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NONLINEAR DIFFUSION IN THE LIQUID
SOLUTION OF DIETHYL ETHER WITH CHLOROFORMPACS 66.10.c, 66.30.Ny

Nonlinear diffusion in the binary liquid solution of diethyl ether with chloroform accompanied
by a complex formation reaction has been considered. It is shown that the account for the
possibility of the [A1B1] complex formation can explain the nonlinear concentration dependence
of the mutual diffusion coefficient. The calculation results are compared with the results of
other approaches. A nonlinear modification of Fick’s law was demonstrated to provide the best
description of experimental results, i.e. it gives the smallest average relative deviation.
K e yw o r d s: nonlinear diffusion, mutual diffusion coefficient, complex formation, diethyl
ether, chloroform.

1. Introduction

Diffusive mass transfer can be met in plenty of chem-
ical and technological processes, where it plays an
important role [1, 2]. Therefore, the correct determi-
nation of diffusion laws is not only important from
the theoretical viewpoint, but it also has a practical
value.

Transfer phenomena in solutions are closely asso-
ciated with the liquid structure and its modifications
owing to the dissolution. Difficulties associated with
taking the interaction between molecules into account
still do not allow the theory of solutions to be devel-
oped to a level reached in the gas and solid-state theo-
ries [3]. It was the absence of a comprehensive theory
of liquids that resulted in the existing variety of ap-
proaches to the description of the mutual diffusion in
liquid molecular solutions [4–18].

The presence of rather strong directed intermolecu-
lar interactions between the components of a solution
can give rise to the formation of associates and com-
plexes [19]. An idea concerning the influence of chem-
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ical transformations on the properties of a solution
was put forward for the first time by D.I. Mendeleev
and formed a basis of his doctrine concerning the solu-
tions [20]. This idea enriched with new concepts, new
methods of the intermolecular interaction theory, and
new capabilities of experimental studies of solutions
is widely used and developed today [21].

The associate (complex) can be defined as a group
of molecules in a liquid system with certain inter-
nal (spatial, orientational) structure resulted from
the formation of intermolecular bonds, the lifetime of
which exceeds the period of intermolecular vibrations
at least by an order of magnitude. Groups formed by
molecules of the same kind will be called associates,
and groups formed by molecules of various kinds will
be called complexes 1 [19, 22].

The influence of the association and the formation
of complexes on the mutual diffusion process in liquid
solutions can be taken into account in the framework
of a nonlinear modification of Fick’s law [24,25]. This

1 This terminology is rather convenient, but not stan-
dard. Another terminology can also be found in the liter-
ature [23].
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work was aimed at the application of the given ap-
proach to describe the concentration dependence of
the mutual diffusion coefficient in the liquid solution
of diethyl ether with chloroform and at the quantita-
tive comparison of the results obtained with the avail-
able theories, in particular, those in [5,7,9,11,13,17].

2. Main Approaches
to Mutual Diffusion Description

The classical Fick’s law couples a flux of particles with
the gradient of their concentration:

j1 = −𝐷12∇𝑐1, (1)

where 𝐷12 is the Fick mutual diffusion coeffici-
ent. Numerous experimental researches testify to a
strong dependence of the latter on the concentrati-
on. Therefore, a lot of attempts were made to explain
this dependence [4–18].

From the viewpoint of nonequilibrium thermody-
namics, the gradient of the chemical potential is a
driving force of the mass transfer processes. At a con-
stant temperature and pressure, the particle flux can
be written as follows [26]:

j1 = −𝐷0𝑐1
𝑅𝑇

∇𝜇1. (2)

The chemical potential of a solution component can
be presented in the form

𝜇1 = 𝜇0
1 +𝑅𝑇 ln 𝑎1, (3)

where 𝑎1 is the activity of component 1 (for an ideal
solution, the activity 𝑎1 of the component is equiva-
lent to its molar fraction 𝑥1). Substituting expression
(3) into Eq. (2) allows the flux to be rewritten as
follows:

j1 = −𝐷0

(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
∇𝑐1. (4)

A comparison with Fick’s law gives the following ex-
pression for the mutual diffision coefficient:

𝐷12 = 𝐷0

(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
. (5)

Schreiner was the first who obtained this expression
for the mutual diffusion coefficient in 1922 [27].

The parameter 𝐷0 in Eq. (5) can be regarded as
an effective mobility of the particle, and the multi-
plier

(︁
𝜕 ln 𝑎1

𝜕 ln 𝑥1

)︁
as a thermodynamic factor that takes

into account the action of a “force” on a diffusing
molecule owing to the presence of the chemical po-
tential gradient. Equation (4) is derived by suppos-
ing that a particle moves in the continuous motion-
less medium. Taking into account that the solvent
molecules also participate in the diffusive transfer
brings us to the well-known Darken expression [5]

𝐷12 = (𝐷*
1𝑥2 +𝐷*

2𝑥1)

(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
, (6)

where 𝐷*
1 and 𝐷*

2 are the diffusion coefficients of
labeled particles.(the tracer diffusion coefficients) 2.
The tracer diffusion coefficient, as well as the coeffi-
cient of mutual diffusion, can be a function of the so-
lution content (concentration) [28]. The application
of tracer self-diffusion coefficients is possible only if
they can be associated with the motion of a separate
particle, which is correct only if the particles do not
interact with one another. The interaction between
particles results in that the motion of particles be-
comes correlated, so that it is necessary to take into
account such effects as the formation of complexes.

The Darken equation (6) effectively describes the
coefficients of mutual diffusion only in metal alloys
and in solutions close to ideal omes. Despite that, this
equation became a basis for many interpolation sche-
mes. In particular, the mutual diffusion coefficients
rather than the tracer ones are used for infinitely di-
luted solutions, together with an additional averaging
over the values of viscosity [1].

Using the model of local composition for binary
solutions, Li et al. [13] modified Darken’s expression
for the mutual diffusion coefficient as follows:

𝐷 =

(︂
𝜑22𝑉

𝑉2
𝐷*

1 +
𝜑11𝑉

𝑉1
𝐷*

2

)︂(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
, (7)

Here, 𝜑𝑖𝑖 are the so-called local volume fractions; and
𝑉1, 𝑉2, and 𝑉 are the molar volumes of components 1

2 The concept of tracer diffusion coefficient is more general
than that of self-diffusion. It concerns the diffusion of labeled
component in a homogeneous (not only one-component) mix-
ture [1, 28]. In the case of binary mixture, the limiting value
of tracer diffusion coefficient coincides with the the self-
diffusion coefficient: 𝐷*

1(𝑥1 → 1) = 𝐷0
1 at 𝑥1 → 1; and

with the coefficient of mutual diffusion in the infinitely di-
luted solution: 𝐷*

1(𝑥1 → 0) = 𝐷0
12 at 𝑥1 → 0.
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and 2 and the solution, respectively. The expediency
of changing to the local volume fractions follows from
the local composition concept of Wilson [29], because
the local composition considerably differs from the
macroscopic one (this is a manifestation of various
interactions, including the association). According to
Wilson, the local volume fractions are defined as fol-
lows:

𝜑11 =
𝑥1

𝑥1 + 𝑥2Λ12
, 𝜑11 =

𝑥2

𝑥2 + 𝑥1Λ21
. (8)

Here, Λ𝑖𝑗 are the Wilson parameters, which can be
determined from experiments. In order to predict the
behavior of the mutual diffusion coefficient (7), the
tracer ones 𝐷*

𝑖 also have to be known. However, in
work [13], it was assumed that the molecules of both
kinds diffuse not individually, but as a part of clus-
ters, the dimensions of which depend on the solution
concentration, and the following expression for the
tracer diffusion coefficients was obtained:

𝐷*
𝑖 =

𝐷0
𝑖 𝜂𝑖
𝜂

(︂
𝑛0
𝑖

1 + (𝑛0
𝑖 − 1)𝑥𝑖

)︂1/2
, 𝑖 = 1, 2. (9)

Here, 𝐷0
𝑖 is the self-diffusion coefficient of the 𝑖-th

component; 𝜂𝑖 and 𝜂 are the viscosity coefficients of
the 𝑖-th component and the solution, respectively;
and 𝑛0

𝑖 are the sizes of clusters of diffusing particles
in the case of self-diffusion, which equal

𝑛0
1 =

(︂
𝜂2𝐷

0
21

𝜂1𝐷0
1

)︂1/2
, 𝑛0

2 =

(︂
𝜂1𝐷

0
12

𝜂2𝐷0
2

)︂1/2
, (10)

where 𝐷0
12 = 𝐷12(𝑥1 → 0) and 𝐷0

21 = 𝐷12(𝑥1 → 1)
are the mutual diffusion coefficients in the infinitely
diluted solutions.

In works by Moggridge and D’Agostino [17, 30, 31],
the expression for the Darken mutual diffusion coef-
ficient was generalized, by using the ideas of the crit-
ical phenomenon theory. In a vicinity of the critical
point, the temperature dependence of the diffusion
coefficient is given by the expression

𝐷12 = 𝐷0

(︂
𝑇 − 𝑇𝑐

𝑇𝑐

)︂𝛼
, (11)

where 𝑇𝑐 is the critical temperature, 𝐷0 a tempera-
ture-independent constant, and 𝛼 = 0.62÷0.685 is
a parameter of the theory with a value slightly de-
pending on the approach. In the framework of works

[17, 30, 31], the thermodynamic factor has a simple
temperature dependence(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
=

(︂
𝑇 − 𝑇𝑐

𝑇

)︂
. (12)

This equation is correct, if the excess Gibbs energy is
almost independent of the temperature (rather often,
the assumption that the temperature interval is nar-
row turns out enough for this purpose, because the
entropic term dominates, as a rule).

Supposing that expressions (11) and (12) are valid
and comparing them with Eq. (5), Darken’s expres-
sion (6) can be modified, so that the mutual diffusion
coefficient looks like [30]:

𝐷12 = (𝑥1𝐷
*
2 + 𝑥2𝐷

*
1)

(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂𝛼
. (13)

The transformation of Eq. (6) into Eq. (13) is not
strictly proved, but Eq. (13) made it possible to de-
scribe the concentration dependence of mutual dif-
fusion coefficients in some systems with a reasonable
accuracy [17]. However, it turned out inapplicable for
strongly associated systems, in particular, for alcohol
solutions in nonpolar solvents, as well as acetone–
chloroform solutions. For those systems, the associ-
ation effects [32, 33] have to be taken into conside-
ration.

There are a number of approaches for the descrip-
tion of the mutual diffusion coefficient, whiich are
based on the Eyring kinetic theory [4, 7, 9, 11, 12, 16,
18]. According to those theories, it is supposed that
the diffusion process can be described similarly to the
monomolecular reaction, by including the transient
formation of such a configuration of a particle and its
environment that can be considered as an activated
state. During its motion, the solute molecule should
overcome a potential barrier between two equilibrium
states corresponding to two neighbor molecule posi-
tions. The mutual diffusion coefficient in ideal solu-
tions is written as follows:

𝐷 = 𝜆2𝑘, (14)

where 𝜆 is the distance between two neighbor posi-
tions, and 𝑘 is the hopping frequency. For nonideal
solutions, expression (14) has to be multiplied by the
thermodynamic factor [34],

𝐷12 = 𝜆2𝑘eff = 𝜆2𝑘

(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
. (15)
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Equations (14) and (15) were derived supposing the
solvent to be at rest. The account of solute molecule
jumps gives rise to the following expression, which
was theoretically substantiated by Cullinan [35]:

𝐷12 = (𝐷𝑜
12)

𝑥2(𝐷𝑜
21)

𝑥1

(︂
𝜕 ln 𝑎1
𝜕 ln𝑥1

)︂
. (16)

Equation (14) was obtained for the first time em-
pirically by Vignes, while studying the concentra-
tion behavior of the mutual diffusion coefficient for
a set of mixtures [7]. As a rule, the Vignes equation
gives good results for ideal (or close to ideal) solu-
tions. For strongly nonideal solutions, this equation
gives values that considerably differ from experimen-
tal ones. However, along with the Darken equation,
the Vignes one is widely applied as a basis for empir-
ical modifications.

The main shortcoming of expressions, in which the
thermodynamic factor is used, is the absence of pro-
cedures to calculate the latter or, to be more spe-
cific, the absence of a general thermodynamic model
for the determination of the excess Gibbs energy,
which the thermodynamic factor is connected with
[29]. Therefore, even if using either of the Darken
and Vignes expressions, the application of various
thermodynamic models gives rise to different results
[11, 16, 18].

In the general case, the equilibrium distances
passed by particles (of both the solute and the sol-
vent) within the jump time are not equal, 𝜆1 ̸= 𝜆2. A
generalization to this case was made by He [9], who
obtained the following expression:

𝐷12 =
(︀
𝐷0

12

)︀𝑥2
(︀
𝐷0

21

)︀𝑥1
(𝑥2𝜉

𝑥1
1 + 𝑥1𝜉

𝑥2
2 ), (17)

where 𝜉1 and 𝜉2 are empirical constants. The analy-
sis of more than thirty binary mixtures showed that
the He equation gives better results than the Vignes
one. However, the scope of its application is rather
limited: it is inapplicable for strongly associated sys-
tems, such as solutions of water, alcohols, and aniline,
with binary alcohol solutions being an exception.

The Eyring theory was further developed by Hsu
and Chen in a model called UNIDIF [11]. The ex-
pression obtained for the mutual diffusion coefficient
turned out identical to Eq. (14), but the distance be-
tween neighbor equilibrium positions, 𝜆12, should be
taken as a geometrical mean with respect to the con-

centration:

𝜆12 = 𝜆𝑥2
1 𝜆𝑥1

2 . (18)

In turn, the hopping frequency 𝑘12 should be deter-
mined as

ln 𝑘12 = 𝑥1

(︂
𝜕 ln 𝑘𝑎𝑚
𝜕𝑥2

+ 𝑥2
𝜕 ln 𝑘𝑎𝑚
𝜕𝑥1

)︂
. (19)

The hopping frequency of molecules between equilib-
rium positions, 𝑘𝑎𝑚, is determined in accordance with
the lattice model of the solution,

𝑘𝑎𝑚 =

𝑛∏︁
𝑖=1

(︂
𝑘B𝑇

2𝜋𝑀𝑖

)︂𝑥𝑖
2

exp

⎛⎝𝑁𝐶

2𝑘B𝑇

𝑛∑︁
𝑖=1

𝑥𝑖𝑞𝑖

𝑛∑︁
𝑗=1

𝑈𝑗𝑖𝜃𝑗𝑖

⎞⎠,
(20)

where 𝑁𝐶 is the coordination number, 𝑞𝑖 the surface
area of the 𝑖-th component, 𝑈𝑗𝑖 the potential energy
of interaction between the 𝑗-th and 𝑖-th components,
and 𝜃𝑗𝑖 the parameter of local composition related to
the average fractions of the surface areas of the 𝑖-th
and 𝑗-th components. The parameters in Eq. (20) are
the same as in the UNIQUAC model (see Appendix);
therefore, the model for diffusion was called UNIDIF
by analogy. The mutual diffusion coefficient acquires
the following form:

𝐷12 = (𝐷𝑜
12)

𝑥2(𝐷𝑜
21)

𝑥1 exp

(︂
2

{︂
𝑥1 ln

𝑥1

𝜑1
+ 𝑥2 ln

𝑥2

𝜑2

}︂
+

+2𝑥1𝑥2

{︂
𝜑1

𝑥1

(︂
1− 𝜆1

𝜆2

)︂
+

𝜑2

𝑥2

(︂
1− 𝜆2

𝜆1

)︂}︂
+

+

{︂
𝑥2𝑞1[(1− 𝜃221) ln 𝜏21 + (1− 𝜃222)𝜏12 ln 𝜏12] +

+𝑥1𝑞2[(1− 𝜃212) ln 𝜏12 + (1− 𝜃211)𝜏21 ln 𝜏21]

}︂)︂
, (21)

Here, 𝜑1 and 𝜑2 are the volume fractions of compo-
nents 1 and 2, respectively; the parameters 𝜆1 and 𝜆2

are assumed to be proportional to the cubic root of
the molar volume or to the volume parameter in the
UNIQUAC model; and

𝜏12 = exp

(︂
−𝑁𝐶(𝑈12 − 𝑈22)

2𝑘B𝑇

)︂
,

𝜏21 = exp

(︂
−𝑁𝐶(𝑈21 − 𝑈11)

2𝑘B𝑇

)︂
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are interaction parameters, which are to be fitted in
the UNIDIF model.

An alternative approach to the description of the
mutual diffusion coefficient was proposed by A. Sha-
piro [14]. His theory was called the fluctuation dif-
fusion theory. It is based on the thermodynamics of
irreversible processes, namely, on the Onsager linear
phenomenological theory. According to the latter, the
thermodynamic fluxes that arise in the system are
linear combinations of thermodynamic forces. The
diffusive flux for an 𝑛-component mixture of non-
interacting components is taken in the ordinary form

j𝑖 =

𝑛−1∑︁
𝑗=1

𝐿𝐷,𝑖𝑗X
𝑗
𝐷. (22)

The standard diffusion theory, which is based on the
thermodynamics of nonequilibrium processes, does
not have large advantages at the study of the ordi-
nary diffusion, but it forms a basis for the consider-
ation of phenomena emerging at superposing several
gradients of various origins.

The Shapiro fluctuation theory connects the ma-
trix of phenomenological coefficients L𝐷 with the so-
called transition matrix L𝑇𝑟 in the following way:

L𝐷 = GL𝑇𝑟G
𝑇 , L𝑇𝑟 =

1

2

(︀
L𝑇𝑟 + L𝑇

𝑇𝑟

)︀
. (23)

The matrix G depends on the choice of thermody-
namic fluxes and forces.

In turn, the transition matrix L𝑇𝑟 is a product
of three components: the resistance matrix L𝑅 and
the matrices describing the kinetic, L𝐾 , and ther-
modynamic, L𝑇 , contributions to the diffusive mass
transfer,

L𝑇𝑟 =
1

4
L𝐾L𝑇L𝑅. (24)

In the case of binary diffusion, the dimension of the
kinetic matrix L𝐾 is 2×2. It takes contributions from
the molecular motion into account and is defined as
a diagonal matrix composed of the average molecular
velocities 𝑢𝑖 of various components,

𝐿𝐾,𝑖𝑗 = 𝛿𝑖𝑗𝑢𝑗 , 𝑢𝑗 =

√︃
8𝑅𝑇

𝜋𝑀𝑗
(𝑖, 𝑗 = 1, 2). (25)

The thermodynamic matrix L𝑇 ,

L𝑇 = F−1 (26)

has a dimension of 3 × 2. It is expressed in terms of
the matrix F for the entropy derivatives with respect
to the molar densities 𝑐𝑖 and the internal energy 𝑈 :

𝐹𝑖𝑗 =
𝜕2𝑆

𝜕𝑐𝑖𝜕𝑐𝑗
,

𝐹𝑖,𝑛+1 = 𝐹𝑛+1,𝑖 =
𝜕2𝑆

𝜕𝑐𝑖𝜕𝑈
,

𝐹𝑛+1,𝑛+1 =
𝜕2𝑆

𝜕𝑈2
(𝑖, 𝑗 = 1, 2).

(27)

The resistance matrix L𝑅, the dimension of which
equals 2× 3, involves the resistance to the molecular
motion from other molecules. It is expressed in terms
of the so-called penetration lengths [14],

𝐿𝑅,𝑖𝑗 = 𝛿𝑖𝑗𝑍𝑖(N, 𝑈)−𝑁𝑖
𝜕𝑍𝑖(N, 𝑈)

𝜕𝑁𝑖
,

𝐿𝑅,𝑖,𝑛+1 = −𝑁𝑖
𝜕𝑍𝑖(N, 𝑈)

𝜕𝑈
(𝑖 = 1, ..., 2).

(28)

According to Shapiro, the penetration length is
the average distance of particle displacements, after
which the particle “forgets” its initial velocity. The
penetration lengths can be obtained with the help of
simulation molecular dynamics methods [36] or using
interpolation formulas [15,37]. Since the dependences
of diffusion coefficients on the penetration lengths are
nontrivial, the interpolation formulas should be sim-
ple dependences with a few fittng parameters. In par-
ticular, the following interpolation formulas were used
in works [15, 37]:

𝑍𝑖 =

√︂
𝑀𝑖

𝑀mix
𝐴𝑖 exp(−𝐵1𝑐1 −𝐵2𝑐2),

𝑍𝑖 =

√︂
𝑀𝑖

𝑀mix
𝐴𝑖(1−𝐵1𝑐1 −𝐵2𝑐2 −

−𝐵12𝑐1𝑐2/(𝑐1 + 𝑐2)),

(29)

where 𝑀𝑖 and 𝑀mix are the molar masses of the 𝑗-th
component and the solution, respectively.

According to Shapiro [15], the binary mixture is
characterized by a single parameter 𝐿𝐷, and the mu-
tual diffusion coefficient is written in the form

𝐷12=𝐿𝐷
𝑀mix

𝑀1𝑀2𝑇

(︂
1

𝑥1𝑀2

𝜕 ln𝜇2

𝜕𝑐2
+

1

𝑥2𝑀1

𝜕 ln𝜇1

𝜕𝑐1

)︂
.

(30)
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The main advantage of the fluctuation diffusion the-
ory is its ability to consider multicomponent sys-
tems. However, the determination of the thermody-
namic matrix L𝑇 is a rather laborious procedure. In
addition, a certain thermodynamic model for the
equation of state is required, because the derivatives
of the entropy of a system have to be calculated. At
the same time, the major difficulty is the determina-
tion of the resistance matrix (more precisely, the pen-
etration lengths, which it depends on). The descrip-
tion accuracy of the concentration dependence of the
mutual diffusion coefficient depends on the form of
the interpolation formula for the penetration length
and the number of fitting parameters. The increase
of their number from three to four allowed the con-
centration dependences of the diffusion coefficient to
be described with quite a good accuracy for many so-
lutions with small molecular masses. The exceptions
include strongly associated aqueous and alcohol solu-
tions [15].

3. Account of Complex Formation Processes

Despite that the complexes which are formed, when
one substance is dissolved in the other one, are chem-
ically unstable, they substantially affect the diffusion
process. When such interaction processes are taken
into account, the solution is considered as multicom-
ponent and consisting of unbound (pure) components,
as well as associates and complexes.

The rates of complex formation reactions are so
high that, for a system to come locally to the equilib-
rium state, the time required for that is much shorter
than the characteristic time of the mass transfer (dif-
fusion). Therefore, in multicomponent solutions, the
ordinary diffusion fluxes of pure components can be
considered together with additional fluxes associated
with the mutual diffusion of complexes and asso-
ciates. In the literature, as a rule, additional fluxes
are introduced, which are governed by first Fick’s law
[38–44]. However, if the particles interact with one
another, such fluxes are nonlinear, because the trans-
port of particles of one sort is automatically accom-
panied by the transfer of the particles of the other
sort. In the specific case of interaction of the “ex-
cluded volume” type, the nonlinear equations of mass
transfer were derived in the framework of the lattice
gas model [45–49].

The same expression for the nonlinear flux was used
in works [24, 25] to describe the nonlinear diffusion

kinetics taking the formation of complexes into ac-
count. Considering the mass transfer processes under
conditions of a local chemical equilibrium for every
solution component, it is possible to introduce the
flux by the formula [25]:

j𝑖 =
∑︁
𝑗

𝑑𝑖𝑗 [𝜑𝑖∇𝜑𝑗 − 𝜑𝑗∇𝜑𝑖], (31)

where∑︁
𝑖

𝜑𝑖 = 1, (32)

and the following notations were introduced: 𝜑𝑖 ≡
≡ 𝜑𝑖(r, 𝑡) is the volume fraction of the 𝑖-th substance
in a physically infinitesimal volume centered at the
point r at the time moment 𝑡; and 𝑑𝑖𝑗 = 𝑑𝑗𝑖 are the
mutual diffusion coefficients 3. The expediency of us-
ing the partial volume fractions 𝜑𝑖 ≡ 𝜑𝑖(r, 𝑡) follows
from the fact that the relative motion of various com-
ponents occurs provided that the total volume of the
mixture is constant.

In the framework of this approach, arbitrary multi-
component mixtures can be examined. However, for
the sake of simplification, let us consider a binary
mixture of substances A and B, which can form the
equimolecular complex AB, i.e. the effective mixture
will be ternary. The volume fraction of the complex
in the solution, 𝜑3, is related to the volume fractions
of unbound components as follows:

𝜑3 = 𝐾𝜑1𝜑2, (33)

where 𝐾 is the equilibrium constant.
In the course of diffusion, the molecules of sub-

stance A are transported both separately and as a
component of complex AB. The effective flux regis-
tered in experiment is equal to

jtot1 = j1 + �̄�13j3, (34)

where �̄�13 is the volume fraction of substance A in
the complex. The total volume fraction of the 𝑖-th
substance (both unbound and in the complex) can be
determined as follows:

𝜑tot
𝑖 = 𝜑𝑖 + �̄�𝑖3𝜑3, 𝑖 = 1, 2. (35)

3 In our opinion, it is the coefficients 𝑑𝑖𝑗 that should be re-
ferred to as the mutual diffusion ones, because they are con-
stants, unlike the coefficients 𝐷12 in formulas (5)–(7), (13),
(15)–(17), and (26).
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After substituting the partial fluxes into the total one,
we obtain the expression

jtot1 =

3∑︁
𝑖 ̸=𝑗,𝑖<𝑗

𝑑𝑖𝑗(�̄�1𝑖 − �̄�1𝑗) [𝜑𝑖∇𝜑𝑗 − 𝜑𝑗∇𝜑𝑖]. (36)

Here, �̄�1𝑖 is the volume fraction of substance A in the
other substance, i.e. �̄�11 = 1, �̄�12 = 0, and �̄�13 =
𝑉1/(𝑉1 + 𝑉2).

Flux (34) can be rewritten analogously to first
Fick’s law in the form

jtot1 =

3∑︁
𝑖 ̸=𝑗,𝑖<𝑗

𝑑𝑖𝑗(�̄�1𝑖 − �̄�1𝑗)

[︂
𝜑𝑖

𝜕𝜑𝑗

𝜕𝜑tot
1

−

−𝜑𝑗
𝜕𝜑𝑖

𝜕𝜑tot
1

]︂
∇𝜑tot

1 = −𝐷12

(︀
𝜑tot
1

)︀
∇𝜑tot

1 . (37)

Finally, the mutual diffusion coefficient can be written
as follows:

𝐷12

(︀
𝜑tot
1

)︀
=

3∑︁
𝑖 ̸=𝑗,𝑖<𝑗

𝑑𝑖𝑗(�̄�1𝑗−�̄�1𝑖)

[︂
𝜑𝑖

𝜕𝜑𝑗

𝜕𝜑tot
1

− 𝜑𝑗
𝜕𝜑𝑖

𝜕𝜑tot
1

]︂
=

= 𝑑12𝑤12+𝑑13(1− �̄�13)𝑤13+𝑑23(�̄�23− �̄�13)𝑤23. (38)

4. Results and their Discussion

Let us consider a molecular mixture diethyl ether–
chloroform. Experimental researches of the corre-
sponding diffusion coefficients were made in works
[38, 50].

The hydrogen bond C–H· · ·O between the diethyl
ether and chloroform molecules results in the appear-
ance of an equimolecular complex [A1B1]. Its exis-
tence is confirmed by the research of excess thermo-
dynamic functions [21,51] and by spectroscopic meth-
ods: the nuclear magnetic resonance spectroscopy
[52] and the Rayleigh light scattering [53].

In the framework of our model, the liquid mixture
of diethyl ether with chloroform is considered as a
ternary one (the components A, B, and C are consid-
ered). The experimental curve of the concentration
dependence of the mutual diffusion coefficient at 𝑇 =
25∘C was taken from work [50]. Using the methods
of nonlinear regression analysis and formula (38), the
following optimal values for the parameters entering
the diffusion coefficient 𝐷12 (𝜑

tot
1 ) were determined:

𝑑12 = 4.57 × 10−9 m2/s, 𝑑13 = 4.42 × 10−9 m2/s,
𝑑23 = 0.48 × 10−9 m2/s, 𝐾 = 2.64, and 𝜎 =

Fig. 1. Comparison of the calculated curve with experimental
data

Fig. 2. Concentration profiles of solution components

=

√︃
1
𝑁

𝑁∑︀
𝑖=1

(︀
𝐷exp

𝑖 −𝐷calc
𝑖

)︀2
= 0.024×10−9 m2/s. Those

values were used to plot the concentration depen-
dence of the diffusion coefficient, which was com-
pared with the experimental data (Fig. 1). One can
see that taking the complex formation into account
allowed the experimental data to be described very
accurately. The optimal value of the equilibrium con-
stant for the complex formation process, 𝐾, was used
to plot the concentration profiles of solution compo-
nents (Fig. 2).

The concentration dependence of the mutual diffu-
sion coefficient in the solution diethyl ether–chloro-
form was analyzed in a number of works [9, 11, 13, 15,
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17]. A description quality criterion was the average
relative deviation (ARD) of the calculated quantities
from the corresponding experimental data, which is
defined by the following formula:

ARD =
1

𝑁

𝑁∑︁
𝑖=1

|𝐷calc
𝑖 −𝐷exp

𝑖 |
𝐷exp

𝑖

× 100%. (39)

Table contains the ARD values obtained in the avail-
able approaches and the result of our calculations.
The error values were taken from the original works.

In the majority of approaches (see formulas (6),
(7), (16), (17), and (21)), in order to determine the
mutual diffusion coefficient, one has additionally to
know the limiting values of this parameter in the in-
finitely diluted solution. These values are determined
with the help of empirical formulas or by extrap-
olating experimental data to the region of limiting
concentrations. In addition, the Li model (7) also
requires the values of self-diffusion coefficients, and
Moggridge one (13) the concentration dependences
of the tracer mutual diffusion coefficients for both
components. Therefore, in those cases, a large role in
the description of the mutual diffusion coefficient is
played by the determination accuracy of correspond-
ing quantities.

As one can see from Table, if the number of fit-
ting parameters does not exceeds four, the error
falls within the limits of 0.8–13.5% in various ap-
proaches. Even in the framework of the same ap-
proach, the application of various thermodynamic

No. Approach ARD, % Source

1 Хе 2.3 [9]
2 Li et al. 3.3 [13]
3 Darken + Wilson 13.5 [13]
4 Darken + NRTL 1 [11]
5 Darken + UNIQUAC 3.4 [11]
6 Vignes + NRTL 1.2 [11]
7 Vignes + UNIQUAC 4.5 [11]
8 UNIDIF 0.8 [11]
9 Shapiro and Medvedev 0.9–8 [15]

10 Moggridge a 1.5 [17]
11 Kutsyk, Obukhovsky 0.45

a This quantity was recalculated, because Moggridge’s work
contains only the root-mean-square deviation value 𝜎 = 0.056×
10−9 m2/s.

models for the solution results in different errors,
which is clearly seen for the Darken and Vignes for-
mulas. The thermodynamic models used for the de-
termination of the thermodynamic factor also contain
fitting parameters (see Appendix). Those parameters
can be determined from other experiments, as was
done in the works by Moggridge [17] and Li [13],
where the Redlich–Kister and Wilson, respectively,
models were used. In work by Hsu and Chen [11],
the parameters of NRTL, Eq. (A5), and UNIQUAC,
Eq. (A7), thermodynamic models were determined
from the diffusion data; and the expression in the
UNIDIF model had two fitting parameters.

The Shapiro fluctuation theory gives a very wide
spread of errors, depending on the choice of the equa-
tion of state for the liquid solution. Again, owing to
the absence of an analytical expression for the pene-
tration length 𝑍, interpolation formulas with differ-
ent numbers (three or four) of fitting parameters (29)
were used.

Table demonstrates that our calculations give the
smallest relative deviation, which testifies to the ad-
equacy of the model used to describe the diffusion in
the solution of diethyl ether with chloroform.

5. Conclusions

The account for a possibility of the equimolecular
complex formation in the liquid solution of diethyl
ether with chloroform allowed the concentration de-
pendence of the mutual diffusion coefficient to be ex-
plained. A nonlinear modification of Fick’s law on the
basis of the applied structural model of the solution
made it possible to describe experimental data not
only at the qualitative level, but also at the quantita-
tive one. A comparison of our calculation results with
the results of other approaches shows that the nonlin-
ear diffusion theory together with the application of a
model approach to determine the liquid structure can
be used to describe the concentration dependence of
the diffusion coefficient rather exactly.

APPENDIX А
Determination of the thermodynamic
factor in various models

The thermodynamic factor Γ =
(︁
𝜕 ln 𝑎1
𝜕 ln 𝑥1

)︁
, which is used in ex-

pressions for the mutual diffusion coefficient, is related to the
excess Gibbs energy as follows:

Γ = 1 +
𝑥1𝑥2

𝑅𝑇

(︂
𝜕2𝐺𝐸

𝜕𝑥2
1

+
𝜕2𝐺𝐸

𝜕𝑥2
− 2

𝜕2𝐺𝐸

𝜕𝑥1𝜕𝑥2

)︂
. (A1)
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When differentiating in this formula, the molar fractions 𝑥1

and 𝑥2 should be considered as independent variables.
There are a number of models for the excess Gibbs energy

[29]. Here, we mention only those that were used in the theo-
ries described above for the determination of the mutual diffu-
sion coefficient. Some expressions for the thermodynamic fac-
tors are also quoted in work [54].

1. Wilson’s model (1964)

𝐺𝐸

𝑅𝑇
= −

𝑘∑︁
𝑖=1

𝑥𝑖 ln

𝑘∑︁
𝑗=1

𝑥𝑗Λ𝑖𝑗 , (A2)

where Λ𝑖𝑗 =
𝑉𝑗

𝑉𝑖
exp

(︁
−𝜆𝑖𝑗−𝜆𝑖𝑖

𝑅𝑇

)︁
is the Wilson parameter, and

𝜆𝑖𝑗 is the parameter of the interaction between components 𝑖

and 𝑗. The equation for the binary mixture contains two pa-
rameters, Λ12 and Λ21. At calculations, those parameters are
fitting ones, being determined from any experimental data for
𝐺𝐸 . The thermodynamic factor in this model looks like

Γ = 1−
𝑥1

𝑥1 + Λ12𝑥2
+

𝑥1Λ21

𝑥2 + Λ21𝑥1
−

−𝑥1𝑥2

[︂
Λ12(1− Λ12)

(𝑥1 + Λ12𝑥2)2
+

Λ21(1− Λ21)

(𝑥2 + 𝑥1Λ21)2

]︂
. (A3)

2. NRTL model (Renon and Prausnitz, 1968)

The Renon–Prausnitz equation, which is called the NRTL
(Non-Random Two-Liquid) equation, besides two energy pa-
rameters, the sense of which is similar to that of the Wilson pa-
rameters, contains a third parameter for a binary system. This
parameter characterizes the ordering degree of the molecular
distribution in the solution. The NRTL equation looks like

𝐺𝐸

𝑅𝑇
=

𝑘∑︁
𝑖=1

𝑥𝑖

(︃∑︀𝑘
𝑗=1 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗∑︀𝑘

𝑙=1 𝐺𝑙𝑖𝑥𝑙

)︃
, (A4)

where 𝐺𝑗𝑖 = exp (−𝑎𝑗𝑖𝜏𝑗𝑖), 𝜏𝑗𝑖 =
𝑔𝑗𝑖−𝑔𝑖𝑖

𝑅𝑇
, 𝑎𝑗𝑖 = 𝑎𝑖𝑗 , and

𝑎𝑖𝑖 = 𝜏𝑖𝑖 = 0. In the NRTL model, no restrictions are imposed
on the fitting parameters 𝜏𝑗𝑖, whereas the parameter 𝑎𝑗𝑖 may
vary within an interval of 0.2–0.5. The thermodynamic factor
in the NRTL model looks like

Γ = 1 + 𝑥1𝑥2

(︃
𝜏21 exp (−2𝑎𝜏21)

(𝑥1 + 𝑥2 exp(−𝑎𝜏21))
3
+

+
𝜏12 exp (−2𝑎𝜏12)

(𝑥2 + 𝑥1 exp(−𝑎𝜏12))
3

)︃
. (A5)

3. UNIQUAC model (Abrams and Prausnitz, 1975)

The UNIQUAC (UNIversal QUAsi-Chemical equation) model
by Abrams and Prausnitz combines the local composition con-
cept with the lattice solution theory. The quantity 𝐺𝐸 for the
binary solution has the form

𝐺𝐸

𝑅𝑇
= 𝑥1 ln

𝜑1

𝑥1
+ 𝑥2 ln

𝜑2

𝑥2
−

−
𝑁𝐶

2

(︂
𝑥1𝑞1 ln

𝜑1

𝜃1
+ 𝑥2𝑞2 ln

𝜑2

𝜃2

)︂
−

−𝑥1𝑞1 ln(𝜃1 + 𝜃2𝜏21)− 𝑥2𝑞2 ln(𝜃1𝜏12 + 𝜃2). (A6)

In the case of binary solution, we have six parameters: 𝜏12
and 𝜏21 are fitting ones, 𝑟1 and 𝑟2 are the so-called van der
Waals volumes of molecules, and 𝑞1, 𝑞2 the van der Waals
surfaces of molecules. The coordination number 𝑁𝐶 = 10. The
parameter 𝜃𝑖 = 𝑥𝑖𝑞𝑖

𝑥𝑖𝑞𝑖+𝑥𝑗𝑞𝑗
= 𝑥𝑖𝑞𝑖

𝑞
is the surface fraction of

the 𝑖-th component, and 𝜑𝑖 = 𝑥𝑖𝑟𝑖
𝑥𝑖𝑟𝑖+𝑥𝑗𝑟𝑗

= 𝑥𝑖𝑟𝑖
𝑟

is its volume
fraction. The expression for the thermodynamic factor in the
UNIQUAC model is rather cumbersome:

Γ = 1 + 𝑥1

(︂
(𝑟1 − 𝑟2)

2𝑥2

𝑟2
+

𝑁𝐶𝑞

2

(︂
𝑟1

𝑟
−

𝑞1

𝑞

)︂
×

×
[︂
𝑟2 − 𝑟1

𝑟
−

𝑞1 − 𝑞2

𝑞

]︂
+

𝑞21
𝑞

[︂
1−

2

𝜃1 + 𝜃2𝜏12
+

+
𝜃1

(𝜃1 + 𝜃2𝜏12)
2
+

𝜃2𝜏212
(𝜃2 + 𝜃1𝜏21)

2

]︂
−

−
𝑞1𝑞2

𝑞

[︂
1−

𝜃2𝜏12𝜏21

(𝜃1 + 𝜃2𝜏12)
2
−

𝜃1𝜏12𝜏21

(𝜃2 + 𝜃1𝜏21)
2

]︂)︂
. (A7)

4. Redlich–Kister expansion

Although the local-composition models have fixed numbers
of parameters, they are hardly applicable for strongly non-
ideal systems. On the other hand, the expression for the excess
Gibbs energy can be selected in a form that provides the best
fitting. In particular, the Redlich–Kister expansion looks like

𝐺𝐸 = 𝑥1𝑥2

(︀
𝐴+𝐵(𝑥1 − 𝑥2) + 𝐶(𝑥1 − 𝑥2)

2 +

+𝐷(𝑥1 − 𝑥2)
3)︀, (A8)

Here, 𝐴, 𝐵, 𝐶, and 𝐷 are fitting parameters. Then the ther-
modynamic factor can be written as follows:

Γ = 1−
𝑥2

𝑅𝑇
[2𝐴𝑥1 +𝐵(12𝑥2

1 − 6𝑥1) + 𝐶(48𝑥3
1 − 48𝑥1 +

+10𝑥1) +𝐷(160𝑥4 − 240𝑥3
1 + 108𝑥2

1 − 14𝑥1)]. (A9)
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Translated from Ukrainian by O.I. Voitenko

А.М.Куцик, В.В.Обуховський

НЕЛIНIЙНА ДИФУЗIЯ У РIДКОМУ
РОЗЧИНI ДIЕТИЛОВОГО ЕФIРУ З ХЛОРОФОРМОМ

Р е з ю м е

Розглянуто нелiнiйну дифузiю у бiнарному рiдкому роз-
чинi дiетилового ефiру з хлороформом за умови протiкан-
ня реакцiй комплексоутворення. Показано, що врахування
можливостi утворення комплексу [A1B1] дозволяє пояснити
нелiнiйну концентрацiйну залежнiсть коефiцiєнта взаємної
дифузiї. Результати розрахункiв було порiвняно iз резуль-
татами iнших пiдходiв. Було показано, що нелiнiйна моди-
фiкацiя закону Фiка найкраще описує експериментальнi ре-
зультат, тобто дає найменшу величину середнього вiдносно-
го вiдхилення.
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