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The properties of the universe as a whole are considered on the grounds of classical and quan-
tum theories. For the maximally symmetric geometry, it is shown that the main equation of
the quantum geometrodynamics is reduced to the non-linear Hamilton–Jacobi equation. In the
semiclassical approximation, this non-linear equation is linearized and reduces to the Fried-
mann equation with the additional quantum source of gravity in the form of the stiff Zel’dovich
matter. The semiclassical wave functions of the universe, in which different types of matter-
energies dominate, are obtained. The cases of the domination of radiation, barotropic fluid,
and new quantum matter-energy are discussed. The probability of the transition from the
quantum state, where radiation dominates, into the state, in which a barotropic fluid in the
form of a dust is dominant, is calculated.
K e yw o r d s: universe, general relativity, quantum geometrodynamics, cosmology.

1. Introduction
The answer to the question given in the title to this
paper can be provided after the comparative descrip-
tion of the universe in classical and quantum theo-
ries. In the quantum theory, the main object of the
theory is the state vector (wave function) Ψ. In the
general case, the state vector Ψ is a complex-valued
function defined in some configuration space Ω, and,
without loss of generality, it can always be written
as Ψ𝛼 = 𝒜𝛼 𝑒

𝑖𝜙𝛼 , where 𝒜𝛼 and 𝜙𝛼 are real func-
tions of the generalized variables in Ω, and 𝛼 is a set
of quantum numbers, which characterize the state of
the system with the state vector Ψ𝛼. In the region of
Ω, where the phase 𝜙𝛼 varies by a large amount on
small scales, the system under investigation can be
considered as an almost classical system, in a sense
that its wave properties are inessential and can be ig-
nored when calculating the parameters of the system
[1]. Nevertheless, an almost classical system still has
the wave properties. They can give a probabilistic
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character to parameters of the system, which have no
analogs in classical theory. So, the overlap integral,
⟨Ψ𝛼′ |Ψ𝛼⟩ =

∫︀
𝑑Ω𝒜*

𝛼′𝒜𝛼 𝑒
𝑖(𝜙𝛼−𝜙𝛼′ ) at 𝛼′ ̸= 𝛼, can be

nonzero because of the contribution of a subregion in
Ω, where the difference 𝜙𝛼 − 𝜙𝛼′ of two large phases
is small. As a result, the spontaneous transition (or
transition under the action of an instantaneous per-
turbation) 𝛼→ 𝛼′ with the change of a physical state
of the system becomes possible. Classical and quan-
tum descriptions of physical properties of the same
system appear here as complementary without con-
tradiction to each other.

As is well-known, the universe is subject to classical
laws of general relativity on large spacetime scales,
whereas it should be described from the quantum-
theoretical perspective on small scales comparable
with the Planck one. The questions whether the uni-
verse preserves the wave properties during its subse-
quent evolution and whether these properties can be
discovered are undoubtedly interesting.

In the present paper, as a working model of space-
time geometry, we choose the maximally symmetric
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geometry described by the Robertson–Walker met-
ric. In Section 2, the quantum constraint equations
imposed on a state vector of the universe are given.
These equations are formulated in the representation
of the generalized field variables such as the cosmic
scale factor and the uniform scalar field. The scalar
field is described by some Hermitian Hamiltonian.
Its mean values with respect to proper state vec-
tors determine the proper energy of matter in the
form of a barotropic fluid contained in the comoving
volume (Section 3). In Section 4, it is shown that
the main equation of the theory can be rewritten as
a nonlinear Hamilton–Jacobi equation. Its nonlin-
ear part is caused by a new source of the gravita-
tional field, which has a purely quantum dynamical
nature, and is additional to ordinary matter sources.
In Section 5, the classical description of the universe
evolving in time according to power and exponen-
tial laws are given in comparison with the quantum
description of the same universe in the semiclassi-
cal approximation. The corresponding wave func-
tions of the universe, in which different types of
matter-energies dominate, are obtained. As exam-
ples, the cases of the domination of radiation or a
barotropic fluid are discussed. The case of domina-
tion of a new quantum matter-energy is special. It
is shown that its energy density is negative, while
its equation of state coincides with the equation of
state of the stiff Zel’dovich matter. Such an energy
density dominates in the sub-Planck region. Here,
the wave function is constant, and the semiclassi-
cal equation of motion has an allowed trajectory in
imaginary time. The fact that the wave function is
non-vanishing near the initial singularity point means
that, in this region, there is some source, which pro-
vides the origin of the universe with a finite nucle-
ation rate [2, 3] (cf. Refs. [4–6]). In Discussion, the
transition probability of the universe from the state,
where radiation dominates, into a state, in which a
barotropic fluid in the form of a dust is dominant, is
calculated.

Throughout the paper, unless otherwise specified,
the modified Planck system of units is used. As a
result, all quantities in the equations become dimen-
sionless. The length 𝑙𝑃 =

√︀
2𝐺~/(3𝜋𝑐3) is taken

as a unit of length, and the 𝜌𝑃 = 3𝑐4/(8𝜋𝐺𝑙2𝑃 ) is
used as a unit of energy density and pressure. The
mass-energy is measured in units of the Planck mass,
𝑚𝑃 𝑐

2 = ~𝑐/𝑙𝑃 . The proper time 𝜏 is taken in units

of 𝑙𝑃 . The time parameter (conformal time) 𝑇 is
expressed in radians. The scalar field is taken in
𝜑𝑃 =

√︀
3𝑐4/(8𝜋𝐺). Here, 𝐺 is Newton’s gravita-

tional constant.

2. Quantum Constraint Equations

Let us consider the homogeneous, isotropic, and spa-
tially closed quantum cosmological system (universe).
The geometry of such a universe is described by the
Robertson–Walker metric. This metric has a max-
imally symmetric three-dimensional subspace of the
four-dimensional space-time. Since we consider the
spatially closed universe, the geometry of the space-
time depends on a single cosmological parameter,
namely the cosmic scale factor 𝑎, which describes
the overall expansion or contraction of the universe
[7]. The scale factor is a field variable, which deter-
mines gravity in the formalism under consideration.
We assume that, from the beginning, the universe is
filled with matter in the form of the uniform scalar
field 𝜑, the state of which is given by some Hermi-
tian Hamiltonian, 𝐻𝜑 = 𝐻†

𝜑. This Hamiltonian is de-
fined in a curved space-time. Therefore, in the general
case, it depends on a scale factor 𝑎 as a parameter,
𝐻𝜑 = 𝐻𝜑(𝑎). In addition, it will be accepted that the
universe is filled with a perfect fluid in the form of a
relativistic matter (further referred as radiation) with
the proper energy 𝑀𝛾 = 𝐸

2𝑎 in the comoving volume
1
2𝑎

3, where 𝐸 is a real constant proportional to the
number of particles of the perfect fluid. The perfect
fluid defines a material reference frame [8, 9].

The restrictions in the form of the first-class con-
straint equations are imposed on the state vector of
the quantum universe Ψ = ⟨𝑎, 𝜑|Ψ(𝑇 )⟩, where 𝑇 is a
time parameter. These constraints can be reduced to
two equations [9–11],(︂
−𝑖𝜕𝑇 − 2

3
𝐸

)︂
Ψ = 0, (1)(︀

−𝜕2𝑎 + 𝑎2 − 2𝑎𝐻𝜑 − 𝐸
)︀
Ψ = 0, (2)

where Eq. (1) describes the time evolution of Ψ, when
the number of particles of the perfect fluid conserves,
while Eq. (2) determines the quantum states of the
universe at some fixed instant of time 𝑇 = 𝑇0, 𝑇0 is
an arbitrary constant taken as a time reference point.
The coefficient 2

3 in Eq. (1) is caused by the choice
of the parameter 𝑇 as the time variable. This time
variable is connected with the proper time 𝜏 by the
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differential equation 𝑑𝜏 = 𝑎𝑑𝑇 . Following the ADM
formalism [12, 13], one can extract the so-called lapse
function 𝑁 , that specifies the time reference scale,
from the total differential 𝑑𝑇 : 𝑑𝑇 = 𝑁𝑑𝜂, where 𝜂 is
the “arc time” [14, 15].

The quantum constraints (1) and (2) can be rewrit-
ten in the form of the time-dependent Schrödinger-
type equation

−𝑖𝜕𝑇Ψ =
2

3
ℋΨ, (3)

where

ℋ = −𝜕2𝑎 + 𝑎2 − 2𝑎𝐻𝜑. (4)

The minus sign before the partial derivative 𝜕𝑇 is
stipulated by the specific character of the cosmolog-
ical problem, namely that the classical momentum
conjugate to the variable 𝑎 is defined with the minus
sign [16, 17] (see below).

The partial solution of Eqs. (1) and (2) has a form

Ψ(𝑇 ) = 𝑒𝑖
2
3𝐸(𝑇−𝑇0)Ψ(𝑇0), (5)

where the vector Ψ(𝑇0) ≡ ⟨𝑎, 𝜑|𝜓⟩ satisfies the sta-
tionary equation

ℋ|𝜓⟩ = 𝐸|𝜓⟩. (6)

From the condition

0 =
𝑑

𝑑𝑇

∫︁
𝐷[𝑎, 𝜑] |Ψ|2 =

= −𝑖2
3

∫︁
𝐷[𝑎, 𝜑] Ψ* [︀ℋ† −ℋ

]︀
Ψ, (7)

where 𝐷[𝑎, 𝜑] is the measure of integration with re-
spect to the fields 𝑎 and 𝜑 chosen in an appropriate
way, it follows that the operator (4) is Hermitian:
ℋ = ℋ†.

3. Barotropic Fluid

The Hamiltonian of matter 𝐻𝜑 can be diagonalized
by means of some state vectors ⟨𝑥|𝑢𝑘⟩ in the repre-
sentation of the generalized field variable 𝑥 = 𝑥(𝑎, 𝜑)
with the measure of integration 𝐷[𝑎, 𝜑] = 𝑑𝑎 𝑑𝑥 in
Eq. (7).

Assuming that the states |𝑢𝑘⟩ are orthonormalized,
⟨𝑢𝑘|𝑢𝑘′⟩ = 𝛿𝑘𝑘′ , we obtain the equation

⟨𝑢𝑘|𝐻𝜑|𝑢𝑘′⟩ =𝑀𝑘(𝑎) 𝛿𝑘𝑘′, (8)

which determines the proper energy 𝑀𝑘(𝑎) =
1
2𝑎

3𝜌𝑚
of a substance (barotropic fluid) in a discrete and/or
continuous 𝑘th state in the volume 1

2𝑎
3 with the en-

ergy density 𝜌𝑚 and the pressure

𝑝𝑚 = 𝑤𝑚(𝑎)𝜌𝑚, (9)

where

𝑤𝑚(𝑎) = −1

3

𝑑 ln𝑀𝑘(𝑎)

𝑑 ln 𝑎
(10)

is the equation of state parameter.
Since the form of the Hamiltonian 𝐻𝜑 is not spec-

ified, then, generally speaking, the proper energy
𝑀𝑘(𝑎) can describe ordinary matter-energy, dark
matter, and dark energy. The properties of dark mat-
ter and dark energy are summarized in Refs. [7, 18].
In order to demonstrate the possible behavior of 𝑀𝑘

as a function of 𝑎, let us consider the model of the
uniform scalar field with the potential 𝑉 (𝜑) = 𝜆𝛼𝜑

𝛼,
where 𝜆𝛼 is the coupling constant, and 𝛼 takes arbi-
trary non-negative values, 𝛼 ≥ 0. Then we find [10]

𝑀𝑘(𝑎) = 𝜖𝑘

(︂
𝜆𝛼
2

)︂ 2
2+𝛼

𝑎
3(2−𝛼)
2+𝛼 , (11)

where 𝜖𝑘 is an eigenvalue of the equation

(−𝜕2𝑥 + 𝑥𝛼 − 𝜖𝑘)|𝑢𝑘⟩ = 0,

and 𝑥 =
(︁
𝜆𝛼𝑎6

2

)︁ 1
2+𝛼

𝜑 is the rescaled matter scalar
field. The equation of state parameter in such a
model does not depend on 𝑎 and has a simple form
𝑤𝑚(𝑎) = 𝛼−2

𝛼+2 . It describes the barotropic fluid in
all possible states. In the case of the model 𝜑0,
the field 𝜑 averaged over its quantum states repro-
duces vacuum (dark energy) in the 𝑘th state with the
density 𝜌𝑚 = 𝜆0𝜖𝑘 and the function ⟨𝑥|𝑢𝑘⟩ in the
form of a plane wave 𝑒𝑖𝑘𝑥 with the wave vector 𝑘 =
= ±

√
𝜖𝑘 − 1. The model 𝜑1 describes the strings

in the 𝑘th state with the energy density 𝜌𝑚 =

=
(︀
𝜆1

2

)︀2/3 2𝜖𝑘
𝑎2 , where 𝜖𝑘 ≶ 0 and |𝑢𝑘⟩ is the Airy

function. In the model 𝜑2, the scalar field, after aver-
aging over quantum states, turns into a dust with the
total mass 𝑀𝑘 =

√
2𝜆2(𝑘+

1
2 ), where 𝑘 is the number

of dust particles (including dark matter in the corre-
sponding model), and the density 𝜌𝑚 = 2𝑀𝑘

𝑎3 . The
model 𝜑4 leads to the relativistic matter with the en-
ergy density 𝜌𝑚 =

(︀
𝜆4

2

)︀1/3 2𝜖𝑘
𝑎4 , where 𝜖𝑘 < ∞, and
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|𝑢𝑘⟩ has the asymptotics in the form of a cylindrical
function. In the case 𝛼 = ∞, the field 𝜑 averaged over
the states |𝑢𝑘⟩ reduces to the stiff Zel’dovich matter
with the density 𝜌𝑚 = 2𝜖𝑘

𝑎6 . For the further discussion,
see Ref. [10].

4. Non-linear Hamilton-Jacobi Equation

Assuming that the set of vectors |𝑢𝑘⟩ is complete, the
solution of Eq. (6) can be represented in the form of
a superposition of states of the universe with the sub-
stance in the 𝑘th state in any form described above.
We have

|𝜓⟩ =
∑︁
𝑘

|𝑢𝑘⟩⟨𝑢𝑘|𝜓⟩, (12)

where the wave function 𝑓(𝑎) ≡ ⟨𝑢𝑘|𝜓⟩ satisfies the
equation[︀
−𝜕2𝑎 + 𝑎2 − 2𝑎𝑀(𝑎)

]︀
𝑓 = 𝐸𝑓. (13)

The index 𝑘 is omitted here and below, since, in what
follows, we consider the universe with the proper en-
ergy of the substance in a specific 𝑘th state, 𝑀𝑘(𝑎) ≡
𝑀(𝑎). Because the operator (4) is Hermitian, it
follows that the operator on the left-hand side of
Eq. (13) is Hermitian as well. This equation deter-
mines the wave function corresponding to the partic-
ular eigenvalue 𝐸. Depending on the form of 𝑀(𝑎),
the constant 𝐸 can take the values lying in a discrete
or continuous spectrum of the states of the proper en-
ergy of radiation𝑀𝛾 = 1

2𝑎
3𝜌𝛾 with the energy density

𝜌𝛾 = 𝐸
𝑎4 and the pressure 𝑝𝛾 = 1

3𝜌𝛾 . Thus, the value
of constant 𝐸 is determined through the quantum
numbers enumerating the states of the substance and
radiation.

We look for the solution of Eq. (13) in the form of
a wave propagating along the 𝑎 direction

𝑓(𝑎) = 𝐴𝑒𝑖𝑆(𝑎), (14)

where 𝐴 is the normalizing constant, and the phase
𝑆(𝑎) is a complex function

𝑆(𝑎) = 𝑆𝑅(𝑎) + 𝑖𝑆𝐼(𝑎) (15)

(with 𝑆𝑅 and 𝑆𝐼 real). In the general case, the so-
lution of Eq. (13) is the superposition of the wave
function 𝑓(𝑎) and its complex conjugate 𝑓*(𝑎). Sub-
stituting Eq. (14) into Eq. (13), we find that 𝑆𝑅(𝑎)
satisfies the non-linear equation

(𝜕𝑎𝑆𝑅)
2
+ 𝑎2 − 2𝑎𝑀(𝑎)− 𝐸 = 𝑄(𝑎), (16)

where the function

𝑄(𝑎) =
3

4

(︂
𝜕2𝑎𝑆𝑅

𝜕𝑎𝑆𝑅

)︂2
− 1

2

𝜕3𝑎𝑆𝑅

𝜕𝑎𝑆𝑅
(17)

describes the new source of the gravitational field
with the energy density

𝜌𝑄 =
𝑄(𝑎)

𝑎4
, (18)

which is additional to the ordinary matter (substance
and radiation). This source has the quantum dynam-
ical nature. It emerges as a result of the expansion (or
contraction) of the universe as a whole. The equation
of state of a quantum source of matter-energy has a
form

𝑝𝑄 = 𝑤𝑄(𝑎)𝜌𝑄, (19)

where 𝑝𝑄 is the pressure, and

𝑤𝑄(𝑎) =
1

3

(︂
1− 𝑑 ln𝑄(𝑎)

𝑑 ln 𝑎

)︂
(20)

is the equation of state parameter. The first term in
Eq. (20) takes the correction for relativity into ac-
count. The additional source of matter-energy has a
proper energy 𝑀𝑄 = 1

2𝑎
3𝜌𝑄 = 𝑄

2𝑎 contained in the
volume 1

2𝑎
3.

The derivative of the imaginary part of the phase
𝑆(𝑎) is

𝜕𝑎𝑆𝐼 =
1

2

𝜕2𝑎𝑆𝑅

𝜕𝑎𝑆𝑅
. (21)

In order to clarify the physical meaning of the quan-
tum correction in Eq. (16), we rewrite the source func-
tion 𝑄(𝑎) as

𝑄(𝑎) = (𝜕𝑎𝑆𝐼)
2 − 𝜕2𝑎𝑆𝐼 , (22)

where Eq. (21) was used. From whence, it follows
that if the imaginary part 𝑆𝐼 of phase (15) is a slowly
varying function of 𝑎, then one can set 𝑄(𝑎) ≈ 0.
In this case, Equation (16) becomes the Hamilton–
Jacobi equation for the classical action 𝑆𝑐𝑙 and the
wave function (14) takes the form

𝑓(𝑎) = const 𝑒𝑖𝑆𝑐𝑙 . (23)

It describes the quantum universe in the semiclassical
approximation, when 𝑆𝑅 = 𝑆𝑐𝑙. In classical mechan-
ics, the momentum is equal to the first derivative of
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the action with respect to the generalized coordinate.
In general relativity, Hamilton’s equations of motion
lead to [17]

𝜕𝑎𝑆𝑐𝑙 = − 𝑑𝑎

𝑑𝑇
= −𝑎�̇�, (24)

where we denote �̇� = 𝑑𝑎
𝑑𝜏 . Equations (23) and (24) de-

scribe the same universe, but from the different point
of view, namely as a quantum system in the approx-
imation 𝑆𝑅 = 𝑆𝑐𝑙 or as a classical object obeying the
laws of general relativity.

To determine the physical meaning of the derivative
𝜕𝑎𝑆𝑅, we calculate the probability flux density for the
universe to be a hypersurface with radius 𝑎 in a four-
dimensional space. From Eq. (16), it follows that the
probability flux density is described by the expression

𝐽𝑎 =
1

2𝑖
(𝑓*𝜕𝑎𝑓 − 𝑓𝜕𝑎𝑓

*). (25)

Taking Eq. (14) into account, we find

𝐽𝑎 = |𝑓 |2 𝜕𝑎𝑆𝑅, (26)

where |𝑓 |2 = |𝐴|2𝑒−2𝑆𝐼 is the probability density for
the universe to have the scale factor 𝑎. Equation (26)
shows that the wave function (14) describes the ex-
pansion of the universe as a whole with the general-
ized momentum 𝜕𝑎𝑆𝑅. The generalized action 𝑆𝑅 is a
solution of the non-linear Hamilton–Jacobi equation
(16).

One can make sure that the energy density (18)
is the quantum correction to the energy density of
the substance and radiation by rewriting Eq. (16) in
dimensional physical units

(𝜕𝑎𝑆𝑅)
2
+

(︂
3𝜋𝑐3

2𝐺

)︂2
𝑎2×

×
[︂
1− 8𝜋𝐺

3𝑐4
𝑎2 (𝜌𝑚 + 𝜌𝛾 + 𝜌𝑄)

]︂
= 0, (27)

where

𝜌𝑚 =
𝑀(𝑎)

2𝜋2𝑎3
, 𝜌𝛾 =

𝐸

𝑎4
, 𝜌𝑄 =

~2

6𝜋3

𝐺

𝑐2
𝑄(𝑎)

𝑎4
(28)

are the energy densities of the substance, radiation,
and quantum addition measured in GeV/cm3. Here,
𝑎 is taken in cm, 𝑀(𝑎) in GeV, 𝐸 in GeV cm (~𝑐), 𝑆𝑅

in GeV s (~), whereas𝑄 is in cm−2 and it has the same
form as in Eq. (17). From Eq. (27), it follows that

the quantum correction is proportional to ~2. In the
formal limit ~ → 0, Eq. (27) turns into the Hamilton–
Jacobi equation of general relativity. A more rigorous
approach requires the change to dimensionless vari-
ables, which do not contain dimensional fundamental
constants 𝐺, 𝑐, and ~. The impact of the quantum
correction 𝑄(𝑎) on the dynamics of the universe as
a whole is determined by how quickly the amplitude
𝐴𝑒−𝑆𝐼(𝑎) of the wave function (14) changes with 𝑎.
In Eq. (16), this impact depends on how its terms
behave themselves, as 𝑎 increases (decreases). In the
models, in which Eq. (13) can be integrated exactly,
Eq. (16) also admits a solution in an analytical form
[9, 10].

5. Classical-Quantum Correspondence

Let us assume that the universe evolves in time 𝜏 with
a power-law scale factor

𝑎 = 𝛽 𝜏𝛼, (29)

where 𝛼 and 𝛽 are some arbitrary constants 1. Then
the generalized momentum in the semiclassical ap-
proximation is equal to

𝜕𝑎𝑆𝑅 = −𝛼𝛽 1
𝛼 𝑎

2𝛼−1
𝛼 , (30)

and the quantum source function (17) takes the form

𝑄(𝑎) =
𝛾𝛼
𝑎2
, (31)

where the numerator

𝛾𝛼 =
(2𝛼− 1)(4𝛼− 1)

4𝛼2
(32)

does not depend on 𝑎. The universal dependence of
the source function (31) on the scale factor allows
one to find the equation of state for quantum matter-
energy for any values of the parameters 𝛼 and 𝛽. So,
it follows from Eq. (20) and (31) that the equation
of state parameter (20) is 𝑤𝑄 = 1, and the energy
density decreases, as 𝑎 increases, according to the law

𝜌𝑄 =
𝛾𝛼
𝑎6
. (33)

1 Here, the constant 𝛼 differs from the parameter 𝛼 in Eq. (11).
We use the same letter to emphasize that, in both cases, dif-
ferent types of matter-energy correspond to different values
of 𝛼.
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As was mentioned in Section 3, the stiff Zel’dovich
matter has such a density. The energy density of
this quantum matter can be negative ( 14 < 𝛼 < 1

2 ),
positive (𝛼 > 1

2 , and 𝛼 < 1
4 ), or vanish (𝛼 = 1

2 , and
𝛼 = 1

4 ).
From the point of view of quantum theory, the ex-

pansion of the universe with the scale factor (29) is
described by the semiclassical wave function

𝑓𝛼(𝑎) = 𝐴𝛼 𝑎
− 2𝛼−1

2𝛼 exp

{︃
−𝑖 𝛼

2𝛽
1
𝛼

3𝛼− 1
𝑎

3𝛼−1
𝛼

}︃
(34)

at 𝛼 ̸= 1
3 , and

𝑓 1
3
(𝑎) = 𝐴 1

3
𝑎

1
2−𝑖 𝛽3

3 . (35)

The complex conjugate function 𝑓*𝛼(𝑎) corresponds to
the wave propagating toward the initial cosmological
singularity point, 𝑎 = 0, and describes the contracting
universe.

In the limit of infinitely large values of 𝛼, we
have lim𝛼→∞ 𝛾𝛼 = 2, and the quantum correction
in Eq. (16) equals

𝑄(𝑎) =
2

𝑎2
. (36)

The same additional term is produced by the universe
expanding exponentially. Really, setting

𝑎 = 𝑎(0) 𝑒
√
𝜌𝑣𝜏 , (37)

where 𝜌𝑣 is some constant (e.g., 𝜌𝑣 = Λ
3 , where Λ is

the cosmological constant), we calculate the momen-
tum of the universe

𝜕𝑎𝑆𝑅 = −√
𝜌𝑣 𝑎

2. (38)

Substituting (38) into Eq. (17), we obtain the quan-
tum correction in the form (36). The exponentially
expanding universe is described by the semiclassical
wave function

𝑓∞(𝑎) = 𝐴∞
1

𝑎
𝑒−𝑖

√
𝜌𝑣
3 𝑎3

. (39)

At infinity, this function vanishes, but it diverges at
the point 𝑎 = 0. However, this point is inaccessible,
since 𝜏 ≥ 0 in Eq. (37). Function (39) can be normal-
ized to a constant. The probability flux density (26)
for the wave function (39) is

𝐽∞ = −√
𝜌𝑣 |𝐴∞|2. (40)

Approximation (31) linearizes Eq. (16), and it can
be considered as the Hamilton–Jacobi equation for
the generalized action 𝑆𝑅 with the additional source
of the gravitational field with the energy density (33).
Using Eq. (30), this equation can be easily reduced
to the Friedmann equation for the Hubble expansion
rate 𝐻 = �̇�

𝑎 . In the semiclassical approximation,
𝜕𝑎𝑆𝑅 = −𝑎�̇�, we have

𝐻2 =
2𝑀(𝑎)

𝑎3
+
𝐸

𝑎4
+
𝛾𝛼
𝑎6

− 1

𝑎2
. (41)

In addition to the energy density of the substance
(∼𝑀(𝑎) 𝑎−3) and radiation (∼𝑎−4), this equation
contains the energy density of the quantum source
(∼𝑎−6).

Let us find out what restriction on the solutions
of Eqs. (16) and (41) is imposed by Eq. (29). Since
it is assumed that the universe evolves according to
law (29) with a given 𝛼, this means, according to the
standard model, that the approximation of a single
component domination in the total energy density of
matter energy 𝜌 is used. It has the form [7, 19, 20]

𝜌 ∼ 1

𝑎2/𝛼
for 𝑎 ∼ 𝜏𝛼. (42)

The substitution of Eqs. (30) and (31) into Eq. (16)
gives the condition

𝛼2 𝛽
2
𝛼 𝑎

2
𝛼 (2𝛼−1) + 𝑎2 − 2 𝑎𝑀(𝑎)− 𝐸 = 𝛾𝛼 𝑎

−2. (43)

Let 𝛼 = 1
2 . Then 𝛾 1

2
= 0, and Eq. (43) is equivalent

to

2𝑀(𝑎)

𝑎3
+
𝐸

𝑎4
− 1

𝑎2
=
𝛽4

4

1

𝑎4
. (44)

Then Eq. (41) yields

𝐻2 =

(︂
𝛽2

2𝑎2

)︂2
or 𝐻 =

1

2𝜏
, (45)

if Eq. (29) is used. This equation describes the spa-
tially flat universe, in which radiation dominates.
Hence, model (29) does not contradict Eq. (41). Such
a universe expands with constant momentum

𝜕𝑎𝑆𝑅 = −𝛽
2

2
, (46)

and, according to Eq. (17), an additional quantum
source of energy is not generated, 𝑄(𝑎) = 0. The
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quantum properties of such a universe are described
by the wave function

𝑓 1
2
(𝑎) = 𝐴 1

2
𝑒−𝑖

√
𝐸𝑎 = 𝐴 1

2
𝑒−𝑖𝐻𝑎3

. (47)

This function is a solution to Eq. (13), in which the
terms 𝑎2 and 2𝑎𝑀(𝑎) are omitted, i.e. the quantum
universe is spatially flat and contains nothing but ra-
diation. Comparing Eq. (47) with Eq. (34) at 𝛼 = 1

2 ,
we find the constant 𝛽 of Eq. (29):

𝛽 =
(︁
2
√
𝐸
)︁1/2

. (48)

This expression coincides with the one that can be
obtained directly from the solution of Eq. (41) in the
approximation specified above.

The wave function of the continuous state 𝑓 1
2
(𝑎) ≡

𝑓 1
2
(𝑎;𝐸) (47) can be normalized to a delta-function

⟨𝑓 1
2
(𝐸)|𝑓 1

2
(𝐸′)⟩ = 𝛿(𝐸 − 𝐸′). (49)

This condition determines the normalizing constant
𝐴 1

2
(up to an inessential phase factor),

|𝐴 1
2
|2 =

1

2
√
𝐸
. (50)

According to Eqs. (46) and (48), the probability flux
density (26) for the universe with the wave function
(47) and the amplitude from Eq. (50) does not depend
on 𝑎 and 𝐸 and equals

𝐽 1
2
= −1

2
. (51)

In this case, the conservation law is fulfilled, 𝜕𝑎𝐽 1
2
=

0. The minus sign in Eq. (51) shows that the matter
flux is directed away from the observer, i.e. matter
objects (galaxies) move away from the observer, by
demonstrating the effect of expansion of the universe.

Using the wave packet (proper differential)

𝑓 1
2
(𝑎;𝐸) =

𝐸+𝛿∫︁
𝐸−𝛿

𝑑𝐸′𝑓 1
2
(𝑎;𝐸′) (52)

with the width 2𝛿 ≪ 1, 𝛿 > 0, the wave function
𝑓 1

2
(𝑎;𝐸) can be normalized to 1 as follows:

⟨𝑓 1
2
(𝐸)|𝑓 1

2
(𝐸)⟩ = 1. (53)

From Eqs. (49) and (52), it follows that integral (53)
does not depend on 𝛿. The smaller 𝛿, the greater the
accuracy, with which the wave packet (52) reproduces
the wave function (47). The wave function (47) with
amplitude (50) can be interpreted as a part of the de
Broglie wave propagating along 𝑎 with the momen-
tum 𝜕𝑎𝑆𝑅 = −

√
𝐸.

In the case 𝛼 = 2
3 , we have 𝛾 2

3
= 5

16 , and the
quantum source function (17) is

𝑄(𝑎) =
5

16

1

𝑎2
. (54)

The quantum source is characterized by the positive
energy density 𝜌𝑄 (18). The condition (43) is written
as

2𝑀(𝑎)

𝑎3
+
𝐸

𝑎4
+

5

16

1

𝑎6
− 1

𝑎2
=

4

9

(︂
𝛽

𝑎

)︂3
, (55)

and Eq. (41) gives the Hubble expansion rate

𝐻2 =
4

9

(︂
𝛽

𝑎

)︂3
or 𝐻 =

2

3𝜏
. (56)

The latter equation describes a spatially flat uni-
verse, where the non-relativistic matter with the mass
𝑀(𝑎) ≡𝑀 = 𝑐𝑜𝑛𝑠𝑡 dominates. In this case, the con-
stant 𝛽 is determined by Eqs. (56) and (41), in which
the domination of matter is taken into account:

𝛽 =

(︂
3

2

√
2𝑀

)︂2/3
. (57)

The universe expands as a whole with the momentum

𝜕𝑎𝑆𝑅 = −
√
2𝑀 𝑎1/2 = −𝐻𝑎2. (58)

The wave function has a form

𝑓 2
3
(𝑎) =

𝐴 2
3

𝑎1/4
exp

{︂
−𝑖2

3

√
2𝑀 𝑎3/2

}︂
=

=
𝐴 2

3

𝑎1/4
𝑒−𝑖 2

3𝐻𝑎3

. (59)

This function is the asymptotics of the Airy func-
tion at 2𝑎𝑀 ≫ 1. The Airy function is a solution of
Eq. (13) with𝑀(𝑎) =𝑀 = 𝑐𝑜𝑛𝑠𝑡 for the spatially flat
universe (the term 𝑎2 in Eq. (13) should be omitted).
In the domain 𝑎 ≫ 𝐸

2𝑀 , the Airy function describes
the continuous state with respect to 𝐸 and can be
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normalized to a delta-function 𝛿(𝐸−𝐸′) [1]. Asymp-
totics (59) describes the state with 𝐸 = 0. Therefore,
it is convenient to normalize it by the condition

⟨𝑓 2
3
(𝑀)|𝑓 2

3
(𝑀 ′)⟩ = 𝛿(𝑀 −𝑀 ′), (60)

where we denote 𝑓 2
3
(𝑎) ≡ 𝑓 2

3
(𝑎;𝑀). In order to cal-

culate the parameters of the universe in state (59),
the wave function can be normalized to 1,

⟨𝑓 2
3
(𝑀)|𝑓 2

3
(𝑀)⟩ = 1, (61)

instead of (60), where

𝑓 2
3
(𝑎;𝑀) =

𝑀+𝛿∫︁
𝑀−𝛿

𝑑𝑀 ′𝑓 2
3
(𝑎;𝑀 ′) (62)

is the wave packet with the width 2𝛿 ≪ 1, and 𝛿 > 0.
The amplitude 𝐴 2

3
in Eq. (59) can be found under

the assumption that the probability flux density is
conserved in the expanding universe and equals to the
probability flux density in the radiation-dominated
era (51). As a result, we obtain

|𝐴 2
3
|2 =

1

2
√
2𝑀

. (63)

The case 𝛼 = 1
3 in the quantum description appears

to be special. The wave function has the form (35).
Parameter (32) takes the value 𝛾 1

3
= − 1

4 , and the
quantum source function (17) is

𝑄(𝑎) = − 1

4𝑎2
, (64)

so that the energy density (18) is negative

𝜌𝑄 = − 1

4𝑎6
. (65)

Then condition (43) takes the form

2𝑀(𝑎)

𝑎3
+
𝐸

𝑎4
− 1

4𝑎6
− 1

𝑎2
=

1

9

(︂
𝛽

𝑎

)︂6
. (66)

Equation (41) together with Eq. (66) define the Hub-
ble expansion rate

𝐻2 =
1

9

(︂
𝛽

𝑎

)︂6
or 𝐻 =

1

3𝜏
. (67)

This equation describes a spatially flat universe, in
which the stiff Zel’dovich matter with the energy den-
sity (65) dominates. From Eq. (41), it follows that,
for such a universe,

𝐻2 = − 1

4𝑎6
, (68)

because the energy densities of a substance and ra-
diation and the curvature term should be neglected.
This corresponds to the domain of values 𝑎 < 1 (sub-
Planck scales). Equations (67) and (68) impose a
restriction on the allowed values of the parameter 𝛽

𝛽6

9
= −1

4
. (69)

If this condition is satisfied, then it means that, in
the sub-Planck region, where the energy density (65)
dominates, the wave function (35) is either constant

𝑓 1
3
(𝑎) = 𝐴 1

3
at

1

2
= 𝑖

𝛽3

3
, (70)

or increases linearly with 𝑎,

𝑓 1
3
(𝑎) = 𝐴 1

3
𝑎 at

1

2
= −𝑖𝛽

3

3
. (71)

In the case of Eq. (70), we have 𝑓 1
3
(0) = 𝐴 1

3
= const,

i.e. there is a source at the point 𝑎 = 0. This may in-
dicate that the universe can originate from the initial
cosmological singularity point with a finite nucleation
rate Γ ∼ |𝑓 1

3
(0)|2. In a more rigorous consideration,

it appears that such an origin occurs not from the
point 𝑎 = 0, but from the whole domain of values of
𝑎 ≤ 1

2
√
𝐸

, where the wave function has the form (70)
[2, 3]. In this domain, there exists the classical tra-
jectory in the imaginary time 𝑡 = −𝑖𝜏+ const, which
is a solution of Eq. (41), where the energy density
of a substance and the curvature term are neglected.
Near 𝑎 ∼ 0, one has

𝑎 =

(︂
−3

2
𝑖𝜏

)︂1/3
≡ 𝛽 𝜏1/3. (72)

From this solution, the condition on 𝛽 follows unam-
biguously, which chooses solution (70).

We come to the conclusion that the quantum-
mechanical description of the universe in the semi-
classical approximation admits the possibility of the
origin of the universe from a sub-Planck domain. As
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was shown in Refs. [2, 3], the origin of the universe is
accompanied by a change in the space-time topology,
so that the geometry conformal to a unit four-sphere
in a five-dimensional Euclidean flat space changes into
the geometry conformal to a unit four-hyperboloid
embedded in a five-dimensional Lorentz-signatured
flat space. On the boundary, where these two sub-
regions adjoin each other, there is a jump with the
metric signature change [5, 6].

6. Discussion

Where and how can the wave properties of the almost
classical universe become apparent? The state vector
|𝜓⟩ (12), which does not depend on the time explicitly,
is the superposition of the wave functions 𝑓𝑘(𝑎) of all
possible 𝑘th states of matter in the universe. The
wave functions 𝑓𝑘 ≡ 𝑓 are determined by Eq. (13) for
different proper energies of matter 𝑀𝑘(𝑎) ≡ 𝑀(𝑎).
Therefore, in the general case, the overlap integral
⟨𝑓𝑘′ |𝑓𝑘⟩ with 𝑘′ ̸= 𝑘 will be nonzero. In model (29),
the type of matter is defined by the parameter 𝛼. Let
us calculate the probability of the transition of the
universe from the state, where radiation dominates
(𝛼 = 1

2 ), into a state, in which a barotropic fluid
in the form of a dust is dominant (𝛼 = 2

3 ). This
probability is determined by the expression

𝑤 (rad. → dust) =
|⟨𝑓 2

3
|𝑓 1

2
⟩|2

⟨𝑓 1
2
|𝑓 1

2
⟩⟨𝑓 2

3
|𝑓 2

3
⟩
. (73)

Using the wave functions (47) and (59), we have

|⟨𝑓 2
3
|𝑓 1

2
⟩|2 = |𝐴 2

3
|2 |𝐴 1

2
|2 𝐼(𝐸,𝑀), (74)

where

𝐼(𝐸,𝑀) =

⃒⃒⃒⃒
⃒
∞∫︁
0

𝑑𝑎 𝑎−1/4 ×

× exp

{︃
𝑖
√
𝐸 𝑎3/2

(︃
1√︀

𝑎𝑐(𝐸,𝑀)
− 1√

𝑎

)︃}︃
⃒
2

, (75)

and

𝑎𝑐(𝐸,𝑀) =
9

8

𝐸

𝑀
. (76)

The integration in Eq. (75) can be performed analyt-
ically. As a result, 𝐼(𝐸,𝑀) will have the form of the
sum of terms containing generalized hypergeometric
functions. However, for our illustrative purposes, it is

sufficient to calculate the integral in Eq. (75), by us-
ing the method of approximate calculation of overlap
integrals of semiclassical wave functions mentioned in
Introduction. In the region 𝑎 ≫ 𝑎𝑐, the exponential
function in the integrand oscillates rapidly, and its
contribution into the integral is exponentially small
[1]. The main contribution into the integral comes
from the region near 𝑎 = 𝑎𝑐, where the exponential
function is almost 1. In this approximation, we have

𝐼(𝐸,𝑀) =
3√
2

(︂
𝐸

𝑀

)︂3/2
. (77)

Then, with regard for Eqs. (50), (53), (62), (63), and
(77), we obtain the following simple expression for
probability (73):

𝑤 (rad.→ dust) =
3

8

𝐸

𝑀2
. (78)

We estimate 𝑎𝑐, 𝐼, and 𝑤, by using the values 𝐸0 =
1.86×10118 and𝑀0 = 0.92×1061. They correspond to
the modern values of the energy densities of radiation
and matter, 𝜌0𝛾 = 2.61× 10−10 GeV cm−3 and 𝜌0𝑚 =
𝜌crit = 0.48×10−5 GeV cm−3, and the Hubble length
𝑎0 ≡ 𝑐

𝐻0
= 1.37× 1028 cm taken as a rough estimate

of the size of the observable universe 2. We have

𝑎𝑐(𝐸0,𝑀0) = 2.27× 1057(= 1.69× 1024 cm), (79)

𝐼(𝐸0,𝑀0) = 1.93× 1086, (80)

𝑤0 = 0.83× 10−4. (81)

Then the redshift is 𝑧𝑐 = 2.41 𝑧𝑒𝑞, where 𝑧𝑒𝑞 = 3360
is the redshift of matter-radiation equality. Param-
eter (80) is close to the number of photons 𝑁𝛾 =
= 4.47× 1087 in the volume 4

3𝜋𝑎
3
0 = 1.09× 1085 cm3.

Probability (81) coincides with the matter density
contrast Δ𝜌𝑚

𝜌𝑚
∼ 10−4 in the era of matter-radiation

equality, when perturbations begin to grow mainly at
the expense of cold dark matter like WIMPs (see, e.g.,
Ref. [21]). Such a coincidence is not accidental. Let
us consider fluctuations of the matter density, which
occur on account of radiation. Then we can write
Δ𝜌𝑚 = (𝜌𝛾 + 𝜌𝑚)− 𝜌𝑚 = 𝜌𝛾 , and the matter density
contrast is equal to Δ𝜌𝑚

𝜌𝑚
= 𝐸

2𝑎𝑀 , where 𝑎 is the scale
factor of the universe with mass 𝑀 . The quantum

2 All astrophysical constants and parameters, used here and
below, are taken from Ref. [7].
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calculations show that the mean value of the scale
factor in the state of the universe with mass 𝑀 ≫ 1
is ⟨𝑎⟩ =𝑀 [9]. For the modern values 𝑎0 and 𝑀0 for
the observable universe, the following equality holds
𝑎0 ≈ 2𝑀0. So that for the matter density contrast,
we have

Δ𝜌𝑚
𝜌𝑚

= 𝜁
𝐸

𝑀2
, with

1

4
< 𝜁 <

1

2
. (82)

For 𝜁 = 3
8 , this agrees with Eq. (78).

This example demonstrates that the parameters of
the classical theory, which are calculated in general
relativity with the use of the data of astronomical
observations, are in quite good agreement with pre-
dictions of quantum geometrodynamics.
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ЧИ МОЖЕ КВАНТОВА
ГЕОМЕТРОДИНАМIКА ДОПОВНИТИ
ЗАГАЛЬНУ ТЕОРIЮ ВIДНОСНОСТI?

Р е з ю м е

Властивостi всесвiту як цiлого розглядаються з позицiй
класичної та квантової теорiї. Для максимально симе-
тричної геометрiї показано, що основне рiвняння кванто-
вої геометродинамiки зводиться до нелiнiйного рiвняння
Гамiльтона–Якобi. У квазiкласичному наближеннi це не-
лiнiйне рiвняння лiнеаризується та зводиться до рiвняння
Фрiдмана з додатковим квантовим джерелом гравiтацiйно-
го поля iз гранично жорстким рiвнянням стану, запропоно-
ваним Зельдовичем. Отримано квазiкласичнi хвильовi фун-
кцiї всесвiту, в якому домiнують рiзнi типи матерiї-енергiї.
Розглядаються випадки домiнування випромiнювання, ба-
ротропної рiдини та нової квантової матерiї-енергiї. Обчи-
слена iмовiрнiсть переходу iз квантового стану, в якому до-
мiнує випромiнювання, у стан, в якому домiнуючою є баро-
тропна рiдина у формi пилу.
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