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EFFECTIVE MASS OF 4He ATOM
IN SUPERFLUID AND NORMAL PHASESPACS 05.30.Jp, 68.35.Rh

The formula for the temperature dependence of the effective mass of a 4He atom in the su-
perfluid and normal phases is obtained. This expression for the effective mass allows one to
eliminate infra-red divergences, being applicable at all temperatures, except for a narrow fluc-
tuation region 0.97 . 𝑇/𝑇c ≤ 1. In the high and low temperature limits, as well as in the
interactionless limit, the obtained expression reproduces the well known results. The temper-
ature dependence of the heat capacity and the phase transition temperature 𝑇c ≈ 2.18 K are
calculated, by using the formula obtained for the effective mass. In the framework of the ap-
proach proposed in this work, the small critical index 𝜂 is determined in the random phase
approximation. The obtained value corresponds to the well known result.
K e yw o r d s: liquid 4He, effective mass, critical temperature, critical indices.

1. Introduction

The idea that the transition of liquid 4He into the su-
perfluid state is a manifestation of the Bose–Einstein
condensation was put forward for the first time by
F. London [1]. It was the “proximity” of the Bose con-
densation temperature in an ideal gas with helium
parameters to the transition temperature in real 4He
that suggested him this idea. Although this interpre-
tation of the phase transition is not free from diffi-
culties [2], it correctly describes, in general, modern
experiments with cooled gases [3, 4].

The problems in the theory of liquid 4He, which
remain unresolved till now, include the calculation of
corresponding thermodynamic functions in the whole
temperature interval and the calculation of the tran-
sition temperature into the superfluid state, which
would agree with the experimental value. At the qual-
itative level, a reduction of the critical temperature
was substantiated by R. Feynman [5], who introduced
the concept of effective particle mass. For intuitive
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reasons, he came to a conclusion that, owing to the
interaction between particles, the effective mass has
to exceed the atomic one. This conclusion is also valid
for two-dimensional systems [6].

However, there exists a competing mechanism. The
repulsion at short distances effectively increases the
system density and, consequently, should increase the
Bose condensation temperature. This conclusion is
confirmed by the results of theoretical calculations [7–
11] and Monte-Carlo simulation carried out for the
model of weakly non-ideal Bose gas [12, 13]. In or-
der to put the experimental results obtained in the
4He-Vycor system in correspondence with the results
of theoretical calculations, the effect of atomic mass
renormalization and a shift associated with the re-
pulsive part of the interparticle interaction have to
be taken into account simultaneously [14].

In the literature, the value of effective mass at low
temperatures was mainly analyzed [15–19]. In works
[20, 21], the corresponding temperature dependence
was obtained within the variational approach. The
properties of helium in the normal phase were studied
in works [22, 23], where the effective mass of particles
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was used as a fitting parameter to put the calculated
structural functions in agreement with experimental
curves.

A method of calculation of the effective mass of
4He atoms in the liquid phase was demonstrated in
work [24]. It allows infra-red divergences typical of
the phase transition theory to be eliminated. A short-
coming of the proposed approach is the poorly sub-
stantiated extrapolation of the “seed” effective mass
onto a wide temperature interval (proceeding from
the corresponding expression obtained for the zero
temperature) and an incorrect behavior of the ob-
tained effective mass in the critical region.

Another approach to the calculation of the effec-
tive mass was proposed in work [25]. In its frame-
work, the temperature dependence of the heat capac-
ity was determined. The result obtained turned out
in much better agreement with experimental data
than the results of calculations on the basis of a
“bare” mass. However, the expression for the effec-
tive mass, which was obtained in the framework of
this approach, does not exclude the mentioned infra-
red divergences, because the ideology of the effective
mass calculations was not oriented to this purpose.

This work is aimed at finding such an expression
for the effective mass, which would eliminate infra-
red divergences and reproduce a correct behavior in a
vicinity of the critical point (excluding, maybe, a nar-
row fluctuation region). At the same time, it should
be better substantiated theoretically in a wide tem-
perature region. Another task consisted in obtaining
the temperature dependence of the heat capacity with
the use of the new effective mass and in comparing it
with the previous results.

2. General Formulas

While calculating the heat capacity for a many-
boson system, let us use the expression for its in-
ternal energy in the pair correlation approximation
[24, 25]. The expression can be obtained by averag-
ing the Hamiltonian with the density matrix found in
work [26]:
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where �̄� is the effective mass; 𝜀𝑞 = ~2𝑞2/2�̄�, 𝑧0, and
𝑆0(𝑞) are the renormalized one-particle spectrum, ac-
tivity, and structure factor, respectively, of the ideal
Bose gas; 𝐸𝑞 = 𝛼𝑞𝜀𝑞 is the spectrum of elementary
Bogolyubov excitations; 𝛼𝑞 =
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is the structure factor of a Bose liquid in the pair
correlation approximation; and
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The distribution of Bose particles with the new spec-
trum looks like

�̄�𝑝 =
1

𝑧−1
0 𝑒𝛽𝜀𝑝 − 1

, (4)

whereas the renormalized one-particle spectrum 𝜀𝑝 is
chosen in the form

𝜀𝑝 = 𝜀𝑝 +Δ𝑝 −Δ0, (5)

where Δ𝑝 is a correction to the spectrum, which is
to be determined. The value of Δ0 depends only on
the temperature and is actually responsible for the
activity renormalization. After eliminating infra-red
divergences, the expression for Δ𝑝 looks like [24]
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Expression (5) for the renormalized one-particle
spectrum can also be written in the form

𝜀𝑝 =
~2𝑝2

2�̄�(𝑝)
, (7)
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where the quantity �̄�(𝑝) is regarded as the total effec-
tive mass of a particle, which depends on the absolute
value of wave vector p. This form for the spectrum 𝜀𝑝
was proposed in work [27] in order to exclude infra-red
divergences. It will be recalled that the effective mass
�̄� is formed by many-particle correlations, starting
from four-particle ones, and, generally speaking, it
depends on the momentum 𝑝. It is clear that we are
interested in the behavior of �̄�(𝑝) as 𝑝 → 0. As the
total effective mass, we will understand the quantity
�̄� = �̄�(0). In this connection, let us consider the dif-
ference Δ𝑝 −Δ0 as 𝑝 → 0 in more details.

At small 𝑝-values, the renormalized spectrum (5)
can be written in the form [24]

𝜀𝑝 =
~2𝑝2

2�̄�
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In our theory, we use the following expression for the
temperature dependence of the “seed” effective mass
𝑚*, which was obtained in work [25]:
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where the notation 𝑛(𝑥) = 1/(𝑒𝑥 − 1) is used.
It is easy to see that the critical-point divergence on

the right-hand side of equality (9) originates from the
integrand at small 𝑞-values. This singularity is log-
arithmic, as will be shown later. Such a divergence
is typical of critical phenomena. Our task consists in
isolating this singularity and finding a correct expres-
sion for the effective mass. For this purpose, let us
consider the following equality, which follows from

work [24]:
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In expression (12), we isolate the quantity
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which contains the indicated non-analyticity in whole
and, simultaneously, is much more convenient for the
analysis. The next step consists in finding a series ex-
pansion for Δ∞ in the interval of small 𝑝-values and
confining the series to terms proportional to 𝑝2, be-
cause the higher-order terms give no contribution to
the effective mass owing to equality (11).

On the right-hand side of equality (13), we change
from summation to integration:
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where 𝑝20 = 2�̄�/(𝛽~2) and 𝑃0 = 𝑝0
√︀
(1− 𝑧0). In

the subcritical region, the activity 𝑧0 = 1. Therefore,
𝑃0 = 0 here, and the expressions obtained above be-
come a little simpler.

Let us change the variables: 𝑞/𝑝 = 𝑥 and 𝑑𝑞 = 𝑝𝑑𝑥.
Then
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The function 𝜆𝑝𝑥/(1 + 𝜆𝑝𝑥𝑆0(𝑝𝑥)) is finite and tends
to zero, as 𝑥 → ∞ (at a fixed 𝑝). On the other hand,
the function
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Fig. 1. Temperature dependence of the quantity 𝐹∞ =

= lim
𝑝→0

Δ∞(𝑝)/𝜀𝑝 at 𝑝 = 0.01. Points correspond to the exact

expression, and the solid curve to the accepted approximation

Fig. 2. The same as in Fig. 1, but for 𝑝 = 0.1

falls down to zero in the interval 𝑥 > 1. Moreover,
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for any 𝑃0- and 𝑝-values. Those facts allow us to as-
sert (especially if the matter concerns the critical re-
gion) that only the interval, where the 𝑝𝑥-values in
the integrand are small, makes a non-disappearing
contribution to the quantity Δ∞/𝑝2 as 𝑝 → 0.

Now, let us proceed to expanding the quantities
𝜆𝑞 and 𝑆0(𝑞) in a vicinity of the zero wave vector,
𝑞 = 0. For 𝜆𝑞, the result is obtained easily:

𝜆𝑞 = 𝛽𝜌𝜈0 + 𝑜(𝑞), (16)

where 𝜌 is the density of the Bose system. On the con-
trary, the form of the series expansion for the struc-
ture factor of the ideal Bose gas depends on the tem-
perature interval. It looks like

𝑆0(𝑞) =
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in the supercritical one. This result follows immedi-
ately from the expression for the structure factor of
the ideal Bose gas [26]
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In order to analyze expression (15) analytically, let
us apply such approximations for the quantities 𝜆𝑞

and 𝑆0(𝑞), which contain only the expansion terms
presented above. One can check the adequacy of those
approximations with the help of the numerical analy-
sis, the results of which are exhibited in Figs. 1 and 2.

The further analysis of expression (15) will be car-
ried out separately in the sub- and supercritical tem-
perature intervals and at the very critical point, be-
cause the approaches, which should be applied in each
of those cases, are different.

3. Calculations in the Subcritical
Temperature Interval

In the subcritical temperature interval (𝑇 < 𝑇c), ex-
pression (15) reads
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Applying the formula
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The denominator of the integrand should be factor-
ized, and the whole integrand should be expanded
in simple fractions. Then the elementary integration
over the variable 𝑥 gives
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where 𝑥1/𝑝 and 𝑥2/𝑝 are roots of the quadratic equa-
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After the corresponding transformations and the in-
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where

dilog[𝑥] =

𝑥∫︁
1

ln(𝑦)/(1− 𝑦)𝑑𝑦.

Expanding the obtained expression in 𝑝, we find that
the quantities proportional to 𝑝2 originate exclusively
from the last two terms in the braces. As a result, we
obtain

Δ∞ =
𝑝20κ

3𝜋2𝛽𝜌(1 + κ)
ln |𝑥1/𝑥2|
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When approaching the critical point, one of the
roots, say 𝑥2, tends to zero, and we obtain a logarith-
mic divergence for the quantity Δ∞ in a vicinity of the
critical point. What is the effective mass in this case?
Returning to the analysis of the expressions for 𝑥1 and
𝑥2, we may conclude that there exists a temperature
𝑇𝐹 , at which 𝑥1 and 𝑥2 are real-valued quantities. In
this case, the function arc tanh (𝑝/𝑥2) is no more finite
in the temperature interval between 𝑇𝐹 and 𝑇c and
diverges when approaching the critical point. Until
the quantity 𝑥2 remains complex, the arc tanh func-
tion can be expressed in terms of the trigonometric
arctangent, which is finite. The temperature 𝑇𝐹 can
be easily found by putting the discriminant of the
quadratic equation (22) equal to zero. Its numerical
solution gives 𝑇𝐹 ≈ 2.13 K if the critical temperature
𝑇c ≈ 2.18 K. One can see that this is a very narrow
interval, which can be interpreted as a fluctuation
one, i.e. when the fluctuations of the Bose condensate
becomes comparable with its amount. It can also be
considered as a region similar to the Ginzburg region,
where the perturbation calculation method fails. In
any case, in the framework of our approach, we can-
not draw any proper conclusion about the effective
mass in this narrow interval. Other methods, e.g., the
renorm-group approach, are required to analyze this
region. The numerical analysis testifies that the con-
tribution Δ∞ to the effective mass is very insignifi-
cant at temperatures below 𝑇𝐹 . The analytical form
of this contribution to the right-hand side of Eq. (11)
is as follows:

𝑝40κ
6𝜋2𝜌(1 + κ)

ln |𝑥1/𝑥2|
(𝑥1 − 𝑥2)

. (26)

4. Calculations at Critical Point

In order to elucidate the divergence character of the
quantity Δ∞/𝑝2, regarded as a function of 𝑝, at
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the critical point, let us make calculations in this
case. Let us return to formula (20) and put 𝑇 = 𝑇c

in it, which means that 𝑛0 = 0. Then,

Δ∞=
𝑝20κ𝑝2

2𝜋2𝛽𝜌

1∫︁
0

𝑑𝑎

∞∫︁
0

𝑥𝑎2𝑑𝑥

(𝑥2 − 𝑎2)[(1 + κ)𝑥𝑝+ 𝛾]
+ 𝑜(𝑝2).

(27)

Again, let us factorize the denominator of the inte-
grand, expand the resulting integrand in simple frac-
tions, and integrate over the variable 𝑥. As a result,
we obtain

Δ∞ =
𝑝20κ𝑝2

2𝜋2𝛽𝜌(1 + κ)

1∫︁
0

𝑎2𝑥0 ln |𝑎/𝑥0|
𝑎2𝑝2 − 𝑥2

0

𝑑𝑎+ 𝑜(𝑝2),

where 𝑥0/𝑝 is a root of the equation

(1 + κ)𝑥𝑝+ 𝛾 = 0,

and 𝑥0 = −𝛾/(1 + κ). Changing the variables,
𝑎/|𝑥0| = 𝜉, in the integral above, we have

Δ∞ =
𝑝20κ𝑥2

0𝑝

2𝜋2𝛽𝜌(1 + κ)

1/|𝑥0|∫︁
0

𝜉2 ln 𝜉

𝜉2 − 1
+ 𝑜(𝑝2) =

= − 𝑝20κ𝑥2
0𝑝

2𝜋2𝛽𝜌(1 + κ)

1/|𝑥0|∫︁
0

𝜉2 ln 𝜉𝑑𝜉 + 𝑜(𝑝2), (28)

since 1/ |𝑥0| ∼ 𝑝 (𝑝 → 0). As a result, we obtain

Δ∞=
𝑝20κ𝑝2

18𝜋2𝛽𝜌(1 + κ)|𝑥0|

(︂
1− 3 ln

⃒⃒⃒⃒
𝑝

𝑥0

⃒⃒⃒⃒)︂
+𝑜(𝑝2).

Hence, we showed that the quantity Δ∞/𝑝2 di-
verges at the critical point as ln |𝑝| (𝑝 → 0). Such a
singularity is typical of critical phenomena. It can be
interpreted as a consequence of the expansion of the
one-particle spectrum of a Bose liquid in a vicinity of
the critical point:

~2𝑝2

2�̄�

(︂
𝑝

𝑝

)︂2−𝜂

=
~2𝑝2

2�̄�

(︂
𝑝

𝑝

)︂2
𝑒−𝜂 ln(𝑝/𝑝) =

=
~2𝑝2

2�̄�

(︂
1− 𝜂 ln

(︂
𝑝

𝑝

)︂)︂
+ 𝑜 (𝜂) , (29)

where 𝜂 is the small critical index, and 𝑝 a character-
istic scale of the wave vector in a vicinity of the criti-
cal point. Taking into account that only the quantity

Δ∞ gives a non-zero contribution to the one-particle
spectrum of a Bose liquid at the critical point, we ob-
tain the following equation for the determination of
𝜂 and 𝑝:

𝑝20κ𝑝2

18𝜋2𝛽𝜌(1 + κ)|𝑥0|

(︂
1− 3 ln

⃒⃒⃒⃒
𝑝

𝑥0

⃒⃒⃒⃒)︂
=

=
𝑝2

𝑝20𝛽

(︂
1− 𝜂 ln

(︂
𝑝

𝑝

)︂)︂
. (30)

From whence, we have

𝜂 =
4

3𝜋2
≈ 0.135,

𝑝 = |𝑥0| exp
(︂
𝜂 − 3

3𝜂

)︂
≈ 1.68· 10−3 Å

−1
.

(31)

The result for the small critical index 𝜂 was ob-
tained for the first time in works [28,29]. The cited au-
thors used a method of expansion in reciprocal powers
of the order parameter dimensionality. The random-
phase approximation reproduces only the first term
of this expansion. Therefore, it is no wonder that the
result obtained for the small critical index differs from
the result of Monte-Carlo simulations [30].

5. Calculations at Above-Critical
Temperatures

At temperatures higher than the critical one, quantity
(15) acquires the form

Δ∞ =
𝑝20𝑧0κ
4𝜋2𝛽𝜌

∞∫︁
0

𝑞𝑑𝑞

𝑞 + 𝛾 arctg
(︁

𝑞
2𝑃0

)︁ ×

×
{︂
𝑞

2𝑝
ln

⃒⃒⃒⃒
𝑃 2
0 + (𝑞 + 𝑝)2

𝑃 2
0 + (𝑞 − 𝑝)2

⃒⃒⃒⃒
− 2𝑞2

𝑃 2
0 + 𝑞2

}︂
, (32)

where 𝛾 = 2𝛾/𝜋. Differentiating it with respect to 𝑝,
integrating the result again over 𝑝, and changing the
order of integration, we obtain

Δ∞ =
𝑝20𝑧0κ
4𝜋2𝛽𝜌

1

𝑝

𝑝∫︁
0

𝑑𝑝

∞∫︁
0

𝑞𝑑𝑞

𝑞 + 𝛾 arctg
(︁

𝑞
2𝑃0

)︁ ×

× 2𝑞𝑝2(𝑞2 − 𝑝2 − 3𝑃 2
0 )

[𝑃 2
0 + (𝑝+ 𝑞)2] [𝑃 2

0 + (𝑝− 𝑞)2] [𝑃 2
0 + 𝑞2]

. (33)

In order to calculate this integral, we symmetrize the
limits of integration over 𝑞, make an analytical con-
tinuation of the integrand into the upper half-plane
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of the complex 𝑞-variable, and close the contour of
integration by a semicircle of radius 𝑅. In the limit
𝑅 → ∞, the integral along the semicircle 𝑅 equals
zero, because the power of the integrand’s denomi-
nator is larger by two than the power of the numer-
ator. As a result, our integral is equal to a sum of
residues at the analytical continuation of the inte-
grand into the upper half-plane times 2𝜋𝑖. Only three
singular points of the integrand fall within this half-
plane: 𝑞 = 𝑝+ 𝑖𝑃0, 𝑞 = −𝑝+ 𝑖𝑃0, and 𝑞 = 𝑖𝑃0. (Note,
by the way, that the multiplier in the denominator
with the arctan function does not equal to zero over
the whole complex 𝑞-plane.) As a result of calcula-
tions, we obtain

Δ∞ =
𝑝20𝑧0κ
4𝜋2𝛽𝜌

𝜋𝑖

2𝑝

𝑝∫︁
0

𝑑𝑝

(︃
2𝑃 2

0

𝑖𝑃0 + 𝛾 arctg(𝑖/2)
+

+
(−𝑝+ 𝑖𝑃0)

2

−𝑝+ 𝑖𝑃0 + 𝛾 arctg
(︁
− 𝑝

2𝑃0
+ 𝑖

2

)︁ +

+
(𝑝+ 𝑖𝑃0)

2

𝑝+ 𝑖𝑃0 + 𝛾 arctg
(︁

𝑝
2𝑃0

+ 𝑖
2

)︁)︃. (34)

Without specifying the subsequent rather simple
transformations, we present the final result for Δ∞:

Δ∞=−2𝜋

𝑝

𝑝∫︁
0

𝑑𝑝

{︂
(𝑓2+𝑃0)(𝑝

2−𝑃 2
0 )−2𝑝𝑃0(𝑓1 + 𝑝)

(𝑓1 + 𝑝)2 + (𝑓2 + 𝑃0)2
+

+
𝑃 2
0

𝑃0 + 𝛾 ln(3)/2

}︂
, (35)

where

𝑓1 =
𝛾

2
arctg

(︂
4𝑝𝑃0

3𝑃 2
0 − 𝑝2

)︂
,

𝑓2 = −𝛾

2
ln

(︃√︀
(3𝑃 2

0 − 𝑝2)2 + 16𝑝2𝑃 2
0

9𝑃 2
0 + 𝑝2

)︃
.

(36)

We expand the expression obtained in a series in the
small parameter 𝑝 and keep only the terms propor-
tional to 𝑝2. As a result, we obtain

Δ∞ = −𝑝20𝑧0κ𝛾
27𝜋𝛽𝜌

×

×
(︀
−9𝛾 ln2(3) + 8𝑃0 + 28𝛾 ln(3)− 16𝛾

)︀
(2𝑃0 + 𝛾 ln(3))3

𝑝2 + 𝑜(𝑝2).

(37)

The corresponding contribution to the right-hand side
of Eq. (11) is as follows:

−𝑝40𝑧0κ𝛾
27𝜋𝜌

(︀
−9𝛾 ln2(3) + 8𝑃0 + 28𝛾 ln(3)− 16𝛾

)︀
(2𝑃0 + 𝛾 ln(3))3

. (38)

With the help of the numerical analysis, one can get
convinced in the smallness of this quantity. Therefore,
its contribution to the effective mass can also be ne-
glected.

6. Analytical Expression for Effective Mass

Taking into account that the quantity Δ∞ gives an
insignificant contribution to the effective mass, which
was demonstrated above, and returning to the calcu-
lation scheme described in work [24], we obtain the
following expression for the effective mass:

�̄� =
𝑚*

(1 + 𝐹 (𝑇 ))
, (39)

where
𝐹 (𝑇 ) = lim

𝑝→0

1

𝑁𝛽𝜀𝑝

∑︁
q̸=0

𝜆𝑞

1 + 𝜆𝑞𝑆0(𝑞)

(︀
𝑒p∇𝑞−1

)︀
×

×
(︂
𝑛𝑞 −

1

𝑧−1
0 (𝛽𝜀𝑞 + 1− 𝑧0)

)︂
, (40)

and ∇𝑞 is the gradient operator.
Let us expand the operator 𝑒p▽𝑞 in a series and

confine the expansion to first three terms, because
they give us the required approximation. Making sim-
ple transformations, changing from summation to in-
tegration, and taking the meaning of notations 𝑝0 and
𝑃0 into account, we obtain the following expression
for the quantity 𝐹 (𝑇 ):

𝐹 (𝑇 ) =
1

2𝜋2𝜌

∞∫︁
0

𝜆𝑞𝑞
2𝑑𝑞

1 + 𝜆𝑞𝑆0(𝑞)

(︃
𝑛𝑞(1 + 𝑛𝑞)×

×
[︂
2

3
𝛽𝜀𝑞(1 + 2𝑛𝑞)− 1

]︂
− 𝑧0(𝛽𝜀𝑞 − 3 + 3𝑧0)

3 (𝛽𝜀𝑞 + 1− 𝑧0)
3

)︃
. (41)

A direct inspection easily verifies that the function
𝐹 (𝑇 ) equals zero in the limits of both low and
high temperatures. Therefore, in those limits, �̄� =
= 𝑚*. Using the results of work [25], we obtain that
lim
𝑇→0

�̄� ≈ 1.7𝑚 and lim
𝑇→∞

�̄� = 𝑚.
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7. Numerical Calculation
of Effective Mass and Heat Capacity

Let us illustrate the obtained result in the graphic
form. For this purpose, we should numerically calcu-
late the ratio 𝑚/𝑚. The corresponding calculation is
self-consistent, because the expression for 𝑚 includes
the quantities 𝑆0(𝑞), 𝜀𝑞, and 𝑛𝑞, which depend, in
turn, on 𝑚. In practice, this situation implies the ap-
plication of an iteration process, which took 3–4 cy-
cles in our case.

The calculations were carried out for the equilib-
rium helium density 𝜌 = 0.02185 Å−3, the parti-

Fig. 3. Temperature dependence of the effective mass of 4He
atom

Fig. 4. Temperature dependence of the heat capacity of liq-
uid 4He: (solid curve) theoretical result obtained taking the
effective mass into account, (circles) experimental data [35–37]

cle mass 𝑚 = 4.0026 amu, and the sound velocity
𝑐 = 238.2 m/s in the limit 𝑇 → 0 [32]. The exper-
imentally measured structure factor 𝑆exp(𝑞) for liq-
uid 4He extrapolated to the temperature 𝑇 → 0 [33]
rather than the Fourier coefficient for the energy of
pairwise interparticle interaction 𝜈𝑞 was used as the
input information.

In Fig. 3, the temperature dependence of the effec-
tive mass of 4He atom calculated in the approxima-
tion of pair interparticle correlations is exhibited. On
its base, using the known formula [34], we also cal-
culated the temperature of the Bose condensation in
liquid 4He. The obtained value is 𝑇c ≈ 2.18 K, which
is very close to the experimental value 𝑇c = 2.168 K.

While calculating the heat capacity, we used ex-
pression (1) for the internal energy of a many-boson
system in the pair correlation approximation. We nu-
merically differentiated it with respect to the temper-
ature. Figure 4 demonstrates the temperature depen-
dence of the heat capacity calculated with regard for
the effective mass.

8. Conclusions

An expression for the temperature dependence of the
effective mass of a 4He atom (in both the normal
and superfluid phases) is obtained. It allows infra-
red divergences, which are typical of critical phenom-
ena, to be eliminated. The expression for the effective
mass is applicable at all temperatures, except for a
narrow fluctuation interval between the temperature
𝑇𝐹 ≈ 2.13 K and the temperature of phase transi-
tion. In the high-temperature limit, as well as when
the interparticle interaction is “switched-off”, the ef-
fective mass transforms into the “seed” mass of a 4He
atom. In the low-temperature limit, we obtain a value
that coincides with the effective mass of a 3He impu-
rity atom in liquid 4He, provided that the “seed” mass
of a 3He atom is substituted by the mass of a 4He one
[18]. In this context, we note that there is no common
opinion concerning the effective mass even at the zero
temperature, to say nothing of a wide temperature in-
terval, because the introduction of this quantity into
consideration is a phenomenological issue and, to a
great extent, depends on the approaches applied for
its calculation [15–17].

The behavior of the heat capacity curve theoreti-
cally calculated with regard for the effective mass is
in much better agreement with the experimental data
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than if without it, in particular, in the supercritical
region [31]. In addition, in comparison with the “bare”
mass, the effective mass obtained in this work gives a
better agreement with the experimental data for the
heat capacity in the temperature interval of about
0.5 K above the phase transition point [25].

The application of the effective mass made it pos-
sible to shift the phase transition point from the
value for the ideal Bose gas to the temperature 𝑇c ≈
2.18 K. As was already mentioned, the latter value is
very close to the experimental one. The “bare” mass
gives rise to 𝑇c ≈ 1.94 K in this case [25].

In the framework of the approach proposed in this
work, we also succeeded in finding the small criti-
cal index 𝜂 in the random-phase approximation. The
obtained value differs rather strongly from the recom-
mended one [30], but simultaneously reproduces the
well-known result of this approximation [28].
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В.С.Пастухов,Р.О.Притула

ЕФЕКТИВНА МАСА АТОМА 4He
В НАДПЛИННIЙ I НОРМАЛЬНIЙ ФАЗАХ

Р е з ю м е

Знайдено вираз для температурної залежностi ефективної
маси атома 4He в надплиннiй i нормальнiй фазах, який до-
зволяє усунути iнфрачервонi розбiжностi i є застосовним
при всiх температурах за винятком вузької флуктуацiйної
областi 0,97 . 𝑇/𝑇𝑐 ≤ 1. В границi високих i низьких тем-
ператур, а також в границi виключення взаємодiї, отрима-
ний вираз дає вiдомi результати. На основi ефективної маси
розраховано хiд кривої теплоємностi, а також знайдено тем-
пературу фазового переходу 𝑇𝑐 ≈ 2,18 K. Використовуючи
запропонований в роботi пiдхiд, отримано значення мало-
го критичного iндексу 𝜂 в наближеннi хаотичних фаз, яке
вiдтворює вже вiдомий результат цього наближення.
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