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The classical Maxwell electromagnetic field and the Lorentz-type force equations are rederived
in the framework of the Feynman proper time paradigm and the related vacuum field theory
approach. The classical Ampere law origin is rederived, and its relationship with the Feynman
proper time paradigm is discussed. The electron inertia problem is analyzed in detail within the
Lagrangian and Hamiltonian formalisms and the related pressure-energy compensation prin-
ciple of stochastic electrodynamics. The modified Abraham–Lorentz damping radiation force is
derived, and the electromagnetic electron mass origin is argued.
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1. Classical Relativistic
Electrodynamics Models Revisiting:
Lagrangian and Hamiltonian Analysis

1.1. Introductory setting

Classical electrodynamics is nowadays considered [45,
51, 63, 72] as the most fundamental physical theory,
largely owing to the depth of its theoretical foun-
dations and wealth of experimental verifications. In
the work, we describe a new approach to the classi-
cal Maxwell theory, based on a vacuum field medium
model, and reanalyze some of the modern classical
electrodynamics problems related to the description
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of the dynamics of a charged point particle in an ex-
ternal electromagnetic field. We remark here that, as
usual, the term “a charged point particle” means an
elementary material charged particle, whose internal
spatial structure is assumed to be unimportant and is
not taken into account, if the contrary is not specified.

We will discuss the important physical principles,
characterizing the related electrodynamical vacuum
field structure and based on the least action prin-
ciple, for different charged point particle dynamics.
In particular, we will obtain the main classical rela-
tivistic relations characterizing the charge point par-
ticle dynamics by means of the least action principle
within Feynman’s approach to the derivation of the
Maxwell electromagnetic equations and the Lorentz-
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type force. Moreover, for each least action principle
constructed in the work, we describe the correspond-
ing Hamiltonian pictures and present the related en-
ergy conservation laws. Using the developed modified
least action approach, the classical hadronic string
model is analyzed in detail.

As the classical Lorentz force expression with re-
spect to an arbitrary inertial reference frame is re-
lated to many theoretical and experimental controver-
sies, such as the relativistic potential energy impact
into the charged point particle mass, the Aharonov–
Bohm effect [3] and the Abraham–Lorentz–Dirac ra-
diation force [7, 45, 51] expression, the analysis of
its structure subject to the assumed vacuum field
medium structure is a very interesting important
problem, which was discussed by many physicists in-
cluding E. Fermi, G. Schott, R. Feynman, F. Dyson
[22, 23, 26, 28, 33, 77] and many others. Trying to ex-
plain the latter, R. Feynman [28] wrote in his “Lec-
tures on Physics”:

“Now we would like to state the law that replaces
the law 𝐹 = 𝑞v×B for quantum mechanics. It will be
the law that determines the behavior of quantum me-
chanical particles in an electromagnetic field. Since
what happens is determined by amplitudes, the law
must tell us how the magnetic influences affect the
amplitudes; we are no longer dealing with the accel-
eration of the particle. The law is the following: the
phase of the amplitude to arrive via any trajectory
is changed by the presence of a magnetic field by an
amount equal to the integral of the vector potential
along the whole trajectory times the charge of the par-
ticle over Planck’s constant. That is,

Magnetic change in phase = − 𝑞

~

∫︁
A · 𝑑s. (15.29)

If there were no magnetic field there would be a cer-
tain phase of arrival. If there is a magnetic field any-
where, the phase of the arriving wave is increased by
the integral in Eq. (15.29). Although we will not need
to use it for our present discussion, let us mention
that the effect of an electrostatic field is to produce a
phase change given by the negative of the time integral
of the scalar potential :

Electric change in phase = − 𝑞

~

∫︁
𝜑 · 𝑑𝑡.

These two expressions are correct not only for static
fields, but together give the correct result for any elec-

tromagnetic field, static or dynamic. This is the law
that replaces 𝐹 = 𝑞(E+ v ×B).”

To describe the essence of the electrodynamic prob-
lems related to the description of a charged point
particle dynamics under an external electromagnetic
field, let us begin with analyzing the classical Lorentz
force expression

𝑑𝑝/𝑑𝑡 = 𝐹𝜉 := 𝜉𝐸 + 𝜉𝑢×𝐵, (1.1)

where 𝜉 ∈ R is a particle electric charge, 𝑢 ∈ 𝑇 (R3)
is its velocity [2, 9] vector expressed here in the light
speed 𝑐 units,

𝐸 := −𝜕𝐴/𝜕𝑡−∇𝜙 (1.2)

is the corresponding external electric field, and

𝐵 := ∇×𝐴 (1.3)

is the corresponding external magnetic field acting
on the charged particle, which can be expressed in
terms of suitable vector 𝐴 : 𝑀4 → E3 and scalar
𝜙 : 𝑀4 → R potentials. Here, “∇” is the standard
gradient operator with respect to the spatial variable
𝑟 ∈ E3, “×” is the usual vector product in the three-
dimensional Euclidean vector space E3 := (R3, ⟨·, ·⟩),
which is naturally endowed with the classical scalar
product ⟨·, ·⟩. These potentials are defined on the
Minkowski space 𝑀4 ≃ R × E3, which models a
chosen laboratory reference frame 𝒦𝑡. Now, it is
a well-known fact [28, 51, 63, 78] that the force ex-
pression (1.1) does not account for the dual influ-
ence of the charged particle on the electromagnetic
field and should be considered valid only if the par-
ticle charge 𝜉 → 0. This also means that expression
(1.1) cannot be used for studying the interaction be-
tween two different moving charged point particles, as
was pedagogically demonstrated in classical manuals
[28, 51]. Since the classical Lorentz force expression
(1.1) is a natural consequence of the interaction of a
charged point particle with an ambient electromag-
netic field, its corresponding derivation based on the
general principles of dynamics, was profoundly ana-
lyzed by R. Feynman and F. Dyson [22, 23, 28].

Taking this into account, it is natural to reana-
lyze this problem from the classical point of view, in-
volving the Maxwell–Faraday wave theory aspect and
specifying the corresponding vacuum field medium.
Other questionable inferences from the classical elec-
trodynamics theory, which strongly motivated the
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analysis in this work, are related both to an alter-
native interpretation of the well-known Lorenz con-
dition imposed on the four-vector of electromagnetic
observable potentials (𝜙,𝐴) : 𝑀4 → 𝑇 *(𝑀4) and the
classical Lagrangian formulation [51] of the charged
particle dynamics under the action of an external elec-
tromagnetic field. The problem of the mass of an ele-
mentary point charged particle, like an electron, was
inspiring many physicists [46] from the past such as
J.J. Thompson, G.G. Stokes, H.A. Lorentz, E. Mach,
M. Abraham, P.A.M. Dirac, G.A. Schott, and oth-
ers. Nevertheless, their studies have not given rise to
a clear explanation of this phenomenon that stimu-
lated new researchers to tackle it from different ap-
proaches based on new ideas stemming both from the
classical Maxwell–Lorentz electromagnetic theory, as
in [16,28–31,35,36,43,44,48,49,55,57,59,61,62,64,67,
70, 76, 79, 81, 84], and modern quantum field theories
of Yang–Mills and Higgs types, as in [5, 37, 38, 83],
and others, whose recent extensive review was done
in [82].

In the present work, we will mostly concentrate on
the detailed analysis and consequences of the Feyn-
man proper time paradigm [22, 23, 28, 29] subject to
deriving the electromagnetic Maxwell equations and
the related Lorentz like force expression considered
from the vacuum field theory approach developed in
works [10,12–14] and further on its applications to the
electromagnetic mass origin problem. Our treatment
of this and related problems, based on the least action
principle within the Feynman proper time paradigm
[28], has allowed us to construct the respectively
modified Lorentz-type equation for a charged point
particle moving in space and radiating energy. Our
analysis also elucidates, in particular, the compu-
tations of the self-interacting electron mass term in
[55], where a not proper solution to the well-known
classical Abraham–Lorentz [1, 52–54] and Dirac [20]
electron electromagnetic “4/3-electron mass” problem
was proposed. As a result of our scrutinized studying
the classical electromagnetic mass problem, we have
stated that it can be satisfactorily solved within the
classical H. Lorentz and M. Abraham reasonings aug-
mented with the additional electron stability condi-
tion, which was not taken before into account, but
appeared to be very important for balancing the re-
lated electromagnetic field and mechanical electron
momenta. The latter, following recent enough works
[59,70] devoted to analyzing the electron charged shell

model, can be realized within the suggested pressure-
energy compensation principle suitably applied to the
ambient electromagnetic energy fluctuations and the
own electrostatic Coulomb electron energy.

In our investigation, we were in part inspired by
works [18, 21, 43, 44, 70, 82–84] and especially by
[30, 32, 42, 70] devoted to the classical problem of
reconciling gravitational and electrodynamic charges
within the Feynman proper time and zero energy
point paradigms. First, we will revisit the classical
Mach–Einstein relativistic electrodynamics of a mov-
ing charged point particle, and second, we study the
resulting electrodynamic theories, by using the fun-
damental Lagrangian and Hamiltonian formalisms,
which were specially devised in [13, 14, 69].

1.2. Maxwell equations, Lorenz
constraint, and spatial energy flow

In a laboratory reference frame 𝒦𝑡, let us consider the
additional Lorenz condition

𝜕𝜙/𝜕𝑡+ ⟨∇, 𝐴⟩ = 0, (1.4)

the a priori assumed Lorentz invariant wave scalar
field equation

𝜕2𝜙/𝜕𝑡2 −∇2𝜙 = 𝜌, (1.5)

and the charge continuity equation

𝜕𝜌/𝜕𝑡+ ⟨∇, 𝐽⟩ = 0, (1.6)

where 𝜌 : 𝑀4 → R and 𝐽 : 𝑀4 → E3 are, respec-
tively, the charge and current densities of the am-
bient matter. Then one can derive [14, 69] that the
Lorentz-invariant wave equation

𝜕2𝐴/𝜕𝑡2 −∇2𝐴 = 𝐽 (1.7)

and the classical electromagnetic Maxwell field equa-
tions [28, 45, 51, 63, 78]

∇× 𝐸 + 𝜕𝐵/𝜕𝑡 = 0, ⟨∇, 𝐸⟩ = 𝜌,

∇×𝐵 − 𝜕𝐸/𝜕𝑡 = 𝐽, ⟨∇, 𝐵⟩ = 0
(1.8)

hold for all (𝑡, 𝑟) ∈ 𝑀4 with respect to the chosen
laboratory reference frame 𝒦𝑡.

Note that, conversely, Maxwell’s equations (1.8) do
not directly reduce, via definitions (1.2) and (1.3),
to the wave field equations (1.5) and (1.7) with-
out the Lorenz condition (1.4). This fact is very
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important and suggests that when it comes to a
choice of governing equations, it may be reasonable
to replace Maxwell’s equations (1.8) with the Lorenz
condition (1.4) and the charge continuity equation
(1.6). To make the equivalence statement, claimed
above, more transparent, we formulate it as the fol-
lowing proposition.

Proposition 1.1. The Lorentz invariant wave
equation (1.5) together with the Lorenz condition
(1.4) for the observable potentials (𝜙,𝐴) : 𝑀4 →
→ 𝑇 *(𝑀4) and the charge continuity relation (1.6)
are completely equivalent to the Maxwell field equa-
tions (1.8).

Proof. Substituting (1.4) into (1.5), one easily ob-
tains

𝜕2𝜙/𝜕𝑡2 = −⟨∇, 𝜕𝐴/𝜕𝑡⟩ = ⟨∇,∇𝜙⟩+ 𝜌, (1.9)

which implies the gradient expression

⟨∇,−𝜕𝐴/𝜕𝑡−∇𝜙⟩ = 𝜌. (1.10)

With regard for the electric field definition (1.2), ex-
pression (1.10) reduces to

⟨∇, 𝐸⟩ = 𝜌, (1.11)

which is the second of the first pair of Maxwell’s equa-
tions (1.8).

Now applying ∇× to definition (1.2), we find, ow-
ing to definition (1.3), that

∇× 𝐸 + 𝜕𝐵/𝜕𝑡 = 0, (1.12)

which is the first pair of the Maxwell equations (1.8).
Having differentiated Eq. (1.5) with respect to the
temporal variable 𝑡 ∈ R and taking the charge conti-
nuity equation (1.6) into account, we find

⟨∇, 𝜕2𝐴/𝜕𝑡2 −∇2𝐴− 𝐽⟩ = 0. (1.13)

The latter is equivalent to the wave equation (1.7),
if we observe that the current vector 𝐽 : 𝑀4 → E3

is defined by means of the charge continuity equation
(1.6) up to a vector function ∇ × 𝑆 : 𝑀4 → E3.
Applying now the operation ∇× to relation (1.3) with
regard for the wave equation (1.7), we obtain

∇×𝐵 = ∇× (∇×𝐴) = ∇⟨∇, 𝐴⟩ − ∇2𝐴 =

= −∇(𝜕𝜙/𝜕𝑡)− 𝜕2𝐴/𝜕𝑡2 +
(︀
𝜕2𝐴/𝜕𝑡2 −∇2𝐴

)︀
=

=
𝜕

𝜕𝑡
(−∇𝜙− 𝜕𝐴/𝜕𝑡) + 𝐽 = 𝜕𝐸/𝜕𝑡+ 𝐽, (1.14)

which leads directly to

∇×𝐵 = 𝜕𝐸/𝜕𝑡+ 𝐽.

This is the first of the second pair of the Maxwell
equations (1.8). The final “no magnetic charge” equa-
tion

⟨∇, 𝐵⟩ = ⟨∇, ∇×𝐴⟩ = 0,

in (1.8) follows directly from the elementary identity
⟨∇,∇×⟩ = 0, thereby completing the proof. �

This proposition allows us to consider the observ-
able potential functions (𝜙,𝐴) : 𝑀4 → 𝑇 *(𝑀4) as
fundamental ingredients of the ambient vacuum field
medium, by means of which we can try to describe the
related physical behavior of charged point particles
imbedded in the space-time 𝑀4. The following obser-
vation provides a strong support for this approach:

Observation. The Lorenz condition (1.4) actually
means that the scalar potential field 𝜙 : 𝑀4 → R
continuity relation, whose origin lies in some new
field conservation law, characterizes the deep intrin-
sic structure of the vacuum field medium.

To make this observation more transparent and
precise, let us recall the definition [28, 51, 63, 78] of
the electric current 𝐽 : 𝑀4 → E3 in the dynamical
form

𝐽 := 𝜌𝑢, (1.15)

where the vector 𝑢 ∈ 𝑇 (R3) is the corresponding
charge velocity. Thus, the continuity relation

𝜕𝜌/𝜕𝑡+ ⟨∇, 𝜌𝑢⟩ = 0 (1.16)

holds. It can easily be rewritten [56] as the integral
conservation law

𝑑

𝑑𝑡

∫︁
Ω𝑡

𝜌(𝑡, 𝑟)𝑑3𝑟 = 0 (1.17)

for the charge inside of any bounded domain Ω𝑡 ⊂ E3,
moving in the space-time 𝑀4 according to the natural
evolution equation

𝑑𝑟/𝑑𝑡 := 𝑢. (1.18)

Using the above reasoning, we obtain the following
result.

190 ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 3



The classical Maxwell Electrodynamics

Proposition 1.2. The Lorenz condition (1.4) is
equivalent to the integral conservation law

𝑑

𝑑𝑡

∫︁
Ω𝑡

𝜙(𝑡, 𝑟)𝑑3𝑟 = 0, (1.19)

where Ω𝑡 ⊂ E3 is any bounded domain, moving with
respect to the charged point particle 𝜉 evolution equa-
tion

𝑑𝑟/𝑑𝑡 = 𝑢(𝑡, 𝑟), (1.20)

which represents the velocity vector of the related local
potential field changes propagating in the Minkowski
space-time 𝑀4. Moreover, for a particle with the dis-
tributed charge density 𝜌 : 𝑀4 → R, the Umov-type
local energy conservation relation

𝑑

𝑑𝑡

∫︁
Ω𝑡

𝜌(𝑡, 𝑟)𝜙(𝑡, 𝑟)

(1− |𝑢(𝑡, 𝑟)|2)1/2
𝑑3𝑟 = 0 (1.21)

holds for any 𝑡 ∈ R.
Proof. First, consider we the corresponding solu-

tions to the potential field equations (1.5), taking con-
dition (1.15) into account. Owing to the standard re-
sults from [28, 51], we find

𝐴 = 𝜙𝑢, (1.22)

which gives rise to the following form of the Lorenz
condition (1.4):

𝜕𝜙/𝜕𝑡+ ⟨∇, 𝜙𝑢⟩ = 0, (1.23)

This can be rewritten obviously [56] as the integral
conservation law (1.19), so expression (1.19) is stated.

To state the local energy conservation relation
(1.21), it is necessary to combine conditions (1.16)
and (1.23) and to find that

𝜕(𝜌𝜙)/𝜕𝑡+ ⟨𝑢,∇(𝜌𝜙)⟩+ 2𝜌𝜙⟨∇, 𝑢⟩ = 0. (1.24)

We note that the infinitesimal volume transforma-
tion 𝑑3𝑟 = 𝜒(𝑡, 𝑟)𝑑3𝑟0, where the Jacobian 𝜒(𝑡, 𝑟) :=
:= |𝜕𝑟(𝑡; 𝑟0)/𝜕𝑟0| of the corresponding transforma-
tion 𝑟 : Ω𝑡0 → Ω𝑡 induced by the Cauchy problem
for the differential relation (1.20) for any 𝑡 ∈ R satis-
fies the evolution equation

𝑑𝜒/𝑑𝑡 = ⟨∇, 𝑢⟩𝜒, (1.25)

easily following from (1.20). Applying the operator∫︀
Ω𝑡0

(...)𝜒2𝑑3𝑟0 to equality (1.24), we obtain

0 =

∫︁
Ω𝑡0

𝑑

𝑑𝑡

(︀
𝜌𝜙𝜒2

)︀
𝑑3𝑟0 =

𝑑

𝑑𝑡

∫︁
Ω𝑡0

(𝜌𝜙𝜒)𝜒𝑑3𝑟0 =

=
𝑑

𝑑𝑡

∫︁
Ω𝑡

(𝜌𝜙𝜒)𝑑3𝑟 :=
𝑑

𝑑𝑡
ℰ(𝜉; Ω𝑡). (1.26)

Here, we denote the conserved charge 𝜉 :=
:=

∫︀
Ω𝑡

𝜌(𝑡, 𝑟)𝑑3𝑟 and the local energy conserva-
tion quantity ℰ(𝜉; Ω𝑡) : =

∫︀
Ω𝑡
(𝜌𝜙𝜒 )𝑑3𝑟. The latter

quantity can be simplified, owing to the infinites-
imal Lorentz invariance four-volume measure rela-
tion 𝑑3𝑟(𝑡, 𝑟0) ∧ 𝑑𝑡 = 𝑑3𝑟0 ∧ 𝑑𝑡0, where the variables
(𝑡, 𝑟) ∈ R𝑡×Ω𝑡 ⊂ 𝑀4 are, within the present context,
taken with respect to the moving reference frame 𝒦𝑡

related to the infinitesimal charge quantity 𝑑𝜉(𝑡, 𝑟) :=
:= 𝜌(𝑡, 𝑟)𝑑3𝑟, and the variables (𝑡0, 𝑟0)∈R𝑡0 × Ω𝑡0 ⊂
⊂ 𝑀4 are taken with respect to the laboratory ref-
erence frame 𝒦𝑡0 assigned to the infinitesimal charge
quantity 𝑑𝜉(𝑡0, 𝑟0) = 𝜌(𝑡0, 𝑟0)𝑑

3𝑟0. The above-men-
tioned infinitesimal Lorentz invariance relations make
it possible to calculate the local energy conservation
quantity ℰ(𝜉; Ω0) as

ℰ(𝜉; Ω0) =

∫︁
Ω𝑡

(𝜌𝜙𝜒)𝑑3𝑟 =

∫︁
Ω𝑡

(︂
𝜌𝜙

𝑑3𝑟

𝑑3𝑟0

)︂
𝑑3𝑟 =

=

∫︁
Ω𝑡

(︂
𝜌𝜙

𝑑3𝑟 ∧ 𝑑𝑡

𝑑3𝑟0 ∧ 𝑑𝑡

)︂
𝑑3𝑟 =

∫︁
Ω𝑡

(︂
𝜌𝜙

𝑑3𝑟0 ∧ 𝑑𝑡0
𝑑3𝑟0 ∧ 𝑑𝑡

)︂
𝑑3𝑟 =

=

∫︁
Ω𝑡

(︂
𝜌𝜙

𝑑𝑡0
𝑑𝑡

)︂
𝑑3𝑟 =

∫︁
Ω𝑡

𝜌𝜙𝑑3𝑟

(1− |𝑢|2)1/2
, (1.27)

where we took into account that 𝑑𝑡 = 𝑑𝑡0(1−
− |𝑢|2)1/2. Thus, owing to (1.26) and (1.27), the local
energy conservation relation (1.21) is satisfied, prov-
ing the proposition. �

The above-constructed local energy conservation
quantity (1.27) can be rewritten as

ℰ(𝜉; Ω𝑡) =

∫︁
Ω𝑡

𝑑𝜉(𝑡, 𝑟)𝜙(𝑡, 𝑟)

(1− |𝑢|2)1/2
:=

∫︁
Ω𝑡

𝑑ℰ(𝑡, 𝑟), (1.28)

where 𝑑ℰ(𝑡, 𝑟) = 𝑑𝜉(𝑡, 𝑟)𝜙(𝑡, 𝑟)(1 − |𝑢|2)−1/2 is the
electromagnetic field energy density distributed in
vacuum, which is related to the electric charge 𝑑𝜉(𝑡, 𝑟)
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located at a point (𝑡, 𝑟) ∈ 𝑀4. It is worth to mention
that the obtained quantity (1.28), owing to its con-
servation, can be interpreted in the case of a spatially
structured charged particle 𝜉 as the charged particle
rest mass 𝑚0 := ℰ(𝜉;R3)/𝑐2 (in Gauss units). The
latter appeared to be of decisive importance, when
applying the Feynman proper time paradigm [12, 28]
to the analysis of the inertial electron mass prob-
lem within the vacuum field theory approach based
on the Lagrangian least action principle. The related
Lagrangian approach is strongly dependent on Ein-
stein’s important notions of the laboratory 𝒦𝑡 and the
rest 𝒦𝜏 reference frames and on the related least ac-
tion principle. So, before explaining it in more details,
we firstly reanalyze [67] the classical Maxwell electro-
magnetic theory from a strictly dynamical point of
view based on the classical Ampere analysis of its
origin.

1.3. The Ampere law
in electrodynamics – the derivations
of the classical and modified Lorentz forces

The classical ingenious Ampere analysis of two elec-
tric currents magnetically interacting with each other
in thin conductors, as is well known, was based
[28, 51, 63, 78] on the following experimental fact:
the force between two electric currents depends on
the distance between conductors, their mutual spatial
orientation, and the quantitative values of currents.
Having additionally accepted the infinitesimal super-
position principle, A.-M. Ampere had derived a gen-
eral analytical expression for the force between two
infinitesimal elements of the currents under study:

𝑑𝑓(𝑟, 𝑟′) = 𝐼 𝐼 ′
(𝑟 − 𝑟′)

|𝑟 − 𝑟′|2
𝛼(𝑠, 𝑠′;𝑛)𝑑𝑙𝑑𝑙′, (1.29)

where the vectors 𝑟, 𝑟′ ∈ E3 point at infinitesimal
currents 𝑑𝑟 = 𝑠𝑑𝑙, 𝑑𝑟′ = 𝑠′𝑑𝑙′ with the normalized
orientation vectors 𝑠, 𝑠′ ∈ E3 of two closed conduc-
tors 𝑙 and 𝑙′ carrying currents 𝐼 ∈ R and 𝐼 ′ ∈ R,
respectively, and the unit vector 𝑛 := (𝑟− 𝑟′)/|𝑟− 𝑟′|
fixing the spatial orientations of these infinitesimal
elements, and the function 𝛼 : (S2)2 × S2 → R be-
ing some real-valued smooth mapping. In view of the
mutual symmetry between the infinitesimal elements
of the currents 𝑑𝑙 and 𝑑𝑙′ belonging, respectively, to
these two electric conductors, the infinitesimal force
(1.29) was assumed by A.-M. Ampere to satisfy lo-

cally the third Newton law

𝑑𝑓(𝑟, 𝑟′) = −𝑑𝑓(𝑟′, 𝑟) (1.30)

with the mapping

𝛼(𝑠, 𝑠′;𝑛) =
𝜇0

4𝜋
(3𝑘1⟨𝑠, 𝑛⟩⟨𝑠′, 𝑛⟩+ 𝑘2⟨𝑠, 𝑠′⟩), (1.31)

where ⟨·, ·⟩ is the natural scalar product in E3, and
𝑘1, 𝑘2 ∈ R are some still undetermined real and di-
mensionless parameters. The assumption (1.30) is ev-
idently looking very restrictive and can be considered
as reasonable only for a stationary system of conduc-
tors in the case where the principle of mutual action
at a distance [28, 51] can be applied. Owing to him-
self, J.C. Maxwell [17]: “... we may draw the conclu-
sions, first, that action and reaction are not always
equal and opposite, and second, that apparatus may
be constructed to generate any amount of work from
its own resources. For let two oppositely electrified
bodies 𝐴 and 𝐵 travel along the line joining them
with equal velocities in the direction 𝐴𝐵, then if ei-
ther the potential or the attraction of the bodies at a
given time is that due to their position at some for-
mer time (as these authors suppose), 𝐵, the foremost
body, will attract 𝐴 forwards more than 𝐵 attracts
𝐴 backwards. Now let 𝐴 and 𝐵 be kept asunder by
a rigid rod. The combined system, if set in motion in
the direction 𝐴𝐵, will pull in that direction with a
force which may either continually augment the ve-
locity, or may be used as an inexhaustible source of
energy.”

Based on the fact that there is no possibility to
measure the force between two infinitesimal current
elements, A.-M. Ampere took into account (1.30),
(1.31) and calculated the corresponding force exerted
by the whole conductor 𝑙′ on an infinitesimal current
element of another conductor under regard:

𝑑𝐹 (𝑟) :=

∮︁
𝑙′

𝑑𝑓(𝑟, 𝑟′) =

=
𝐼 𝐼 ′𝜇0

4𝜋

∮︁
𝑙′

(𝑟 − 𝑟′)

|𝑟 − 𝑟′|2

(︃
3𝑘1

⟨
𝑑𝑟,

𝑟 − 𝑟′

|𝑟 − 𝑟′|

⟩
×

×

⟨
𝑑𝑟′,

𝑟 − 𝑟′

|𝑟 − 𝑟′|

⟩
+ 𝑘2

𝑟 − 𝑟′

|𝑟 − 𝑟′|
⟨𝑑𝑟, 𝑑𝑟′⟩

)︃
=

=
𝐼 𝐼 ′𝜇0

4𝜋

∮︁
𝑙′

∇𝑟′

(︂
1

|𝑟 − 𝑟′|

)︂
(3𝑘1⟨𝑑𝑟, 𝑟 − 𝑟′⟩×

× ⟨𝑑𝑟′, 𝑟 − 𝑟′⟩+ 𝑘2⟨𝑑𝑟, 𝑑𝑟′⟩), (1.32)
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which can be equivalently transformed as

𝑑𝐹 (𝑟) =
𝐼 𝐼 ′𝜇0

4𝜋

∮︁
𝑙′

∇𝑟′

(︂
1

|𝑟 − 𝑟′|

)︂
×

× (3𝑘1⟨𝑑𝑟, 𝑟 − 𝑟′⟩⟨𝑑𝑟′, 𝑟 − 𝑟′⟩+ 𝑘2⟨𝑑𝑟, 𝑑𝑟′⟩) =

=
𝐼 𝐼 ′𝜇0

4𝜋

∮︁
𝑙′

∇𝑟′

(︂
1

|𝑟 − 𝑟′|

)︂
×

× [𝑘1 (3⟨𝑑𝑟, 𝑟 − 𝑟′⟩⟨𝑑𝑟′, 𝑟 − 𝑟′⟩−

− ⟨𝑑𝑟, 𝑑𝑟′⟩) + (𝑘1 + 𝑘2)⟨𝑑𝑟, 𝑑𝑟′⟩] =

= −𝑘1
𝜇0𝐼

4𝜋

⟨
𝑑𝑟,∇

∮︁
𝑙′

(︂
𝐼 ′𝑑𝑟′

|𝑟 − 𝑟′|

)︂⟩
−

− (𝑘1 + 𝑘2) < ∇,

∮︁
𝑙′

⟨
𝑑𝑟,

𝐼 ′𝑑𝑟′

|𝑟 − 𝑟′|

⟩
, (1.33)

owing to the integral identity∮︁
𝑙′

∇𝑟′

(︂
1

|𝑟 − 𝑟′|

)︂
(3⟨𝑑𝑟, 𝑟 − 𝑟′⟩⟨𝑑𝑟′, 𝑟 − 𝑟′⟩−

− ⟨𝑑𝑟, 𝑑𝑟′⟩) = ⟨𝑑𝑟,∇⟩
∮︁
𝑙′

𝑑𝑟′

|𝑟 − 𝑟′|
, (1.34)

which can be easily checked by means of the integra-
tion by parts. Let us introduce the vector potential

𝐴(𝑟) :=
𝜇0𝐼

′

4𝜋

∮︁
𝑙′

𝑑𝑟′

|𝑟 − 𝑟′|
, (1.35)

generated by the conductor 𝑙′ at the point 𝑟 ∈ E3

belonging to the infinitesimal element 𝑑𝑙 of the con-
ductor 𝑙. The resulting infinitesimal force (1.32) gives
rise to the expression

𝑑𝐹 (𝑟) = 𝑘1(−𝐼 < 𝑑𝑟,∇)𝐴(𝑟) + 𝐼∇⟨𝑑𝑟,𝐴(𝑟)⟩)−

− (2𝑘1 + 𝑘2)𝐼∇⟨𝑑𝑟,𝐴(𝑟)⟩ =

= 𝑘1𝐼𝑑𝑟 × (∇×𝐴(𝑟))− (2𝑘1 + 𝑘2)𝐼∇⟨𝑑𝑟,𝐴(𝑟)⟩ =

= 𝑘1𝐽(𝑟)𝑑
3𝑟×𝐵(𝑟)−(2𝑘1+𝑘2)∇⟨𝐽𝑑3𝑟,𝐴(𝑟)⟩, (1.36)

where we have accounted for the standard definition
of a magnetic field

𝐵(𝑟) := ∇×𝐴(𝑟) (1.37)

and the corresponding relation for a current density:

𝐽(𝑟)𝑑3𝑟 := 𝐼𝑑𝑟. (1.38)

There are, evidently, many different possibilities to
choose the dimensionless parameters 𝑘1, 𝑘2 ∈ R. In
his analysis, A.-M. Ampere had chosen the case
where 𝑘1 = 1, 𝑘2 = −2 and obtained the well-known
expression for a magnetic force:

𝑑𝐹 (𝑟) = 𝐽(𝑟)𝑑3𝑟 ×𝐵(𝑟). (1.39)

It is easily reduced to the classical Lorentz expression

𝑑𝑓𝐿(𝑟) = 𝜉𝑢×𝐵(𝑟) (1.40)

for a force exerted by an external magnetic field on a
point particle with an electric charge 𝜉 ∈ R moving
with a constant velocity 𝑢 ∈ 𝑇 (R3).

If we take an alternative choice and put 𝑘1 = 1,
𝑘2 = −1, expression (1.36) yields a modified mag-
netic Lorentz-type force generated by a charged par-
ticle moving with a velocity 𝑢′ ∈ 𝑇 (R3) and acting on
a point particle, which is endowed with the electric
charge 𝜉 ∈ R and moves with a velocity 𝑢 ∈ 𝑇 (R3):

𝑑𝐹𝐿(𝑟) = 𝐽(𝑟)𝑑3𝑟 ×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑3𝑟,𝐴(𝑟)⟩. (1.41)

This formula was before occasionally discussed in var-
ious works [60, 65, 71] and recently enough strongly
obtained and analyzed in detail from the Lagrangian
point of view in works [13, 14, 69] in the following
infinitesimal form:

𝛿𝑓𝐿(𝑟) = 𝜉𝑢×(∇×𝜉𝛿𝐴(𝑟))−𝜉∇⟨𝑢−𝑢𝑓 , 𝛿𝐴(𝑟)⟩, (1.42)

where 𝛿𝐴(𝑟) ∈ 𝑇 *(R3) denotes the magnetic poten-
tial generated by an external charged point particle
moving with the velocity 𝑢𝑓 ∈ 𝑇 (R3) and exerting
the magnetic force 𝛿𝑓𝐿(𝑟) on the charged particle lo-
cated at a point 𝑟 ∈ R3 and moving with the ve-
locity 𝑢 ∈ 𝑇 (R3) with respect to a common refer-
ence system 𝒦𝑡. We also need to mention here that
the modified Lorentz force (1.41) does not naturally
account for the resulting pure electric force, as the
conductors 𝑙 and 𝑙′ are considered to be electrically
neutral. Simultaneously, we see that the magnetic po-
tential has a physical significance in its own right
[7, 13, 60, 71] and has meaning in a way that extends
beyond the calculation of force fields.

Really, to obtain the Lorentz-type force (1.41) ex-
erted by the external magnetic field generated by the
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whole conductor 𝑙′ on an infinitesimal current element
𝑑𝑙 of the conductor 𝑙, it is necessary to integrate ex-
pression (1.42) along this conductor loop 𝑙′:

𝑑𝐹𝐿(𝑟) :=

∮︁
𝑙′

𝛿𝑓𝐿(𝑟) = 𝐽(𝑟)𝑑𝑟×

× (∇×
∮︁
𝑙′

𝛿𝐴(𝑟))−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+

+∇
∮︁
𝑙′

⟨𝑢′, 𝜉𝛿𝐴(𝑟)⟩ = 𝐽(𝑟)𝑑𝑟×

× (∇×𝐴(𝑟))−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+

+∇
∮︁
𝑙′

⟨𝑑𝑟′, 𝜉𝛿𝐴(𝑟)/𝑑𝑡⟩ = 𝐽(𝑟)𝑑𝑟×

×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+

+∇
∫︁

𝑆(𝑙′)

⟨𝑑𝑆(𝑙′),∇× 𝜉𝛿𝐴(𝑟)/𝑑𝑡⟩ = 𝐽(𝑟)𝑑𝑟×

×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+

+∇
∮︁
𝑙′

⟨𝑑𝑆(𝑙′), 𝜉𝛿𝐵(𝑟)/𝑑𝑡⟩ = 𝐽(𝑟)𝑑𝑟×

×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+

+ 𝜉∇(𝑑Φ(𝑟)/𝑑𝑡) = 𝐽(𝑟)𝑑𝑟×

×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑𝑟,𝐴(𝑟)⟩ − 𝜌(𝑟)𝑑3𝑟∇𝑊 =

= 𝐽(𝑟)𝑑𝑟 ×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+

+ 𝜌(𝑟)𝑑3𝑟(−∇𝑊 − 𝜕𝐴(𝑟)/𝜕𝑡) = 𝐽(𝑟)𝑑𝑟 ×𝐵(𝑟)−

−∇⟨𝐽(𝑟)𝑑𝑟,
∮︁
𝑙′

𝛿𝐴(𝑟)⟩+ 𝜌(𝑟)𝑑3𝑟𝐸(𝑟), (1.43)

that is the equality

𝑑𝐹 (𝑟) = 𝜌(𝑟)𝑑3𝑟𝐸(𝑟) + 𝐽(𝑟)𝑑3𝑟×

×𝐵(𝑟)−∇⟨𝐽(𝑟)𝑑3𝑟,𝐴(𝑟)⟩, (1.44)

where, by definition, the electric field 𝐸(𝑟) := −∇𝜙−
− 𝜕𝐴(𝑟)/𝜕𝑡 with 𝜙 ∈ R, being the corresponding
scalar potential generated by the conductors under

regard. Now, relation (1.44) easily yields the searched
expression (1.42) for a Lorentz-type force, if we take
into account that the whole electric field 𝐸(𝑟) ≃ 0 due
to the neutrality of the conductors. Concerning the
latter, it is worth mentioning the following D. Kast-
ler’s [47] remark:

“It is true that Ampere’s formula is no more ad-
missible today, because it is based on the Newto-
nian idea of instantaneous action at a distance and
it leads notably to the strange consequence that two
consecutive elements of the same current should re-
pel each other. Ampere presumed to have demon-
strated experimentally this repulsion force, but on
this point he was wrong. The modern method, the
more rational in order to establish the existence of
electrodynamic forces and to determine their value,
consists in starting from the electrostatic interac-
tion law of Coulomb between two charges (two elec-
trons), whose one of them is at rest in the adopted
frame of reference and studying how the interac-
tion forces transform when one goes, thanks to the
Lorentz–Einstein relations, to a system of coordi-
nates in which both charges are in motion. One sees
the appearance of additional forces proportional to
𝑒2/𝑐2, 𝑒 being the electrostatic charge and 𝑐 the
light velocity, hence one sees that not only the spin
but also the magnetic moment of the electron are
of relativistic origin – as Dirac has shown – but
that the whole of electromagnetic forces has such an
origin.”

The above-presented analysis of Ampere’s deriva-
tion of expression (1.36) for a magnetic force, as well
as its consequences (1.41) and (1.42), makes it pos-
sible to suppose that the missed modified Lorentz-
type force expression (1.43) could also be embedded
into the classical relativistic Lagrangian and related
Hamiltonian formalisms, giving rise to eventually new
aspects and interpretations of many looking “strange”
[7] experimental phenomena observed during the past
centuries.

2. Electrodynamic
Equations of the Vacuum Field
Theory: Lagrangian Analysis

We proceed to describing a charged point particle
𝜉 moving in the space-time with a velocity vector
𝑢 ∈ 𝑇 (R3) and interacting with another external
charged point particle 𝜉𝑓 , moving with a velocity vec-
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tor 𝑢𝑓 ∈ 𝑇 (R3) with respect to a common labora-
tory reference frame 𝒦𝑡. As was shown in [14, 69],
the respectively modified dynamical equation for the
vacuum potential field function �̄� ′ : 𝑀4→ R in
the shifted reference frame 𝒦′, moving with respect
to the laboratory reference frame 𝒦𝑡 with velocity
𝑢𝑓 ∈ 𝑇 (R3), is as follows:

𝑑

𝑑𝑡′
[−�̄� ′(𝑢′ − 𝑢′

𝑓 )] = −∇�̄� ′. (2.1)

Here, as before, the velocity vectors 𝑢′ := 𝑑𝑟/𝑑𝑡′ and
𝑢′
𝑓 := 𝑑𝑟𝑓/𝑑𝑡

′ ∈ 𝑇 (R3) are calculated with respect
to the shifted reference frame 𝒦′. Since the external
charged particle 𝜉𝑓 moves in the space-time 𝑀4, it
generates the related magnetic field 𝐵 := ∇ × 𝐴,
whose magnetic vector potentials 𝐴 : 𝑀4→ E3 and
𝐴′ : 𝑀4→ E3 are defined, owing to the results of
[14, 69, 71], as

𝜉𝐴 := �̄�𝑢𝑓 , 𝜉𝐴′ := �̄� ′𝑢′
𝑓, (2.2)

From whence, taking into account that the field po-
tential

�̄� = �̄� ′ (︀1− |𝑢𝑓 |2
)︀−1/2 (2.3)

and the particle momentum 𝑝′ = −�̄� ′𝑢′ = −�̄�𝑢,
equality (2.1) becomes equivalent to

𝑑

𝑑𝑡′
(𝑝′ + 𝜉𝐴′) = −∇�̄� ′, (2.4)

if considered with respect to the shifted reference
frame 𝒦′, or to the Lorentz-type force equality
𝑑

𝑑𝑡
(𝑝+ 𝜉𝐴) = −∇�̄�

(︀
1− |𝑢𝑓 |2

)︀
, (2.5)

if considered with respect to the laboratory reference
frame 𝒦𝑡, owing to the classical Lorentz invariance
relation (2.3), as the corresponding magnetic vector
potential generated by the external charged point test
particle 𝜉𝑓 with respect to the shifted reference frame
𝒦′, is identically equal to zero. To imbed the dynam-
ical equation (2.5) into the classical Lagrangian for-
malism, we start from the action functional

𝑆(𝜏) := −
𝜏2∫︁
𝜏1

�̄� ′(1 + |�̇� − �̇�𝑓 |2)1/2 𝑑𝜏 (2.6)

based on the Lagrangian function calculated with re-
spect to the shifted reference frame 𝒦′. Here, as be-
fore, �̄� ′ is the respectively calculated vacuum field

potential �̄� in the shifted reference frame 𝒦′, �̇� =
= 𝑢′𝑑𝑡′/𝑑𝜏, �̇�𝑓 = 𝑢′

𝑓𝑑𝑡
′/𝑑𝜏 , 𝑑𝜏 = 𝑑𝑡′(1−|𝑢′−𝑢′

𝑓 |2)1/2,
which accounts for the relative velocity of the charged
point particle 𝜉 in the reference frame 𝒦′ specified by
the Euclidean coordinates (𝑡′, 𝑟− 𝑟𝑓 ) ∈ R4, and mov-
ing simultaneously with a velocity vector 𝑢𝑓 ∈ 𝑇 (R3)
with respect to the laboratory reference frame 𝒦𝑡

specified by the Minkowski coordinates (𝑡, 𝑟) ∈ 𝑀4

and related to those of the reference frame 𝒦′ and 𝒦𝜏

by means of the following infinitesimal relations:

𝑑𝑡2 = (𝑑𝑡′)2+|𝑑𝑟𝑓 |2, (𝑑𝑡′)2 = 𝑑𝜏2+|𝑑𝑟−𝑑𝑟𝑓 |2. (2.7)

So, it is clear in this case that our charged point par-
ticle 𝜉 moves with the velocity vector 𝑢′−𝑢′

𝑓 ∈ 𝑇 (R3)
with respect to the reference frame 𝒦′, in which the
external charged particle 𝜉𝑓 is at rest. Thereby, we
have reduced the problem of deriving the dynami-
cal equation for a charged point particle 𝜉 to that
for a charged particle moving under the action of the
electrical field of an external charged particle 𝜉𝑓 per-
sisting to be at rest with respect to the laboratory
reference frame 𝒦𝑡.

Now, we can compute the least action variational
condition 𝛿𝑆(𝜏) = 0, taking into account that, owing
to (2.6), the corresponding Lagrangian function with
respect to the rest reference frame 𝒦𝜏 is given as

ℒ(𝜏) := −�̄� ′(1 + |�̇� − �̇�𝑓 |2)1/2. (2.8)

As a result of simple calculations, the generalized mo-
mentum of the charged particle 𝜉 equals

𝑃 := 𝜕ℒ(𝜏)/𝜕�̇� = −�̄� ′(�̇� − �̇�𝑓 )(1 + |�̇� − �̇�𝑓 |2)−1/2 =

= −�̄� ′�̇�(1 + |�̇� − �̇�𝑓 |2)−1/2 +

+ �̄� ′�̇�𝑓 (1 + |�̇� − �̇�𝑓 |2)−1/2 =

= 𝑚′𝑢′ + 𝜉𝐴′ := 𝑝′ + 𝜉𝐴′ = 𝑝+ 𝜉𝐴, (2.9)

where, owing to (2.3), the vectors 𝑝′ := −�̄� ′𝑢′ =
= −�̄�𝑢 = 𝑝 ∈ E3, 𝐴′ = �̄� ′𝑢′

𝑓 = �̄�𝑢𝑓 = 𝐴 ∈ E3,
and the dynamical equality

𝑑

𝑑𝜏
(𝑝′ + 𝜉𝐴′) = −∇�̄� ′(1 + |�̇� − �̇�𝑓 |2)1/2 (2.10)

holds with respect to the rest reference frame 𝒦𝜏 . As
𝑑𝑡′ = 𝑑𝜏(1 + |�̇� − �̇�𝑓 |2)1/2 and (1 + |�̇� − �̇�𝑓 |2)1/2 =
= (1−|𝑢′−𝑢′

𝑓 |2)−1/2, relation (2.10) yields the equa-
lity

𝑑

𝑑𝑡′
(𝑝′ + 𝜉𝐴′) = −∇�̄� ′ (2.11)
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exactly coinciding with equality (2.4) in the moving
reference frame 𝒦′. Now, making use of expressions
(2.7) and (2.3), one can rewrite (2.11) as that with
respect to the laboratory reference frame 𝒦𝑡:

𝑑

𝑑𝑡′
(𝑝′ + 𝜉𝐴′) = −∇�̄� ′ ⇒

⇒ 𝑑

𝑑𝑡′

(︃
−�̄�𝑢′

(1 + |𝑢′
𝑓 |2)1/2

+
𝜉�̄�𝑢′

𝑓

(1 + |𝑢′
𝑓 |2)1/2

)︃
=

= − ∇�̄�

(1 + |𝑢′
𝑓 |2)1/2

⇒ 𝑑

𝑑𝑡′

(︃
−�̄�𝑑𝑟

(1 + |𝑢′
𝑓 |2)1/2𝑑𝑡′

+

+
𝜉�̄�𝑑𝑟𝑓/

(1 + |𝑢′
𝑓 |2)1/2

)︃
= − ∇�̄�

(1 + |𝑢′
𝑓 |2)1/2

⇒

⇒ 𝑑

𝑑𝑡

(︂
−�̄�

𝑑𝑟

𝑑𝑡
+ 𝜉�̄�

𝑑𝑟𝑓
𝑑𝑡

)︂
= −∇�̄� (1−|𝑢𝑓 |2), (2.12)

exactly coinciding with (2.5):

𝑑

𝑑𝑡
(𝑝+ 𝜉𝐴) = −∇�̄�

(︀
1− |𝑢𝑓 |2

)︀
. (2.13)

Remark 2.1. Equation (2.13) allows one to infer
the following important physically reasonable phe-
nomenon: if the velocity 𝑢𝑓 ∈ 𝑇 (R3) of a test
charged point particle tends to the light velocity
𝑐 = 1, the corresponding acceleration force 𝐹ac :=
:= −∇�̄� (1 − |𝑢𝑓 |2) is vanishing. Thereby, the elec-
tromagnetic fields generated by such rapidly moving
charged point particles have no influence on the dy-
namics of charged objects, if they are observed with
respect to an arbitrarily chosen laboratory reference
frame 𝒦𝑡.

Equation (2.13) can be easily rewritten as

𝑑𝑝/𝑑𝑡 = −∇�̄� − 𝜉𝑑𝐴/𝑑𝑡+∇�̄� |𝑢𝑓 |2 =

= 𝜉(−𝜉−1∇�̄� −𝜕𝐴/𝜕𝑡)−𝜉⟨𝑢,∇⟩𝐴+𝜉∇⟨𝐴, 𝑢𝑓 ⟩ (2.14)

or, in the standard Lorentz-type form,

𝑑𝑝/𝑑𝑡 = 𝜉𝐸 + 𝜉𝑢×𝐵 −∇⟨𝜉𝐴, 𝑢− 𝑢𝑓 ⟩, (2.15)

where the point particle momentum 𝑝 := 𝑚𝑢, and

𝑚 := −�̄� (2.16)

is the corresponding inertial particle mass.
Result (2.15), being before found and written down

with respect to the shifted reference frame 𝒦′ in
[14, 69, 71] makes it possible to formulate the next
important proposition.

Proposition 2.2. The alternative classical rela-
tivistic electrodynamic model (2.4) allows one to for-
mulate the least action based on the action functional
(2.6) with respect to the rest reference frame 𝒦𝜏 ,
where the Lagrangian function is given by expression
(2.8). The resulting Lorentz-type force is given by ex-
pression (2.15), being modified by the additional force
component 𝐹𝑐 := −∇⟨𝜉𝐴, 𝑢 − 𝑢𝑓 ⟩, important for the
explanation [3, 15, 80] of the well-known Aharonov–
Bohm effect.

2.1. An alternative relativistic
electrodynamic model

It is easy to see that the action functional (2.6) is
written, by utilizing the classical Galilean transforma-
tions of reference frames. Let us consider the action
functional for a charged point particle moving with
respect the reference frame 𝒦𝑡, as well as its interac-
tion with an external magnetic field generated by the
vector 4-potential (𝜙,𝐴) : 𝑀4 → 𝑇 *(𝑀). It can be
naturally generalized as the relativistically invariant
expression

𝑆(𝑡) :=

𝑡2∫︁
𝑡1

(−𝜙𝑑𝑡+ 𝜉⟨𝐴, 𝑑𝑟⟩) =

=

𝜏2∫︁
𝜏1

[−�̄� (1 + |�̇�|2)1/2 + 𝜉⟨𝐴, �̇�⟩]𝑑𝜏, (2.17)

where 𝑑𝜏 = 𝑑𝑡(1− |𝑢|2)1/2 and �̄� := 𝜉𝜙. As a result,
we obtain that, with respect to the the action func-
tional, 𝑆(𝜏) =

∫︀ 𝜏2
𝜏1

[−�̄� (1+|�̇�|2)1/2 +𝜉⟨𝐴, �̇�⟩]𝑑𝜏 . Thus,
the corresponding common particle-field momentum
takes the form

𝑃 := 𝜕ℒ(𝜏)/𝜕�̇� = −�̄� �̇�(1 + |�̇�|2)−1/2 + 𝜉𝐴 =

= 𝑚𝑢+ 𝜉𝐴 := 𝑝+ 𝜉𝐴 (2.18)

and satisfies the relations

�̇� := 𝑑𝑃/𝑑𝜏 = 𝜕ℒ(𝜏)/𝜕𝑟 = −∇�̄� (1 + |�̇�|2)1/2 +

+ 𝜉∇⟨𝐴, �̇�⟩ = −∇�̄� (1− |𝑢|2)−1/2 +

+ 𝜉∇⟨𝐴, 𝑢⟩(1− |𝑢|2)−1/2, (2.19)

where

ℒ(𝜏) := −�̄� (1 + |�̇�|2)1/2 + 𝜉⟨𝐴, �̇�⟩ (2.20)
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is the corresponding Lagrangian function. Since 𝑑𝜏 =
= 𝑑𝑡(1− |𝑢|2)1/2, we finds easily from (2.19) that

𝑑𝑃/𝑑𝑡 = −∇�̄� + 𝜉∇⟨𝐴, 𝑢⟩. (2.21)

Substituting (2.18) into (2.21), we obtain the classical
expression for the Lorentz force 𝐹 acting on a moving
charged point particle 𝜉 :

𝑑𝑝/𝑑𝑡 := 𝐹 = 𝜉𝐸 + 𝜉𝑢×𝐵, (2.22)

where, by definition,

𝐸 := −𝜉−1∇�̄� − 𝜕𝐴/𝜕𝑡 (2.23)

is its associated electric field, and

𝐵 := ∇×𝐴 (2.24)

is the corresponding magnetic field. This result can
be summarized as follows:

Proposition 2.3. The classical relativistic Lorentz
force (2.22) allows one to formulate the least ac-
tion (2.17) with respect to the rest reference frame
variables, where the Lagrangian function is given by
formula (2.20). Its electrodynamics described by the
Lorentz force (2.22) is not equivalent to the classi-
cal relativistic point particle electrodynamics described
[51] by the Lorentz force expression of the same form
as (2.22), but with the momentum 𝑝 ∈ E3 not coin-
ciding with that entering (2.22).

Expressions (2.22) and (2.15) are equal up to the
gradient term 𝐹𝑐 := −𝜉∇⟨𝐴, 𝑢−𝑢𝑓 ⟩, which reconciles
the Lorentz forces acting on a charged moving particle
𝜉 with respect to different reference frames. This fact
is important for our vacuum field theory approach,
since it uses no special geometry and makes it possi-
ble to analyze both electromagnetic and gravitational
fields simultaneously by employing the new definition
of the dynamical mass by means of expression (2.16).

2.2. The electrodynamic
equations of the vacuum field theory:
Hamiltonian analysis

Any Lagrangian theory has an equivalent canonical
Hamiltonian representation via the classical Legendre
transformation [2, 6, 9, 78]. Since we have already for-
mulated our vacuum field theory of a moving charged
particle 𝜉 in Lagrangian form, we proceed now to its
Hamiltonian analysis making use of the action func-
tional (2.8).

The dynamical field equation (2.4) describing the
motion of a charged particle 𝜉 in an external elec-
tromagnetic field looks in the canonical Hamiltonian
form as

�̇� := 𝑑𝑟/𝑑𝜏 = 𝜕𝐻/𝜕𝑃, �̇� := 𝑑𝑃/𝑑𝜏 = −𝜕𝐻/𝜕𝑟, (2.25)

where, by definition,

𝐻 := ⟨𝑃, �̇�⟩ − ℒ(𝜏) =

=
⟨︀
𝑃, �̇�𝑓 − 𝑃�̄� ′,−1(1− |𝑃 |2/�̄� ′,2)−1/2

⟩︀
+

+ �̄� ′[�̄� ′,2(�̄� ′,2 − |𝑃 |2)−1]1/2 =

= ⟨𝑃, �̇�𝑓 ⟩+ |𝑃 |2(�̄� ′,2 − |𝑃 |2)−1/2 −

− �̄� ′,2(�̄� ′,2 − |𝑃 |2)−1/2 =

= −(�̄� ′,2 − |𝑃 |2)(�̄� ′,2 − |𝑃 |2)−1/2 + ⟨𝑃, �̇�𝑓 ⟩ =

= −(�̄� ′,2 − |𝑃 |2)1/2 − 𝜉⟨𝐴′, 𝑃 ⟩(�̄� ′,2 − |𝑃 |2)−1/2 =

= −(�̄� 2 − |𝜉𝐴|2 − |𝑃 |2)1/2 −

− 𝜉⟨𝐴,𝑃 ⟩(�̄� 2 − |𝜉𝐴|2 − |𝑃 |2)−1/2, (2.26)

being rewritten with respect to the laboratory refer-
ence frame 𝒦𝑡. Here, we took into account that, owing
to definitions (2.2), (2.3), and (3.17),

𝜉𝐴′ := �̄� ′𝑢′
𝑓 = �̄� ′𝑑𝑟𝑓/𝑑𝑡

′ = 𝜉𝐴 =

= �̄� ′ 𝑑𝑟𝑓
𝑑𝜏

· 𝑑𝜏
𝑑𝑡′

= �̄� ′�̇�𝑓 (1− |𝑢− 𝑢𝑓 |)1/2 =

= �̄� ′�̇�𝑓 (1 + |�̇� − �̇�𝑓 |2)−1/2 =

= −�̄� ′�̇�𝑓 (�̄�
′,2 − |𝑃 |2)1/2�̄� ′,−1 =

= −�̇�𝑓 (�̄�
′,2 − |𝑃 |2)1/2, (2.27)

and, in particular,

�̇�𝑓 = −𝜉𝐴(�̄�
′,2 − |𝑃 |2)−1/2,

�̄� = �̄� ′(1− |𝑢𝑓 |2)−1/2,
(2.28)

where 𝐴 : 𝑀4→ R3 is the related magnetic vector po-
tential generated by a moving external charged parti-
cle 𝜉𝑓 . Equations (2.25) can be rewritten with respect
to the laboratory reference frame 𝒦𝑡 in the form

𝑑𝑟/𝑑𝑡 = 𝑢,

𝑑𝑝/𝑑𝑡 = 𝜉𝐸 + 𝜉𝑢×𝐵 − 𝜉∇⟨𝐴, 𝑢− 𝑢𝑓 ⟩,
(2.29)

which coincides with result (2.15).

ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 3 197



A.K. Prykarpatsky, N.N. Bogolubov, jr.

From whence, we see that the Hamiltonian function
(2.26) satisfies the energy conservation conditions

𝑑𝐻/𝑑𝜏 = 𝑑𝐻/𝑑𝑡′ = 𝑑𝐻/𝑑𝑡 = 0, (2.30)

for all 𝜏, 𝑡′ and 𝑡 ∈ R, and the suitable energy expres-
sion is

ℰ = (�̄� 2 − 𝜉2|𝐴|2 − |𝑃 |2)1/2 +

+ 𝜉⟨𝐴,𝑃 ⟩(�̄� 2 − 𝜉2|𝐴|2 − |𝑃 |2)−1/2, (2.31)

where the generalized momentum 𝑃 = 𝑝+𝜉𝐴. Result
(2.31) evidently differs essentially from that obtained
in [51], which makes use of the a priori relativistic
Lagrangian function for a moving charged point par-
ticle 𝜉 in an external electromagnetic field. Thus, we
obtained the following proposition:

Proposition 2.4. The alternative classical rela-
tivistic electrodynamic model (2.29), which is intrin-
sically compatible with the classical Maxwell equations
(1.8), allows the Hamiltonian formulation (2.25) with
respect to the rest reference frame variables, where the
Hamiltonian function is given by expression (2.26).

The inference above is a natural candidate for the
experimental validation of our theory. It is strongly
motivated by the following remark.

Remark 2.5. It is necessary to mention here that
the Lorentz force expression (2.29) uses the particle
momentum 𝑝 = 𝑚𝑢, where the dynamical “mass”
𝑚 := −�̄� satisfies condition (2.31). This gives rise
to the following crucial relation between the parti-
cle energy ℰ0 and its rest mass 𝑚0 = −�̄�0 (for the
velocity 𝑢 = 0 at the initial time moment 𝑡 = 0):

ℰ0 = 𝑚0
(1− |𝜉𝐴0/𝑚0|2)

(1− 2|𝜉𝐴0/𝑚0|2)1/2
, (2.32)

or, equivalently, under the condition |𝜉𝐴0/𝑚0|2 <
< 1/2,

𝑚0=ℰ0
(︂
1

2
+|𝜉𝐴0/ℰ0|2±

1

2

√︀
1−4|𝜉𝐴0/ℰ0|2

)︂1/2
, (2.33)

where 𝐴0 := 𝐴|𝑡=0 ∈ E3, which differs markedly from
the classical [51] expression 𝑚0 = ℰ0 − 𝜉𝜙0 and does
not a priori satisfy the canonical Einsteinian rest
mass relation ℰ0 = 𝑚0. We note that the quantity
|𝜉𝐴0/ℰ0| → 0, as the energy modulus |ℰ0| → ∞. Then

the following asymptotic mass values follow from
(2.33):

�̄�0 ≃ ℰ0, 𝑚
(±)
0 ≃ ±

√
2|𝜉𝐴0|. (2.34)

The first mass value �̄�0 ≃ ℰ0 is looking from the rel-
ativistic physics standard, yet the second mass val-
ues 𝑚

(±)
0 ≃ ±

√
2|𝜉𝐴0| give rise to the existence of

charged particle excitations of the vacuo with both
positive and negative mass values at large enough
energies.

3. The Maxwell and Lorentz
Force Equations: the Analysis
of the Electron Inertial Mass Problem

3.1. Short historical notes

The problem of the mass of an elementary point
charged particle, like an electron, was inspiring
many physicists [46] from the past: J.J. Thompson,
G.G. Stokes, H.A. Lorentz, E. Mach, M. Abraham,
P.A.M. Dirac, G.A. Schott, and others. Nonetheless,
their studies had not given rise to a clear explana-
tion of this phenomenon, which stimulated new re-
searchers to tackle it from different approaches based
on new ideas stemming both from the classical Max-
well–Lorentz electromagnetic theory, as in [16, 28–
31, 35, 36, 43, 44, 48, 49, 55, 57, 59, 61, 62, 64, 67, 70, 76,
79, 81, 84], and modern quantum field theories of the
Yang–Mills- and Higgs-type, as, e.g., in [5, 37, 38, 83],
whose recent extensive review was done in [82].

In the present work, we will mostly concentrate on
the detailed analysis and consequences of the Feyn-
man proper time paradigm [22, 23, 28, 29] with the
purpose to derive the electromagnetic Maxwell equa-
tions and the expression for a related Lorentz-like
force considered within the vacuum field theory ap-
proach developed in works [10, 12–14], as well as on
its applications to the problem of the electromag-
netic mass origin. Our treatment of this and related
problems, based on the least action principle within
the Feynman proper time paradigm [28], has allowed
us to construct the respectively modified Lorentz-
type equation for a charged point particle moving
in space and radiating energy. Our analysis also elu-
cidates, in particular, the computations of the self-
interacting electron mass term in [55], where a not
proper solution to the well-known classical Abraham–
Lorentz [1,52–54] and Dirac [20] electron electromag-
netic “4/3-electron mass” problem was proposed. As
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a result of our scrutinized study of the classical elec-
tromagnetic mass problem, we have stated that it can
be satisfactorily solved within the classical reasonings
by H. Lorentz and M. Abraham augmented with the
additional electron stability condition, which was not
taken before into account, but appeared to be very
important for balancing the related electromagnetic
field and mechanical electron momenta. The latter,
following recent works [59, 70] devoted to the analy-
sis of the electron charged shell model, can be real-
ized within the suggested pressure-energy compensa-
tion principle suitably applied to the ambient elec-
tromagnetic energy fluctuations and the own electro-
static Coulomb electron energy.

3.2. The Feynman proper
time paradigm: geometric analysis

In this section, we will develop further the vacuum
field theory approach within the Feynman proper
time paradigm devised before in [12, 14] to the elec-
tromagnetic electron theories by J.C. Maxwell and
H. Lorentz and will show that they should be suit-
ably modified: namely, the basic equations for the
Lorentz force should be generalized, by following the
Landau–Lifshitz least action recipe [51] and consid-
ering the pure electromagnetic field impact. When
the devised vacuum field theory approach is ap-
plied to the classical electron shell model, the re-
sulting Lorentz force expression appears to satisfac-
torily explain the electron inertial mass term exactly
coinciding with the electron relativistic mass, thus
confirming the well-known assumption [45, 72] by
M. Abraham and H. Lorentz.

As was reported by F. Dyson [22, 23], the origi-
nal derivation of the electromagnetic Maxwell equa-
tions within the Feynman approach was based on an
a priori general form of the classical Newton-type
force acting on a charged point particle moving in the
three-dimensional space R3 endowed with the canon-
ical Poisson brackets on the phase variables defined
on the associated tangent space 𝑇 (R3

). As a result of
this approach, only the first part of the Maxwell equa-
tions was derived, whereas the second part, according
to F. Dyson [22], is related to the charged matter na-
ture, which appears to be hidden. Trying to complete
this Feynman approach to the derivation of Maxwell’s
equations more systematically, we have observed [12]
that the original Feynman’s calculations based on the
analysis of Poisson brackets were performed on the

tangent space 𝑇 (R3
) which is, concerning the prob-

lem posed, not physically proper. The true Poisson
brackets can be correctly defined only on the coadjoint
phase space 𝑇 *(R3

), as seen from the classical La-
grangian equations and the related Legendre transfor-
mation [2, 6, 9, 34] from 𝑇 (R3

) to 𝑇 *(R3
). Moreover,

within this observation, the corresponding dynami-
cal Lorentz-type equation for a charged point par-
ticle should be written for the particle momentum,
not for the particle velocity, whose value is well de-
fined only with respect to the proper relativistic ref-
erence frame associated with the charged point parti-
cle, owing to the fact that the Maxwell equations are
Lorentz-invariant.

Thus, from the very beginning, we shall reanalyze
the structure of the Lorentz force exerted on a mov-
ing charged point particle with a charge 𝜉 ∈ R by
another point charged particle with a charge 𝜉𝑓 ∈ R,
making use of the classical Lagrangian approach, and
rederive the corresponding electromagnetic Maxwell
equations. The latter appear to be strongly related to
the charged point mass structure of the electromag-
netic origin, as was suggested by R. Feynman and
F. Dyson.

Consider now a charged point particle moving in
an electromagnetic field. For its description, it is con-
venient to introduce a trivial fiber bundle structure
𝜋: ℳ → R3,ℳ = R3 × 𝐺, with the Abelian struc-
ture group 𝐺 := R∖{0}, equivariantly acting on the
canonically symplectic coadjoint space 𝑇 *(ℳ) en-
dowed both with the canonical symplectic structure

𝜔(2)(𝑝, 𝑦; 𝑟, 𝑔) := 𝑑 𝑝𝑟*𝛼(1)(𝑟, 𝑔) = ⟨𝑑𝑝,∧𝑑𝑟⟩+

+ ⟨𝑑𝑦,∧𝑔−1𝑑𝑔⟩𝒢 + ⟨𝑦𝑑𝑔−1,∧𝑑𝑔⟩𝒢 (3.1)

for all (𝑝, 𝑦; 𝑟, 𝑔) ∈ 𝑇 *(ℳ), where 𝛼(1)(𝑟, 𝑔) :=
:= ⟨𝑝, 𝑑𝑟⟩+⟨𝑦, 𝑔−1𝑑𝑔⟩𝒢 ∈ 𝑇 *(ℳ) is the corresponding
Liouville form on ℳ, and with a connection one-form
𝒜 : 𝑀 → 𝑇 *(𝑀)× 𝒢 as

𝒜(𝑟, 𝑔) := 𝑔−1⟨𝜉𝐴(𝑟), 𝑑𝑟⟩𝑔 + 𝑔−1𝑑𝑔, (3.2)

with 𝜉 ∈ 𝒢*, (𝑟, 𝑔) ∈ R3×𝐺, and ⟨·, ·⟩ being the scalar
product in E3. The corresponding curvature 2-form
Σ(2) ∈ Λ2(R3)⊗ 𝒢 is

Σ(2)(𝑟) := 𝑑𝒜(𝑟, 𝑔) +𝒜(𝑟, 𝑔) ∧ 𝒜(𝑟, 𝑔) =

= 𝜉

3∑︁
𝑖,𝑗=1

𝐹𝑖𝑗(𝑟)𝑑𝑟
𝑖 ∧ 𝑑𝑟𝑗 , (3.3)
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where
𝐹𝑖𝑗(𝑟) :=

𝜕𝐴𝑗

𝜕𝑟𝑖
− 𝜕𝐴𝑖

𝜕𝑟𝑗
(3.4)

for 𝑖, 𝑗 = 1, 3 is the electromagnetic tensor with re-
spect to the reference frame 𝒦𝑡 characterized by the
phase space coordinates (𝑟, 𝑝) ∈ 𝑇 *(R3). Since an ele-
ment 𝜉 ∈ 𝒢* is yet not fixed, it is natural to apply the
standard [2,6,9] invariant Marsden–Weinstein–Meyer
reduction to the orbit factor space 𝑃𝜉 := 𝑃𝜉/𝐺𝜉 sub-
ject to the related momentum mapping 𝑙 : 𝑇 *(ℳ) →
→ 𝒢* constructed with respect to the canonical sym-
plectic structure (3.1) on 𝑇 *(ℳ), where, by defini-
tion, 𝜉 ∈ 𝒢* is constant, 𝑃𝜉 := 𝑙−1(𝜉) ⊂ 𝑇 *(ℳ) and
𝐺𝜉 = {𝑔 ∈ 𝐺 : 𝐴𝑑*𝐺𝜉} is the isotropy group of the
element 𝜉 ∈ 𝒢*.

As a result of the Marsden–Weinstein–Meyer re-
duction, we find that 𝐺𝜉 ≃ 𝐺, the factor-space
𝑃𝜉 ≃ 𝑇 *(R3

) is endowed with a suitably reduced
symplectic structure �̄�

(2)
𝜉 ∈ 𝑇 *(𝑃𝜉), and the corre-

sponding Poisson brackets on the reduced manifold
𝑃𝜉 are

{𝑟𝑖, 𝑟𝑗}𝜉 = 0, {𝑝𝑗 , 𝑟𝑖}𝜉 = 𝛿𝑖𝑗 ,

{𝑝𝑖, 𝑝𝑗}𝜉 = 𝜉𝐹𝑖𝑗(𝑟)
(3.5)

for 𝑖, 𝑗 = 1, 3 considered with respect to the reference
frame 𝒦𝑡. Introducing a new momentum variable

�̃� := 𝑝+ 𝜉𝐴(𝑟) (3.6)

on 𝑃𝜉, it is easy to verify that �̄�
(2)
𝜉 → �̃�

(2)
𝜉 :=

:= ⟨𝑑�̃�,∧𝑑𝑟⟩, giving rise to the following “minimal
interaction” canonical Poisson brackets:

{𝑟𝑖, 𝑟𝑗}
�̃�

(2)
𝜉

= 0,

{�̃�𝑗 , 𝑟
𝑖}

�̃�
(2)
𝜉

= 𝛿𝑖𝑗 , {�̃�𝑖, �̃�𝑗}�̃�(2)
𝜉

= 0
(3.7)

for 𝑖, 𝑗 = 1, 3 with respect to some new reference
frame �̃�𝑡′ characterized by the phase space coordi-
nates (𝑟, �̃�) ∈ 𝑃𝜉 and a new evolution parameter
𝑡′ ∈ R, if the Maxwell field compatibility equations

𝜕𝐹𝑖𝑗/𝜕𝑟𝑘 + 𝜕𝐹𝑗𝑘/𝜕𝑟𝑖 + 𝜕𝐹𝑘𝑖/𝜕𝑟𝑗 = 0 (3.8)

are satisfied on R3 for all 𝑖, 𝑗, 𝑘 = 1, 3 with the curva-
ture tensor (3.4).

Now, we proceed to a dynamic description of the
interaction between two moving charged point par-
ticles 𝜉 and 𝜉𝑓 moving, respectively, with the ve-
locities 𝑢 := 𝑑𝑟/𝑑𝑡 and 𝑢𝑓 := 𝑑𝑟𝑓/𝑑𝑡 in the refer-
ence frame 𝒦𝑡. Unfortunately, there is a fundamental

problem in correctly formulating a physically suitable
action functional and the related least action condi-
tion. There are clearly possibilities such as

𝑆(𝑡)
𝑝 :=

𝑡2∫︁
𝑡1

𝑑𝑡ℒ(𝑡)
𝑝 [𝑟; 𝑑𝑟/𝑑𝑡] (3.9)

on a temporal interval [𝑡1, 𝑡2] ⊂ R with respect to the
laboratory reference frame 𝒦𝑡,

𝑆(𝑡′)
𝑝 :=

𝑡′2∫︁
𝑡′1

𝑑𝑡′ℒ(𝑡′)
𝑝 [𝑟; 𝑑𝑟/𝑑𝑡′] (3.10)

on a temporal interval [𝑡′1, 𝑡′2] ⊂ R with respect to the
moving reference frame 𝒦𝑡′ , and

𝑆(𝜏)
𝑝 :=

𝜏2∫︁
𝜏1

𝑑𝜏ℒ(𝜏)
𝑝 [𝑟; 𝑑𝑟/𝑑𝜏 ] (3.11)

on a temporal interval [𝜏1, 𝜏2] ⊂ R with respect to the
proper time reference frame 𝒦𝜏 naturally related to
the moving charged point particle 𝜉.

It was first observed by Poincaré and Minkowski
[63] that the temporal differential 𝑑𝜏 is not a closed
differential one-form, which physically means that a
particle can traverse many different paths in space
R3 with respect to the reference frame 𝒦𝑡 during a
given proper time interval 𝑑𝜏 , naturally related to its
motion. This fact was stressed [24, 25, 58, 63, 66] by
Einstein, Minkowski, and Poincaré, and later exhaus-
tively analyzed by R. Feynman, who argued [28] that
the dynamical equation of a moving point charged
particle is physically sensible only with respect to
its proper time reference frame, and the correspond-
ing Lagrangian functional should be initially calcu-
lated with respect to the laboratory reference frame
𝒦𝑡. This is Feynman’s proper time reference frame
paradigm, which was recently further elaborated and
applied to the electromagnetic Maxwell equations in
[30–32] and to the Lorentz-type equation for a moving
charged point particle under the action of an exter-
nal electromagnetic field in [9, 12–14]. As was there
argued from the physical point of view, the least ac-
tion principle should be applied only to expression
(3.11) written with respect to the proper time refer-
ence frame 𝒦𝜏 , whose temporal parameter 𝜏 ∈ R is
independent of an observer and is a closed differen-
tial one-form. Consequently, this action functional is
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also mathematically sensible, which reflects partially
Poincaré’s and Minkowski’s observation that the in-
finitesimal quadratic interval

𝑑𝜏2 = (𝑑𝑡′)2 − |𝑑𝑟 − 𝑑𝑟𝑓 |2 (3.12)

relating the reference frames 𝒦𝑡′ and 𝒦𝜏 can be in-
variantly used for the four-dimensional relativistic ge-
ometry. The most natural way to contend with this
problem is to consider firstly the quasirelativistic dy-
namics of a charged point particle 𝜉 with respect
to the moving reference frame 𝒦𝑡′ , relative to which
the charged point particle 𝜉𝑓 is at rest. Therefore,
it is possible to write down a suitable action func-
tional (3.10), up to 𝑂(1/𝑐4), as the light velocity
𝑐 → ∞, where the quasiclassical Lagrangian function
ℒ(𝑡′)
𝑝 [𝑟; 𝑑𝑟/𝑑𝑡′] can be naturally chosen as

ℒ(𝑡′)
𝑝 [𝑟; 𝑑𝑟/𝑑𝑡′] :=

:= 𝑚′(𝑟) |𝑑𝑟/𝑑𝑡′ − 𝑑𝑟𝑓/𝑑𝑡
′|2 /2− 𝜉𝜙′(𝑟). (3.13)

Here, 𝑚′(𝑟) ∈ R+ is the charged particle 𝜉 inertial
mass parameter, and 𝜙′(𝑟) is the potential function
generated by the charged particle 𝜉𝑓 at a point 𝑟 ∈ R3

with respect to the reference frame 𝒦𝑡′ . The standard
temporal relations between the reference frames 𝒦𝑡

and 𝒦𝑡′ read

𝑑𝑡′ = 𝑑𝑡
(︁
1− |𝑑𝑟𝑓/𝑑𝑡′|

2
)︁1/2

, (3.14)

as well as between the reference frames 𝒦𝑡′ and 𝒦𝜏 ,

𝑑𝜏 = 𝑑𝑡′
(︁
1− |𝑑𝑟/𝑑𝑡′ − 𝑑𝑟𝑓/𝑑𝑡

′|2
)︁1/2

, (3.15)

give rise, up to 𝑂(1/𝑐2), as 𝑐 → ∞, to 𝑑𝑡′ ≃ 𝑑𝑡 and
𝑑𝜏 ≃ 𝑑𝑡′, respectively. Then it is easy to verify that
the least action condition 𝛿𝑆

(𝑡′)
𝑝 = 0 is equivalent to

the dynamical equation

𝑑𝜋/𝑑𝑡 = ∇ℒ(𝑡′)
𝑝 [𝑟; 𝑑𝑟/𝑑𝑡] =

=

(︂
1

2
|𝑑𝑟/𝑑𝑡− 𝑑𝑟𝑓/𝑑𝑡|2

)︂
∇𝑚− 𝜉∇𝜙(𝑟), (3.16)

where we have defined the generalized canonical mo-
mentum as

𝜋 := 𝜕ℒ(𝑡′)
𝑝 [𝑟; 𝑑𝑟/𝑑𝑡]/𝜕(𝑑𝑟/𝑑𝑡) =

= 𝑚(𝑑𝑟/𝑑𝑡− 𝑑𝑟𝑓/𝑑𝑡), (3.17)

with the dash signs dropped. By “∇,” we denote the
usual gradient operator in E3. Equating the canoni-
cal momentum expression (3.17) with respect to the

reference frame 𝒦𝑡′ to that of (3.6) with respect to
the canonical reference frame �̃�𝑡′ , and identifying the
reference frame �̃�𝑡′ with 𝒦𝑡′ , we obtain

𝑚(𝑑𝑟/𝑑𝑡− 𝑑𝑟𝑓/𝑑𝑡) = 𝑚𝑑𝑟/𝑑𝑡− 𝜉𝐴(𝑟), (3.18)

giving rise to the important expression determining
the inertial particle mass

𝑚 = −𝜉𝜙(𝑟), (3.19)

which follows directly from the relation

𝜙(𝑟)𝑑𝑟𝑓/𝑑𝑡 = 𝐴(𝑟). (3.20)

The latter is well known in the classical electromag-
netic theory [45, 51] for potentials (𝜙,𝐴) ∈ 𝑇 *(𝑀4)
satisfying the Lorentz condition

𝜕𝜙(𝑟)/𝜕𝑡+ ⟨∇, 𝐴(𝑟)⟩ = 0. (3.21)

Expression (3.19) looks very nontrivial, by relating
the “inertial” mass of the charged point particle 𝜉 to
the electric potential, being both generated by the
ambient charged point particles 𝜉𝑓 . As was argued in
[12, 13, 68], the above mass phenomenon is closely
related to the classical electromagnetic mass problem
from a physical perspective.

Before the further analysis of the motion of a
completely relativistic charge 𝜉 under consideration,
we substitute the mass expression (3.19) into the
quasirelativistic action functional (3.10) with La-
grangian (3.13). As a result, we obtain two possi-
ble action functional expressions with regard for two
choices of main temporal parameters,

𝑆(𝑡′)
𝑝 = −

𝑡′2∫︁
𝑡′1

𝜉𝜙′(𝑟)

(︂
1 +

1

2
|𝑑𝑟/𝑑𝑡′ − 𝑑𝑟𝑓/𝑑𝑡

′|2
)︂
𝑑𝑡′,

(3.22)

on an interval [𝑡′1, 𝑡′2] ⊂ R or

𝑆(𝜏)
𝑝 =−

𝜏2∫︁
𝜏1

𝜉𝜙′(𝑟)

(︂
1+

1

2
|𝑑𝑟/𝑑𝜏 − 𝑑𝑟𝑓/𝑑𝜏 |2

)︂
𝑑𝜏 (3.23)

on an [𝜏1, 𝜏2] ⊂ R. The direct relativistic transforma-
tions of (3.23) entail that

𝑆(𝜏)
𝑝 = −

𝜏2∫︁
𝜏1

𝜉𝜙′(𝑟)

(︂
1 +

1

2
|𝑑𝑟/𝑑𝜏 − 𝑑𝑟𝑓/𝑑𝜏 |2

)︂
𝑑𝜏 ≃
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≃ −
𝜏2∫︁

𝜏1

𝜉𝜙′(𝑟)
(︁
1 + |𝑑𝑟/𝑑𝜏 − 𝑑𝑟𝑓/𝑑𝜏 |2

)︁1/2
𝑑𝜏 =

= −
𝜏2∫︁

𝜏1

𝜉𝜙′(𝑟) (1− |𝑑𝑟/𝑑𝑡′ − 𝑑𝑟𝑓/𝑑𝑡
′|)−1/2

𝑑𝜏 =

= −
𝑡′2∫︁

𝑡′1

𝜉𝜙′(𝑟)𝑑𝑡′, (3.24)

giving rise to the correct, from the physical point
of view, relativistic action functional (3.10) suit-
ably transformed to the proper time reference frame
representation (3.11) via the Feynman proper time
paradigm. Thus, we have shown that the true action
functional procedure consists in a physically moti-
vated choice of either the action functional expres-
sion (3.9) or (3.10). Then it is transformed to the
proper time action functional representation form
(3.11) within the Feynman paradigm, and the least
action principle is applied.

Concerning the above-discussed problem of de-
scribing the motion of a charged point particle 𝜉 in
the electromagnetic field generated by another mov-
ing charged point particle 𝜉𝑓 , it must be mentioned
that we have chosen the quasirelativistic functional
expression (3.13) in form (3.10) with respect to the
moving reference frame 𝒦𝑡′ , because its form is phys-
ically reasonable and acceptable, since the charged
point particle 𝜉𝑓 is then at rest, by generating no
magnetic field.

Based on the above relativistic action functional

𝑆(𝜏)
𝑝 := −

𝜏2∫︁
𝜏1

𝜉𝜙′(𝑟)
(︁
1 + |𝑑𝑟/𝑑𝜏 − 𝑑𝑟𝑓/𝑑𝜏 |2

)︁1/2
𝑑𝜏 (3.25)

written with respect to the proper reference frame
𝒦𝜏 , one finds the evolution equation

𝑑𝜋𝑝/𝑑𝜏=−𝜉∇𝜙′(𝑟)
(︁
1+|𝑑𝑟/𝑑𝜏 − 𝑑𝑟𝑓/𝑑𝜏 |2

)︁1/2
, (3.26)

where the generalized momentum is given exactly by
relation (3.17):

𝜋𝑝 = 𝑚(𝑑𝑟/𝑑𝑡− 𝑑𝑟𝑓/𝑑𝑡). (3.27)

Making use of the relativistic transformation (3.14)
and the next one (3.15), Eq. (3.26) can be easily trans-
formed to
𝑑

𝑑𝑡
(𝑝+ 𝜉𝐴) = −∇𝜙(𝑟)

(︁
1− |𝑢𝑓 |2

)︁
, (3.28)

where we considered the related definitions: (3.19) for
the charged particle 𝜉 mass, (3.20) for the magnetic
vector potential, and 𝜙(𝑟) = 𝜙′(𝑟)/

(︀
1− |𝑢𝑓 |2

)︀1/2 for
the scalar electric potential with respect to the lab-
oratory reference frame 𝒦𝑡. Equation (3.28) can be
further transformed, by using the elementary vector
algebra, to the classical Lorentz-type form

𝑑𝑝/𝑑𝑡 = 𝜉𝐸 + 𝜉𝑢×𝐵 − 𝜉∇⟨𝑢− 𝑢𝑓 , 𝐴⟩, (3.29)

where 𝐸 := −𝜕𝐴/𝜕𝑡−∇𝜙 is the related electric field,
and 𝐵 := ∇×𝐴 is the related magnetic field acting by
the moving charged point particle 𝜉𝑓 on the charged
point particle 𝜉 with respect to the laboratory refer-
ence frame 𝒦𝑡. The above-presented result, as it was
demonstrated in Section 2, follows also in part [73,74]
from Ampere’s classical works on constructing the
magnetic force between two neutral conductors with
stationary currents.

Recall now that the dynamical pair of the Maxwell
equations (1.8) reads as

∇×𝐵 = 𝜕𝐸/𝜕𝑡+ 𝐽, ∇× 𝐸 = 𝜕𝐵/𝜕𝑡. (3.30)

It is worth to mention now that the system of equa-
tions (3.30) can be represented by means of the least
action principle 𝛿𝑆

(𝑡)
𝑓−𝑝 = 0, where the action func-

tional

𝑆
(𝑡)
𝑓−𝑝 :=

𝑡2∫︁
𝑡1

𝑑𝑡ℒ(𝑡)
𝑓−𝑝 (3.31)

is defined on an interval [𝑡1, 𝑡2] ⊂ R by the Landau–
Lifshitz-type [51] Lagrangian function

ℒ(𝑡)
𝑓−𝑝 =

∫︁
R3

𝑑3𝑟
(︀
(|𝐸|2 − |𝐵|2)/2 + ⟨𝐽,𝐴⟩ − 𝜌𝜙

)︀
(3.32)

with respect to the laboratory reference frame 𝒦𝑡,
which is unique and physically reasonable. From
(3.32), we deduce that the generalized field momen-
tum

𝜋𝑓 := 𝜕ℒ(𝑡)
𝑓−𝑝/𝜕(𝜕𝐴/𝜕𝑡) = −𝐸, (3.33)

and its evolution is given as

𝜕𝜋𝑓/𝜕𝑡 := 𝛿ℒ(𝑡)
𝑓−𝑝/𝛿𝐴 = 𝐽 −∇×𝐵, (3.34)

which is equivalent to the first Maxwell equation of
(3.30). As the Maxwell equations allow the least ac-
tion representation, it is easy to derive [2, 6, 9, 13, 68]
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their dual Hamiltonian formulation with the Hamil-
tonian function

𝐻𝑓−𝑝 :=

∫︁
R3

𝑑3𝑟⟨𝜋𝑓 , 𝜕𝐴/𝜕𝑡⟩ − ℒ(𝑡)
𝑓−𝑝 =

=

∫︁
R3

𝑑3𝑟
(︀
(|𝐸|2 − |𝐵|2)/2− ⟨𝐽,𝐴⟩

)︀
, (3.35)

satisfying the invariant condition

𝑑𝐻𝑓−𝑝/𝑑𝑡 = 0 (3.36)

for all 𝑡 ∈ R.
It is worth noting here that the Maxwell equa-

tions were derived under the important condition that
the charged system (𝜌, 𝐽) ∈ 𝑇 (𝑀4) exerts no in-
fluence on the ambient electromagnetic field poten-
tials (𝜙,𝐴) ∈ 𝑇 *(𝑀4). As this is not actually the
case owing to the damping radiation reaction on ac-
celerated charged particles, one can try to describe
this self-interacting influence by means of the modi-
fied least action principle, making use of Lagrangian
(3.32) recalculated with respect to the separately cho-
sen charged particle 𝜉 endowed with the uniform shell
model geometric structure and generating this elec-
tromagnetic field.

Following the slightly modified well-known ap-
proach from [51] and reasonings from [8, 59], this
Landau–Lifshitz type Lagrangian (3.32) can be recast
(further in the Gauss units) as

ℒ(𝑡)
𝑓−𝑝 =

∫︁
R3

𝑑3𝑟((|𝐸|2 − |𝐵|2)/2+

+

∫︁
R3

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩ =

=

∫︁
R3

𝑑3𝑟

(︂
1

2

⟨
−∇𝜙− 1

𝑐
𝜕𝐴/𝜕𝑡,−∇𝜙− 1

𝑐
𝜕𝐴/𝜕𝑡

⟩
−

− 1

2
⟨∇ × (∇×𝐴), 𝐴⟩

)︂
+

+

∫︁
R3

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩ =

=

∫︁
R3

𝑑3𝑟

(︂
1

2
⟨−∇𝜙,𝐸⟩− 1

2𝑐
⟨𝜕𝐴/𝜕𝑡, 𝐸⟩− 1

2
⟨𝐴,∇×𝐵⟩

)︂
+

+

∫︁
R3

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩ =

=

∫︁
R3

𝑑3𝑟

(︂
1

2
𝜙⟨∇, 𝐸⟩+ 1

2𝑐
⟨𝐴, 𝜕𝐸/𝜕𝑡⟩−

− 1

2𝑐
⟨𝐴, 𝐽 + 𝜕𝐸/𝜕𝑡⟩

)︂
+

∫︁
R3

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
−

− 1

2𝑐

𝑑

𝑑𝑡

∫︁
R3

𝑑3𝑟⟨𝐴,𝐸⟩− 1

2
lim
𝑟→∞

∫︁
S2𝑟

⟨𝜙𝐸+𝐴×𝐵, 𝑑𝑆2
𝑟 ⟩−

− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩ = −1

2

∫︁
Ω+(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
+

+

∫︁
Ω+(𝜉)∪Ω−(𝜉)

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩−

− 1

2𝑐

𝑑

𝑑𝑡

∫︁
R3

𝑑3𝑟⟨𝐴,𝐸⟩− 1

2
lim
𝑟→∞

∫︁
S2𝑟

⟨𝜙𝐸+𝐴×𝐵, 𝑑𝑆2
𝑟 ⟩ =

=−1

2

∫︁
Ω+(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩−𝜌𝜙

)︂
− 1

2

∫︁
Ω−(𝜉)

𝑑3𝑟×

×
(︂
1

𝑐
⟨𝐽,𝐴⟩−𝜌𝜙

)︂
+

1

2

∫︁
Ω−(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
+

+

∫︁
Ω+(𝜉)∪Ω−(𝜉)

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩−

− 1

2𝑐

𝑑

𝑑𝑡

∫︁
R3

𝑑3𝑟⟨𝐴,𝐸⟩− 1

2
lim
𝑟→∞

∫︁
S2𝑟

⟨𝜙𝐸+𝐴×𝐵, 𝑑𝑆2
𝑟 ⟩ =

=
1

2

∫︁
Ω−(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
−

− 1

2

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
+

+

∫︁
Ω+(𝜉)∪Ω−(𝜉)

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩−

− 1

2𝑐

𝑑

𝑑𝑡

∫︁
R3

𝑑3𝑟⟨𝐴,𝐸⟩− 1

2
lim
𝑟→∞

∫︁
S2𝑟

⟨𝜙𝐸+𝐴×𝐵, 𝑑𝑆2
𝑟 ⟩ =

=
1

2

∫︁
Ω−(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
+

+
1

2

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
−

− 1

2𝑐

𝑑

𝑑𝑡

∫︁
R3

𝑑3𝑟⟨𝐴,𝐸⟩− 1

2
lim
𝑟→∞

∫︁
S2𝑟

⟨𝜙𝐸+𝐴×𝐵, 𝑑𝑆2
𝑟 ⟩,

(3.37)
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The courtesy picture from [59]

where we have introduced a radiation damping mo-
mentum 𝑘(𝑡) ∈ E3 yet not determined, have denoted,
by Ω+(𝜉) := supp 𝜉+ ⊂ R3 and Ω−(𝜉) := supp 𝜉−
⊂ R3, the corresponding charge 𝜉 supports located on
the electromagnetic field shadowed rear and electro-
magnetic field exerted front semispheres (see Figure)
of the electron shell, respectively to its motion with
a fixed velocity 𝑢(𝑡) ∈ E3, as well as we denoted, by
S2𝑟, a two-dimensional sphere of radius 𝑟 → ∞.

Having naturally assumed that the radiated
charged particle energy is negligible at infinity, La-
grangian (3.37) becomes equivalent to

ℒ(𝑡)
𝑓−𝑝 =

1

2

∫︁
Ω−(𝜉)

𝑑3𝑟

(︂
1

𝑐
⟨𝐽,𝐴⟩ − 𝜌𝜙

)︂
+

+
1

2𝑐

∫︁
Ω+(𝜉)∪Ω−(𝜉)

(⟨𝐽,𝐴⟩ − 𝜌𝜙)− ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩, (3.38)

which is needed to be additionally recalculated
with regard for that the electromagnetic potentials
(𝜙,𝐴) ∈ 𝑇 *(𝑀4) are retarded, generated by only
the front part of the electron shell, and given, as
1/𝑐2 → 0, in the following form expanded in Lienard–
Wiechert series:

𝜙 =

∫︁
R3

𝑑3𝑟′
𝜌(𝑡′, 𝑟′)

|𝑟 − 𝑟′|

⃒⃒⃒⃒
⃒
𝑡′=𝑡−|𝑟−𝑟′|/𝑐

=

= lim
𝜀↓0

∫︁
R3

𝑑3𝑟′
𝜌(𝑡− 𝜀, 𝑟′)

|𝑟 − 𝑟′|
+

+ lim
𝜀↓0

1

2𝑐2

∫︁
R3

𝑑3𝑟′|𝑟 − 𝑟′|𝜕2𝜌(𝑡− 𝜀, 𝑟′)/𝜕𝑡2 +

+ lim
𝜀↓0

1

6𝑐3

∫︁
R3

𝑑3𝑟′|𝑟−𝑟′|2𝜕𝜌(𝑡−𝜀, 𝑟′)/𝜕𝑡+𝑂(1/𝑐4)=

=

∫︁
Ω+(𝜉)

𝑑3𝑟′
𝜌(𝑡, 𝑟′)

|𝑟−𝑟′|
+

1

2𝑐2

∫︁
Ω+(𝜉)

𝑑3𝑟′|𝑟−𝑟′|𝜕2𝜌(𝑡, 𝑟′)/𝜕𝑡2 +

+
1

6𝑐3

∫︁
Ω+(𝜉)

𝑑3𝑟′|𝑟− 𝑟′|2𝜕𝜌(𝑡, 𝑟′)/𝜕𝑡+𝑂(1/𝑐4), (3.39)

𝐴 =
1

𝑐

∫︁
R3

𝑑3𝑟′
𝐽(𝑡′, 𝑟′)

|𝑟 − 𝑟′|

⃒⃒⃒⃒
⃒
𝑡′=𝑡−|𝑟−𝑟′|/𝑐

=

= lim
𝜀↓0

1

𝑐

∫︁
R3

𝑑3𝑟′
𝐽(𝑡− 𝜀, 𝑟′)

|𝑟 − 𝑟′|
−

− lim
𝜀↓0

1

𝑐2

∫︁
R3

𝑑3𝑟′𝜕𝐽(𝑡− 𝜀, 𝑟′)/𝜕𝑡+

+ lim
𝜀↓0

1

2𝑐3

∫︁
R3

𝑑3𝑟′|𝑟− 𝑟′|𝜕2𝐽(𝑡− 𝜀, 𝑟′)/𝜕𝑡2+𝑂(1/𝑐4) =

=
1

𝑐

∫︁
Ω+(𝜉)

𝑑3𝑟′
𝐽(𝑡, 𝑟′)

|𝑟 − 𝑟′|
− 1

𝑐2

∫︁
Ω+(𝜉)

𝑑3𝑟′𝜕𝐽(𝑡, 𝑟′)/𝜕𝑡+

+
1

2𝑐3

∫︁
Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝜕2𝐽(𝑡, 𝑟′)/𝜕𝑡2 +𝑂(1/𝑐4),

where the current density 𝐽(𝑡, 𝑟) = 𝜌(𝑡, 𝑟)𝑑𝑟/𝑑𝑡 for
all 𝑡 ∈ R and 𝑟 ∈ Ω(𝜉) := Ω+(𝜉) ∪ Ω+(𝜉) ≃
≃ S2 := supp 𝜌(𝑡; 𝑟) ⊂ R3, being the spherical com-
pact support of the charged particle density distribu-
tion, and the limit lim𝜀↓0 was treated physically, i.e.,
by considering the assumed shell model of the charged
particle 𝜉 and its corresponding charge density self-
interaction. Moreover, potentials (3.39) are both con-
sidered to be retarded, nonsingular, and moving in
space with the velocity 𝑢 ∈ 𝑇 (R3) relative to the
laboratory reference frame 𝒦𝑡. As a result of simple
enough calculations like those in [45], making use of
expressions (3.39), we obtain that Lagranfian (3.38)
brings about

ℒ(𝑡)
𝑓−𝑝 =

ℰes
2𝑐2

|𝑢|2 − ⟨𝑘(𝑡), 𝑑𝑟/𝑑𝑡⟩, (3.40)

where we took into account that, owing to the rea-
sonings from [8,59], the only the front half of the elec-
tric charge interacts with the whole virtually identical
charge 𝜉, as well as made use of the following limiting
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integral expressions up to 𝑂(1/𝑐4):∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟′𝜌(𝑡, 𝑟′)𝜌(𝑡, 𝑟′) := 𝜉2,

1

2

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟′
𝜌(𝑡, 𝑟′)𝜌(𝑡, 𝑟′)

|𝑟 − 𝑟′|
:= ℰes,

∫︁
Ω+(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)

∫︁
Ω+(𝜉)

𝑑3𝑟′
𝜌(𝑡; 𝑟′)

|𝑟′ − 𝑟|
=

1

2
ℰes,

∫︁
Ω−(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)

∫︁
Ω−(𝜉)

𝑑3𝑟′
𝜌(𝑡; 𝑟′)

|𝑟′ − 𝑟|
=

1

2
ℰes,

∫︁
Ω−(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)

∫︁
Ω+(𝜉)

𝑑3𝑟′
𝜌(𝑡; 𝑟′)

|𝑟−𝑟′|

⃒⃒⃒⃒
⃒ ⟨𝑟′−𝑟, 𝑢⟩

|𝑟′−𝑟|

⃒⃒⃒⃒
⃒
2⟩

:=
ℰes
6
|𝑢|2,

∫︁
Ω+(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)

∫︁
Ω+(𝜉)

𝑑3𝑟′
𝜌(𝑡; 𝑟′)

|𝑟−𝑟′|

⃒⃒⃒⃒
⃒ ⟨𝑟′−𝑟, 𝑢⟩

|𝑟′−𝑟|

⃒⃒⃒⃒
⃒
2⟩

:=
ℰes
6
|𝑢|2.

(3.41)

To obtain the corresponding evolution equation for
our charged particle 𝜉, we need, within the Feyn-
man proper time paradigm, to transform Lagrangian
(3.40) to one with respect to the proper time reference
frame 𝒦𝜏 :

ℒ(𝜏)
𝑓−𝑝 = (𝑚es/2)|�̇�|2 − ⟨𝑘(𝑡), �̇�⟩, (3.42)

where, for brevity, we have denoted, by �̇� := 𝑑𝑟/𝑑𝜏,
the charged particle velocity with respect to the
proper reference frame 𝒦𝜏 and, by definition, its so-
called electrostatic mass 𝑚es := ℰes/𝑐2 with respect
to the laboratory refrence frame 𝒦𝑡.

Thus, the generalized charged particle 𝜉 momen-
tum (up to 𝑂(1/𝑐4)) equals

𝜋𝑝 = 𝜕ℒ(𝜏)
𝑓−𝑝/𝜕�̇� = �̄�es�̇�− 𝑘(𝑡) = 𝑚es𝑢− 𝑘(𝑡), (3.43)

where we denoted, as before, the charged particle
𝜉 velocity with respect to the laboratory reference
frame 𝒦𝑡 by 𝑢 := 𝑑𝑟/𝑑𝑡 and put, by definition,

�̄�es := 𝑚es(1− |𝑢|2)1/2 (3.44)

as its mass parameter �̄�es ∈ R+ with respect to the
proper reference frame 𝒦𝜏 .

With respect to the proper reference frame 𝒦𝜏 , the
generalized momentum (3.44) satisfies the evolution
equation

𝑑𝜋𝑝/𝑑𝜏 := 𝜕ℒ(𝜏)
𝑓−𝑝/𝜕𝑟 = 0, (3.45)

being equivalent, with respect to the laboratory ref-
erence frame 𝒦𝑡, to the Lorentz-type equation

𝑑

𝑑𝑡
(𝑚es𝑢) = 𝑑𝑘(𝑡)/𝑑𝑡. (3.46)

The evolution equation (3.46) allows one to formu-
late the corresponding canonical Hamiltonian on the
phase space 𝑇 *(R3) with the Hamiltonian function

𝐻𝑓−𝑝 := ⟨𝜋𝑝, �̇�⟩ − ℒ(𝜏)
𝑓−𝑝 = ⟨𝑚es𝑢− 𝑘(𝑡), �̇�⟩−

− (�̄�es/2)|�̇�|2 − ⟨𝑘(𝑡), �̇�⟩+ ⟨𝑘(𝑡), �̇�⟩ =

=
𝑚es|𝑢|2

2

(︂
1 +

1

2
|𝑢|2/𝑐2

)︂
, (3.47)

naturally looking and satisfying, up to 𝑂(1/𝑐4) for all
𝜏 and 𝑡 ∈ R, the conservation conditions

𝑑

𝑑𝜏
𝐻𝑓−𝑝 = 0 =

𝑑

𝑑𝑡
𝐻𝑓−𝑝. (3.48)

Looking at Eqs. (3.46) and (3.47), we can state that
the mass parameter of a physically observable inertial
charged particle 𝜉 is as follows:

𝑚phys := �̄�es, (3.49)

being exactly equal to the electromagnetic mass of a
relativistic charged particle 𝜉, as it was assumed by
H. Lorentz and M. Abraham.

To determine the damping radiation momentum
𝑘(𝑡) ∈ E3, we can make use of the Lorentz-type force
expression (3.38) and obtain, similarly to [45], the re-
sulting Abraham–Lorentz-type force expression up to
𝑂(1/𝑐4) accuracy. Thus, owing to the zero net force
condition, we have that

𝑑�̃�𝑝/𝑑𝑡+ 𝐹𝑠 = 0, (3.50)

where the Lorentz force

𝐹𝑠 = − 1

2𝑐

∫︁
Ω−(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)
𝑑

𝑑𝑡
𝐴(𝑡, 𝑟)−

− 1

2𝑐

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)
𝑑

𝑑𝑡
𝐴(𝑡, 𝑟)−

− 1

2

∫︁
Ω−(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)∇𝜙(𝑡, 𝑟)(1− |𝑢/𝑐|2)−

− 1

2

∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝑑3𝑟𝜌(𝑡, 𝑟)∇𝜙(𝑡, 𝑟)(1− |𝑢/𝑐|2). (3.51)
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This expression easily follows from the least action
condition 𝛿𝑆(𝑡) = 0, where 𝑆(𝑡) :=

∫︀ 𝑡2
𝑡1

ℒ(𝑡)
𝑓−𝑝𝑑𝑡 with

the Lagrangian function given by the above-derived
Landau–Lifshitz-type expression (3.41) and with the
potentials (𝜙,𝐴) ∈ 𝑇 *(𝑀4) given by the Lienard–
Wiechert expressions (3.39). Followed by calculations
similar to those in [19, 45], we can obtain, within the
assumed before uniform shell electron model in view
of (3.51) and (3.39) for small |𝑢/𝑐| ≪ 1 and slow
enough acceleration, that

𝐹𝑠 =
∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛
(1− |𝑢/𝑐|2)×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′
𝜕𝑛

𝜕𝑡𝑛
𝜌(𝑡, 𝑟′)∇|𝑟−𝑟′|𝑛−1+

∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛+2
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
𝐽(𝑡, 𝑟′] =

=
∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛+2
(1− |𝑢/𝑐|2)×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁
Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′
𝜕𝑛=2

𝜕𝑡𝑛+2
𝜌(𝑡, 𝑟′)∇|𝑟−𝑟′|𝑛+1+

∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛+2
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
𝐽(𝑡, 𝑟′). (3.52)

Owing to the charge continuity equation (1.6), the
relation above gives rise to the radiation force expres-
sion

𝐹𝑠 =
∑︁
𝑛∈Z+

(−1)𝑛

2𝑛!𝑐𝑛+2
(1− |𝑢/𝑐|2)×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
×

×

(︃
𝐽(𝑡, 𝑟′)

𝑛+ 2
+

𝑛− 1

𝑛+ 2

⟨𝑟 − 𝑟′, 𝐽(𝑡, 𝑟′)⟩(𝑟 − 𝑟′)

|𝑟 − 𝑟′|2

)︃
+

+
∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛+2
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
𝐽(𝑡, 𝑟′) =

=
∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛+2
(1− |𝑢/𝑐|2)×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
×

×

(︃
𝐽(𝑡, 𝑟′)

𝑛+ 2
+

𝑛− 1

𝑛+ 2

|𝑟 − 𝑟′, 𝑢|2𝐽(𝑡, 𝑟′)
|𝑟 − 𝑟′|2|𝑢|2

)︃
+

+
∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛+2
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
𝐽(𝑡, 𝑟′). (3.53)

Now, having applied the rotational symmetry prop-
erty to (3.53) for the calculation of the internal inte-
grals, we easily obtain within the uniform shell model
of a charged particle 𝜉 that

𝐹𝑠 =
∑︁
𝑛∈Z+

(−1)𝑛

2𝑛!𝑐𝑛+2
(1− |𝑢/𝑐|2)×
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×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛+1

𝜕𝑡𝑛+1
×

×
(︂
𝐽(𝑡, 𝑟′)

𝑛+ 2
+

(𝑛− 1)𝐽(𝑡, 𝑟′)

3(𝑛+ 2)

)︂
+
∑︁
𝑛∈Z+

(−1)𝑛+1

2𝑛!𝑐𝑛
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′
|𝑟 − 𝑟′|𝑛+1

𝑐2
𝜕𝑛+1

𝜕𝑡𝑛+1
𝐽(𝑡, 𝑟′) =

=
𝑑

𝑑𝑡

[︃ ∑︁
𝑛∈Z+

(−1)𝑛+1

6𝑛!𝑐𝑛+2
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟−𝑟′|𝑛−1 𝜕𝑛

𝜕𝑡𝑛
𝐽(𝑡, 𝑟′)−

∑︁
𝑛∈Z+

(−1)𝑛|𝑢|2

6𝑛!𝑐𝑛+4
×

×

[︃ ∫︁
Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·) +
∫︁

Ω+(𝜉)∪Ω−(𝜉)

𝜌(𝑡, 𝑟)𝑑3𝑟(·)

]︃
×

×
∫︁

Ω+(𝜉)

𝑑3𝑟′|𝑟 − 𝑟′|𝑛−1 𝜕𝑛

𝜕𝑡𝑛
𝐽(𝑡, 𝑟′)

]︃
. (3.54)

Now, with regard for the integral expressions (3.41),
we find from (3.54) that, up to the 𝑂(1/𝑐4) accuracy,
the following expression for a radiation reaction force
holds:

𝐹𝑠 = − 𝑑

𝑑𝑡

(︂
ℰes
𝑐2

𝑢

)︂
+

𝑑

𝑑𝑡

(︂
ℰes
2𝑐2

|𝑢/𝑐|2𝑢(𝑡)
)︂
+

2𝜉2

3𝑐3
𝑑2𝑢

𝑑𝑡2
+

+𝑂(1/𝑐4) = − 𝑑

𝑑𝑡
(𝑚es𝑢) +

2𝜉2

3𝑐3
𝑑2𝑢

𝑑𝑡2
+𝑂(1/𝑐4) =

= − 𝑑

𝑑𝑡
(𝑚es𝑢) +

2𝜉2

3𝑐3
𝑑2𝑢

𝑑𝑡2
+𝑂(1/𝑐4) =

= − 𝑑

𝑑𝑡

(︂
𝑚es𝑢− 2𝜉2

3𝑐3
𝑑𝑢

𝑑𝑡

)︂
+𝑂(1/𝑐4). (3.55)

We mention that, following the reasonings from
[8, 59, 70], the above expressions involve the addi-
tional hidden electrostatic Coulomb surface self-force
directed along the velocity 𝑢 ∈ 𝑇 (R3) and acting only
on the front half of the spherical electron shell. As a

result, from (3.50), (3.51) and relation (3.43), we ob-
tain that the electron momentum

𝜋𝑝 := 𝑚es𝑢− 2𝜉2

3𝑐3
𝑑𝑢

𝑑𝑡
= 𝑚es𝑢− 𝑘(𝑡), (3.56)

thereby defining both the radiation reaction momen-
tum 𝑘(𝑡) = 2𝜉2

3𝑐3
𝑑𝑢
𝑑𝑡 and the corresponding radiation

reaction force

𝐹𝑟 =
2𝜉2

3𝑐3
𝑑2𝑢

𝑑𝑡2
+𝑂(1/𝑐4), (3.57)

which coincides exactly with the classical Abraham–
Lorentz–Dirac expression. Moreover, it also follows
that the observable electron inertial mass within the
physical shell model,

𝑚ph = 𝑚es := ℰes/𝑐2, (3.58)

being completely of the electromagnetic origin, gives
rise to the final force expression

𝑑

𝑑𝑡
(𝑚ph𝑢) =

2𝜉2

3𝑐3
𝑑2𝑢

𝑑𝑡2
+𝑂(1/𝑐4). (3.59)

This means, in particular, that the real physically
observed “inertial” mass 𝑚ph of an electron within
the uniform shell model is strongly determined by its
electromagnetic self-interaction energy ℰes. A similar
statement was recently demonstrated, by using com-
pletely different approaches in [59, 70], based on the
vacuum Casimir effect considerations. Moreover, the
above-assumed boundedness of the electrostatic self-
energy ℰes appears to be completely equivalent to the
existence of the so-called intrinsic Poincaré-type “ten-
sions” analyzed in [8, 59] and to the existence of a
special compensating Coulomb “pressure” suggested
in [70], guaranteeing the observable electron stability.

Some years ago, a “solution” to the above-mentio-
ned “4/3-electron mass” problem expressed by the
physical mass relation (3.58) and formulated more
than one hundred years ago by H. Lorentz and M.Ab-
raham was suggested in work [55]. Unfortunately,
the above-mentioned “solution” appeared to be false,
which can be easily observed from the main not cor-
rect assumptions, on which work [55] was based: the
first one is about the particle-field momentum con-
servation taken in the form

𝑑

𝑑𝑡
(𝑝+ 𝜉𝐴) = 0, (3.60)
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and the second one is a speculation about the 1/2-co-
efficient imbedded into the calculation of the Lorentz-
type self-interaction force

𝐹 := − 1

2𝑐

∫︁
R3

𝑑3𝑟𝜌(𝑡; 𝑟)𝜕𝐴(𝑡; 𝑟)/𝜕𝑡, (3.61)

being not correctly argued by the reasoning that
expression (3.61) represents “... the interaction of a
given element of charge with all other parts, otherwise
we count twice that reciprocal action” (cited from
[55], p. 2710). This claim is false, as there was not
taken the important fact into account that the inter-
action in integral (3.61) is, in reality, retarded, and its
impact into it should be considered as that calculated
for two virtually different charged particles, as it has
been done in the classical works of H. Lorentz and
M. Abraham. As for the first assumption (3.60), it is
enough to recall that the vector of the field momen-
tum 𝜉𝐴 ∈ E3 is not independent and is, within the
considered charged particle model, strongly related to
the local flow of the electromagnetic potential energy
in the Lorentz constraint form:

𝜕𝜙/𝜕𝑡+ ⟨∇, 𝐴 ⟩ = 0, (3.62)

under which the Lienard–Wiechert expressions (3.38)
for potentials exploited in work [55] for the calculation
of integral (3.61) hold. Thus, Eq. (3.60) should be re-
placed, following the classical Newton second law, by

𝑑

𝑑𝑡′
(𝑝′ + 𝜉𝐴′) = −∇(𝜉𝜙′), (3.63)

written with respect to the reference frame 𝒦′(𝑡′; 𝑟),
relative to which the charged particle 𝜉 is at
rest. Taking into account that, with respect to the
laboratory reference frame 𝒦𝑡, the relativistic re-
lations 𝑑𝑡 = 𝑑𝑡′(1 − |𝑢|2/𝑐2)1/2 and 𝜙′ = 𝜙(1−
− |𝑢|2/𝑐2)1/2 hold, we easily obtain from (3.63) that

𝑑

𝑑𝑡
(𝑝+ 𝜉𝐴) = −𝜉∇𝜙(1− |𝑢|2/𝑐2) =

= −𝜉∇𝜙+
𝜉

𝑐
∇⟨𝑢, 𝑢𝜙/𝑐⟩ = −𝜉∇𝜙+

𝜉

𝑐
∇⟨𝑢,𝐴⟩. (3.64)

Here, we made use of the well-known relation 𝐴 =
= 𝑢𝜙𝑐 for the vector potential generated by this
charged particle 𝜉 moving in space with the velocity
𝑢 ∈ 𝑇 (R3) with respect to the laboratory reference
frame 𝒦𝑡. Based now on Eq. (3.64), we can derive the

final expression for the evolution of the momentum of
a charged particle 𝜉:

𝑑𝑝/𝑑𝑡 = −𝜉∇𝜙− 𝜉

𝑐
𝑑𝐴/𝑑𝑡+

𝜉

𝑐
∇⟨𝑢,𝐴⟩ =

= −𝜉∇𝜙− 𝜉

𝑐
𝜕𝐴/𝜕𝑡− 𝜉

𝑐
⟨𝑢,∇⟩𝐴+

𝜉

𝑐
∇⟨𝑢,𝐴⟩ =

= 𝜉𝐸 +
𝜉

𝑐
𝑢× (∇×𝐴) = 𝜉𝐸 +

𝜉

𝑐
𝑢×𝐵, (3.65)

that is exactly the well-known Lorentz force expres-
sion, used in the works of H. Lorentz and M. Ab-
raham.

Recently enough, there appeared other interesting
works devoted to this “4/3-electron mass” and related
problems, amongst which we would like to mention
[40–42, 59, 70], whose argumentations are close to
each other and based on the charged shell electron
model, within which a virtual stochastic electrody-
namic interaction of the electron with the ambient
“dark” radiation energy is assumed. The latter was
first clearly demonstrated in [70], where a suitable
compensation mechanism of the related singular elec-
trostatic Coulomb electron energy and the deficiency
of wide-band vacuum electromagnetic radiation en-
ergy fluctuations inside the electron shell were shown
to be harmonically realized as the electron shell ra-
dius 𝑎 → 0. Moreover, this compensation happens
exactly, when the induced outward directed electro-
static Coulomb pressure on the whole electron coin-
cides, up to the sign, with that induced by the above-
mentioned vacuum electromagnetic energy fluctua-
tions outside the electron shell, since there was man-
ifested their absence inside the electron shell.

Really, the outward directed electrostatic spatial
Coulomb pressure on the electron equals

𝜂coul := lim
𝑎→0

𝜀0|𝐸|2

2

⃒⃒⃒⃒
𝑟=𝑎

= lim
𝑎→0

𝜉2

32𝜀0𝜋2𝑎4
, (3.66)

where 𝐸 = 𝜉𝑟
4𝜋𝜀0|𝑟|3 ∈ E3 is the electrostatic field at

the point 𝑟 ∈ R, whereas the electron center is at the
point 𝑟 = 0 ∈ R. The related inward directed vacuum
electromagnetic fluctuations spatial pressure equals

𝜂vac := lim
Ω→∞

1

3

Ω∫︁
0

𝑑ℰ(𝜔), (3.67)

where 𝑑ℰ(𝜔) is the density of electromagnetic energy
fluctuations at a frequency 𝜔 ∈ R+, and Ω ∈ R+
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is the corresponding electromagnetic frequency cut-
off. Integral (3.67) can be calculated, if we consider
the quantum statistical recipe [11, 27, 39] that

𝑑ℰ(𝜔) := ~𝜔
𝑑3𝑝(𝜔)

ℎ3
, (3.68)

where the Plank constant ℎ := 2𝜋~, and the elec-
tromagnetic wave momentum 𝑝(𝜔) ∈ E3 satisfies the
relativistic relation

|𝑝(𝜔)| = ~𝜔/𝑐. (3.69)

Substituting (3.69) into (3.68), we obtain

𝑑ℰ(𝜔) = ~𝜔3

2𝜋2𝑐3
𝑑𝜔, (3.70)

which entails, owing to (3.67), the following spatial
pressure of vacuum electromagnetic energy fluctua-
tions

𝜂vac = lim
Ω→∞

~Ω4

24𝜋2𝑐3
. (3.71)

For the charged electron shell model to be stable at
rest, it is necessary to equate the inward (3.71) and
outward 3.66) spatial pressures:

lim
Ω→∞

~Ω4

24𝜋2𝑐3
= lim

𝑎→0

𝜉2

32𝜀0𝜋2𝑎4
, (3.72)

giving rise to the balance limiting condition, as the
electron shell radius 𝑎𝑏 → 0:

𝑎𝑏 = lim
Ω→∞

[︃
Ω−1

(︂
3𝜉2𝑐2

2~

)︂1/4]︃
. (3.73)

Simultaneously, we can calculate the correspond-
ing energy deficiency of Coulomb and electromagnetic
fluctuations inside the electron shell:

Δ𝑊𝑏 :=
1

2

∞∫︁
𝑎𝑏

𝜀0|𝐸|2𝑑3𝑟 −
𝑎𝑏∫︁
0

𝑑3𝑟

Ω∫︁
0

𝑑ℰ(𝜔) =

=
𝜉2

8𝜋𝜀0𝑎𝑏
− ~Ω4𝑎3𝑏

6𝜋𝑐3
= 0, (3.74)

additionally ensuring the electron shell model sta-
bility.

Another important consequence from this pressure-
energy compensation mechanism can be derived, by
concerning the electron inertial mass 𝑚ph ∈ R+ en-
tering the momentum expression (3.56) in the case of

the electron slow enough movement. Namely, follow-
ing the reasonings from [59], we can observe that,
during the electron movement, there arises an ad-
ditional hidden electrostatic Coulomb surface self-
pressure, which is not compensated, directed along
the velocity 𝑢 ∈ 𝑇 (R3), acting only on the front half
of the electron shell, and equal to

𝜂surf :=
|𝐸𝜉|
4𝜋𝑎2𝑏

1

2
=

𝜉2

32𝜋𝜀0𝑎4𝑏
. (3.75)

It coincides, evidently, with the already compen-
sated outward directed electrostatic Coulomb spatial
pressure (3.66). Since, during the electron motion in
space, its surface electric current energy flow is not
vanishing [59], one ensues that the electron momen-
tum gains an additional mechanical impact, which
can be expressed as

𝜋𝜉 := −𝜂surf
4𝜋𝑎3𝑏
3𝑐2

𝑢 = −1

3

𝜉2

8𝜋𝜀0𝑎𝑏𝑐2
𝑢 = −1

3
𝑚es𝑢,

(3.76)

where we took into account that, within this electron
shell model, the corresponding electrostatic electron
mass equals its electrostatic energy

𝑚es =
𝜉2

8𝜋𝜀0𝑎𝑏𝑐2
. (3.77)

Thus, one can claim that, owing to the structural
stability of the electron shell model, its generalized
self-interaction momentum 𝜋𝑝 ∈ 𝑇 *(R3) gains, during
the movement with a velocity 𝑢 = 𝑑𝑟/𝑑𝑡 ∈ 𝑇 (R3), the
additional backward directed hidden impact (3.76),
which can be identified with the back-directed mo-
mentum component

𝜋𝜉 = −1

3
𝑚es𝑢 (3.78)

complementing the classical [19, 45] momentum ex-
pression

𝜋𝑝 =
4

3
𝑚es𝑢, (3.79)

which can be easily obtained from the Lagrangian,
if one does not consider the shading property of the
moving uniform shell electron model. Then, owing to
the additional momentum (3.78), the full momentum
becomes
𝜋𝑝 = 𝜋𝜉+

4

3
𝑚es𝑢=

(︂
−1

3
𝑚es+

4

3
𝑚es

)︂
𝑢 = 𝑚es𝑢, (3.80)
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which coincides in modulus with the radiation reac-
tion momentum 𝑘(𝑡) = 2𝜉2

3𝑐3
𝑑𝑢
𝑑𝑡 (3.43), by strongly sup-

porting the electromagnetic energy origin of the elec-
tron inertion mass conceived, for the first time, by
H. Lorentz and M. Abraham.

4. Comments

The electromagnetic mass origin problem has been
reanalyzed in detail within the Feynman proper
time paradigm and related vacuum field theory ap-
proach by means of the fundamental least action
principle and the Lagrangian and Hamiltonian for-
malisms. The resulting electron inertia appeared to
coincide in part, in the quasirelativistic limit, with
the momentum expression obtained more than one
hundred years ago by M. Abraham and H. Lorentz
[1, 52–54], and it is proved to contain an additional
hidden impact owing to the imposed electron stabil-
ity constraint, which was accounted for in the original
action functional as some preliminarily undetermined
constant component. As was demonstrated in [59,70],
this stability constraint can be successfully realized
within the charged shell model of electron at rest,
if one consider the existing ambient electromagnetic
“dark” energy fluctuations, whose inward directed
spatial pressure on the electron shell is compensated
by the related outward directed electrostatic Coulomb
spatial pressure, as the electron shell radius satis-
fies some limiting compatibility condition. The latter
also allows one to compensate simultaneously the de-
ficiency of corresponding electromagnetic energy fluc-
tuations inside the electron shell, thereby forbidding
the external energy to flow into the electron. In con-
trary to the lack of an energy flow inside the elec-
tron shell, the corresponding internal momentum flow
is not vanishing during the electron movement, ow-
ing to the nonvanishing hidden electron momentum
flow caused by the surface pressure flow and com-
pensated by the suitably generated surface electric
current flow. As was shown, this backward directed
hidden momentum flow makes it possible to justify
the corresponding expression for the self-interaction
electron mass and to state, within the electron shell
model, the fully electromagnetic electron mass origin,
as it has been conceived by H. Lorentz and M. Ab-
raham and strongly supported by R. Feynman in his
Lectures [28]. This consequence is also independently
supported by means of the least action approach
based on the Feynman proper time paradigm and the

suitably calculated regularized retarded electric po-
tential impact into the charged particle Lagrangian
function.

The charged particle radiation problem revisited
above allows us to conceive the explanation of the
charged particle mass as that of a compact stable ob-
ject, which should be exerted by a vacuum field self-
interaction energy. The latter can be satisfied iff ex-
pressions (3.41) hold, thereby imposing some nontriv-
ial geometrical constraints on the intrinsic charged
particle structure [57]. Moreover, as follows from the
physically observed particle mass expressions (3.58),
the electrostatic potential energy, being of the self-
interaction origin, contributes into the inertial mass
as its main relativistic mass component.

There exist different relativistic generalizations of
the force expression (3.59), which suffer from the com-
mon physical inconsistency related to the no radiation
effect of a charged particle in a uniform motion.

Another problem profoundly related to the radia-
tion reaction force analyzed above is the search for an
explanation to the Wheeler–Feynman reaction radi-
ation mechanism, which is called the absorption ra-
diation theory and strongly based on the Mach-type
interaction of a charged particle with the ambient vac-
uum electromagnetic medium. Concerning this prob-
lem, one can also observe some of its relationships
with the one devised here within the vacuum field
theory approach, but this question needs a more de-
tailed and extended analysis.
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symmetry realized by field-dependent diffeomorphisms,
arXiv: hep-th/9809123 (1998).

45. J.D. Jackson, Classical Electrodynamics (Wiley, New York,
1999).

46. M. Jammer, Concepts of Mass in Contemporary Physics
and Philosophy (Princeton Univ. Press, Princeton, 2009).

47. A. Kastler, Rev. Hist. Sei. 72, 1193 (1977).
48. B.P. Kosyakov, Sov. Phys. Usp. 35(2), 135 (1992).
49. B.P. Kosyakov, Introduction to the Classical theory of Par-

ticles and Fields (Springer, Berlin, 2007).
50. B.A. Kupershmidt, Diff. Geom. & Appl. 2, 275 (1992).
51. L.D. Landau and E.M. Lifshitz, The Classical Theory of

Fields (Pergamon, Oxford, 1983), v. 2.
52. H.A. Lorentz, Proceed. of the Royal Nether. Acad. of Arts

and Sci. 6, 809 (1904).
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ПРО КЛАСИЧНУ ЕЛЕКТРОДИНАМIКУ
МАКСВЕЛЛА–ЛОРЕНЦА, ПРОБЛЕМУ IНЕРЦIЇ
ЕЛЕКТРОНА ТА ФЕЙНМАНIВСЬКУ ПАРАДИГМУ
ВЛАСНОГО ЧАСУ

Р е з ю м е

Класичнi рiвняння електромагнiтного поля Максвелла та
сили Лоренца виводяться в рамках фейнманiвської пара-
дигми власного часу та вiдповiдного вакуумно-польового
пiдходу. Дається наново виведення класичний закон Ампе-
ра, обговорюється його зв’язок iз фейнманiвською паради-
гмою власного часу. Проблема iнерцiї електрона аналiзує-
ться як на основi лагранжевого та гамiльтонового формалi-
змiв, так i вiдповiдного компенсацiйного принципу енергiя–
тиск стохастичної електродинамiки. Отримана модифiко-
вана сила Абрагама–Лоренца для радiацiйного гальмуван-
ня, приведена аргументацiя щодо електромагнiтної приро-
ди маси електрона.
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