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We discuss a manifestly covariant way of arriving at the quantization rules based on the
causality, with no reference to Poisson or Peierls brackets of any kind.
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1. Introduction

The canonical quantization of dynamical systems re-
places classical dynamical variables by operators, and
classical Poisson brackets by commutators such that
the Correspondence Principle is satisfied. This proce-
dure comes with some “drawbacks”. On the one hand,
it is not manifestly covariant, which is unappealing
in relativistic theories. On the other hand, it masks
the importance of measurements in quantum the-
ory. These “shortcomings” can be circumvented via
Peierls brackets [1], a manifestly covariant generaliza-
tion of Poisson brackets. In this approach, the roles of
elementary and complete measurements in quantum
theory are prominent [2].

In this note, we discuss a way of arriving at the
quantization rules based on the Causality Principle,
with no reference to the Poisson or Peierls brackets
of any kind. We use DeWitt’s condensed notations
[2]. We focus on bosonic theories. A generalization to
superclassical systems with Grassmann valued vari-
ables is straightforward.

2. Classical Fields

Let 𝑆[𝜑] be a real local action functional for a classical
dynamical system described by a set of real variables
𝜑𝑖. The classical dynamical equations of motion read

𝑆,𝑖[𝜑] = 0. (1)
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Here, 𝑖 is a generic index, which combines a discrete
label for the field components and a continuous label
for the space-time points, which the field 𝜑𝑖 depends
on. The left-hand side of (1) is the first functional
derivative of 𝑆[𝜑]. Repeated indices imply summa-
tion and integration. We will omit the arguments of
classical functionals; thus, 𝑆 stands for 𝑆[𝜑], where
𝜑𝑖 is an arbitrary solution of (1) so long as it is not a
singular point of the functional 𝑆.

Consider the case where the continuous matrix
𝑆,𝑖𝑗 is nonsingular, i.e., there is no constraint and,
therefore, the action does not possess any infinite-
dimensional invariance group. Here, the following re-
marks are in order. First, the notion of a constraint
is understood in the context of a “gauge algebra”
[3]. Second, while the nonsingularity for a finite ma-
trix implies that it has no null eigenvalue, the notion
of eigenvectors and eigenvalues is subtle for continu-
ous matrices. Thus, the equation

𝑆,𝑖𝑗 𝑓 𝑖 = 0 (2)

has nontrivial solutions even if 𝑆,𝑖𝑗 is nonsingular. As
a general rule, a continuous matrix can be consid-
ered nonsingular if it has no eigenvector with a null
eigenvalue, either vanishing outside a limited region
of the space-time or quadratically integrable. In (2),
𝑓 𝑖 satisfies neither of these conditions.

Since 𝑆,𝑖𝑗 is a nonsingular matrix, it can be in-
verted. The inversion depends on boundary condi-
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tions. For example, the advanced and retarded Green
functions 𝐺+𝑖𝑗 and 𝐺−𝑖𝑗 satisfy the following equa-
tions and boundary conditions:

𝑆,𝑖𝑘 𝐺+𝑘𝑗 = −𝛿𝑖
𝑗 ; 𝐺+𝑖𝑗 = 0, 𝑖 > 𝑗, (3)

𝑆,𝑖𝑘 𝐺−𝑘𝑗 = −𝛿𝑖
𝑗 ; 𝐺−𝑖𝑗 = 0, 𝑗 > 𝑖, (4)

𝐺+𝑖𝑗 = 𝐺−𝑗𝑖. (5)

Here, the delta-symbol 𝛿𝑖𝑗 is understood to contain a
space-time delta-function. The symbol “>” means “is
in the future with respect to".

3. Operators

Quantization amounts to replacing the classical real-
valued variables 𝜑𝑖 by Hermitian operators Φ𝑖, which,
in general, do not commute. Therefore, ambiguities
arise in the quantum dynamical equations of motion

𝑆,𝑖[Φ] = 0, (6)

which need not have the classical form. These ambi-
guities in products of operators must be resolved by
means of their symmetrization. In other words, a real
functional 𝑍𝑖𝑗 must exist such that[︀
Φ𝑖,Φ𝑗

]︀
= 𝑖 𝑍𝑖𝑗 [Φ]. (7)

Consider a linear theory described by the action

Σ =
1

2
𝑆,𝑖𝑗 Φ𝑖 Φ𝑗 (8)

and the commutation relations[︀
Φ𝑖,Φ𝑗

]︀
= 𝑖 Ω𝑖𝑗 [Φ]. (9)

In this theory, there is no ambiguity in the quantum
dynamical equations of motion, as they are linear:

𝑆,𝑖𝑗 Φ𝑗 = 0. (10)

From (9) and (10), we get

𝑆,𝑖𝑘 Ω𝑘𝑗 [Φ] = 0. (11)

Then it follows that the functional Ω𝑖𝑗 does not de-
pend on Φ𝑖 or else Eq. (11) would be a constraint,
which would contradict our prior assumptions. So, we
have

𝑆,𝑖𝑘 Ω𝑘𝑗 = 0, Ω𝑖𝑗 = −Ω𝑗𝑖, (12)

where Ω𝑖𝑗 must be constructed solely from 𝑆,𝑖𝑗 and/or
its inverse operators, and we conclude that it is a
linear combination of the real Green functions of 𝑆,𝑖𝑗 .

4. Action Variations

Consider an infinitesimal variation in the functional
form of the action:

𝑆 → 𝑆 + 𝛿𝑆, (13)

where 𝛿𝑆 vanishes outside a limited region of the
space-time. Such a variation can be thought of as
describing a measurement process in the “quantum
system + macroapparatus” (see [2] for details). Then
the new dynamical equations of motion

𝑆,𝑖𝑗 𝛿Φ𝑗 = −𝛿𝑆,𝑖𝑗 Φ𝑗 (14)

must be solved, by assuming the retarded boundary
conditions in accordance with the Causality Principle,
i.e.,

𝛿Φ𝑖 = 𝐺−𝑖𝑗 𝛿𝑆,𝑗𝑘 Φ𝑘. (15)

Therefore,

𝛿Ω𝑖𝑗 = −𝑖
(︀[︀
𝛿Φ𝑖,Φ𝑗

]︀
+

[︀
Φ𝑖, 𝛿Φ𝑗

]︀)︀
=

= 𝐺−𝑖𝑘 𝛿𝑆,𝑘𝑙 Ω
𝑙𝑗 +Ω𝑖𝑘 𝛿𝑆,𝑘𝑙 𝐺

+𝑙𝑗 , (16)

where we have used (5).
Equation (16) implies that Ω𝑖𝑗 has a definite

transformation property under the action variations
(13). On the one hand, we concluded in the previous
section that Ω𝑖𝑗 is a linear combination of the real
Green functions. On the other hand, there are only
two real inverse matrices, namely, 𝐺±𝑖𝑗 , with definite
transformation properties determined by their kine-
matics (3) and (4):

𝛿𝐺±𝑖𝑗 = 𝐺±𝑖𝑘 𝛿𝑆,𝑘𝑙 𝐺
±𝑙𝑗 . (17)

Therefore, Ω𝑖𝑗 must be a linear combination of 𝐺±𝑖𝑗 .
With regard for (12), (16), and (17), we get

Ω𝑖𝑗 = 𝛼
(︀
𝐺+𝑖𝑗 −𝐺−𝑖𝑗

)︀
, (18)

where 𝛼 is a constant and does not depend on the
functional form of 𝑆. So, we have the following com-
mutation relations:[︀
Φ𝑖,Φ𝑗

]︀
= 𝑖 𝛼

(︀
𝐺+𝑖𝑗 −𝐺−𝑖𝑗

)︀
. (19)

To match the experimental data, 𝛼 must be Planck’s
constant ~.
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5. Concluding Remarks

The above argument, which employs neither Poisson
nor Peierls brackets, can be generalized to constrained
systems along the lines of [2] and also to interacting
nonlinear systems along the lines of [4]. For a recent
discussion on the quantization of non-Lagrangian sys-
tems, see, e.g., [5] and references therein.
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ПРАВИЛА КВАНТУВАННЯ
ДЛЯ ДИНАМIЧНИХ СИСТЕМ

Р е з ю м е

Обговорюється загальноковарiантний спосiб отримання
правил квантування, заснований на причинностi без вико-
ристання дужок Пуассона або Пайерлса будь-якого виду.
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