
(complex conjugate, in this case) with regard for the
time-reversal invariance of states. Upper part of Table
2, 𝑏 shows the values of function 𝑢2(𝑟), which con-
vert the factor-system 𝜔2(𝑟2, 𝑟1) of the group 32(𝐷3),
which belongs to the class 𝐾0, to the 𝑝-equivalent stan-
dard factor-system 𝜔′

2(𝑟2, 𝑟1) of this group, which co-
incides, in this case, with the standard factor-system
of the class 𝐾0 of the group 32(𝐷3) – factor-system
𝜔′

(0)
(𝑟2, 𝑟1) of the group 32(𝐷3), all coefficients of

which are equal to 1
a)

(32)′ (𝐷′
3) 𝑒 𝑞 𝑐3, 𝑞𝑐23 𝑐23, 𝑞𝑐3 3𝑢2 3𝑞𝑢2

Γ1 A1 1 1 1 1 1 1
Γ2 A2 1 1 1 1 −1 −1

Γ3 E 2 2 −1 −1 0 0

Γ4 + Γ5��
Γ4 E′

1 + E′
2
�
�

E′
1 1 −1 −1 1 𝑖 −𝑖

Γ5 E′
2 1 −1 −1 1 −𝑖 𝑖

Γ6 E′
3 2 −2 1 −1 0 0

b)

32 (𝐷3) 𝑒 𝑐3 𝑐23 3𝑢2

𝑢2(𝑟) 1 −1 1 𝑖

32 (𝐷3) 𝑒 𝑐3 𝑐23 3𝑢2

Γ1 A1 1 1 1 1
Γ2 A2 1 1 1 −1

Γ3 E 2 −1 −1 0

Γ4 + Γ5��
Γ4 E′

1 + E′
2
�
�

E′
1 1 −1 1 𝑖

Γ5 E′
2 1 −1 1 −𝑖

Γ6 E′
3 2 1 −1 0

Thus, we have presented the method of construc-
tion of the factor-systems 𝜔2(𝑟2, 𝑟1) and the irre-
ducible spinor representations of the point groups in
the form of their projective representations, which al-
lows solving the problem of finding the irreducible
two-valued representations of wave vector groups and
full space groups. The groups 222 (𝐷2) and 32 (𝐷3),
which were chosen as illustrations of the applicability
of the proposed method of construction of the factor
systems 𝜔2(𝑟2, 𝑟1) and the irreducible spinor repre-
sentations, are the simplest examples of non-Abelian
groups, whose factor-systems 𝜔2(𝑟2, 𝑟1) exhausting
all possible situations belong either to the class 𝐾1,
as in case of the group 𝐷2, or to the class 𝐾0, as
in case of the group 𝐷3. It is also significant that
the method allowed one to find, for the first time,
the factor-system 𝜔′

(1)(𝑟2, 𝑟1), which is a standard
factor-system of the class 𝐾1 for the group 𝐷2 hav-
ing irreducible projective representations, which be-
long to the class 𝐾1, and for all groups isomorphic
to it, and to find the values of function 𝑢2(𝑟) for the
group 𝐷3, bringing the factor-system 𝜔2(𝑟2, 𝑟1) con-
structed for it to the 𝑝-equivalent standard factor-
system of the class 𝐾0, all the coefficients of which
are equal to 1.

In conclusion, we note that the essence of Bethe’s
method, in our opinion, is the introduction of the op-
eration 𝑞, which correctly reflects the transformation
properties of spinors. This method seems more logi-
cal and can be more precisely mathematically used
in constructing the factor-systems 𝜔2(𝑟2, 𝑟1) and the
two-valued representations of the point and space
symmetry groups in the form of projective representa-
tions of the ordinary point group, by preserving their
systematics and hierarchy, and not in the form of true
irreducible representations of abstract double groups,
since assigning the sequence numbers for which, as a
rule, is arbitrary.
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В.О. Губанов, Л.М.Овандер
РОЗВИТОК МЕТОДУ
БЕТЕ ДЛЯ ПОБУДОВИ ДВОЗНАЧНИХ
ПРЕДСТАВЛЕНЬ ПРОСТОРОВИХ
ТА ДВОЗНАЧНИХ ПРОЕКТИВНИХ
ПРЕДСТАВЛЕНЬ ТОЧКОВИХ ГРУП

Р е з ю м е

Розглянуто методику побудови двозначних представлень
просторових та двозначних проективних представлень то-
чкових груп. Представлено метод побудови фактор-систем
𝜔2(𝑟2, 𝑟1), якi вiдображають перетворення хвильових фун-
кцiй квантових систем з напiвцiлим спiном, i якi є необхi-

дними для знаходження двозначних незвiдних проективних
представлень точкових груп. Цей метод ґрунтується на вве-
деннi в ролi додаткового елемента симетрiї операцiї 𝑞, впер-
ше використаної Бете. На прикладi груп 222 (𝐷2) та 32 (𝐷3)

показано, яким чином вводяться спiввiдношення, що дозво-
ляють зробити однозначними алгебру подвiйних груп та,
зокрема, їх таблицi множення. Показано, яким чином на
основi спiввiдношень, що обговорюються, будується впер-
ше представлена для групи 222 стандартна фактор-система
класу 𝐾1 – фактор-система 𝜔′

(1)
(𝑟2, 𝑟1). Обговорюються та-

кож в цiлому роль та можливостi методу Бете та його мо-
дифiкацiй в побудовi двозначних представлень точкових та
просторових груп.
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