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The conditions, under which the general description of the dynamical properties of quasipar-
ticles is almost identical with those of real relativistic particles, are analyzed. Such analysis
is, especially, actual today in connection with the growing interest in electronic properties
of graphene and other nanostructures of carbon origin (fullerenes, nanotubes, etc.). The de-
velopment of the traditional applications of quasiparticles (superfluidity, transfer of charge or
energy) also requires a generalized analysis of dynamical properties of quasiparticles. The prob-
lem of the correlation of quantum and classical methods of description of the quasiparticles in
the case of the excited states of crystals is considered. In order to focus attention on the dis-
cussed problem, the obtained results are demonstrated on the example of electronic excitations
of crystals in the simplest case where other effects are neglected (phonons, defects, high density
of excitations, which would require the account for interactions between them, the response of a
lattice to excitations, and so forth). It is shown that such excitations can be described in three
ways simultaneously. The first is the quantum description of the examined excitations in terms
of wave functions and eigenvalues of energy. The second method is classical. It arises from the
quantum method and is formulated in terms of the wave momentum. The third method, which
follows from the second one, is also a description of the classical type, but is related to the
other momentum – the mechanical one. The latter descriptions (the third or second one) make
it possible to interpret the experimental data in terms of the usual relativistic dynamics.
K e yw o r d s: quasiparticles, dispersive dependence, relativistic approximation, dynamical
Dirac model, graphenes.

1. Introduction

Electronic properties of graphene and other nanos-
tructures of the carbon series require a general anal-
ysis of dynamical properties of quasiparticles. Their
field of applications is from superconductivity [1] and
superfluidity [2] up to solitary excitation transfer pro-
cesses [3–9]. In particular, the processes of such trans-
fer are normally associated in practice with the spa-
tial transmission of charge or energy. But they can
also be used as information signals. Studying the
fundamental properties of quasiparticles (especially
dynamical properties) is important as for traditional
processes [3–6], so for such updated problem as the
properties of graphene [10] in, particularly, the Dirac
dynamical model [11]. This is important also for a
more complete understanding of the physical proper-
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ties of real particles, especially, in connection with the
mentioned dynamical Dirac model in graphenes [12].

The analysis of the general dynamical properties of
free quasiparticles is fulfilled on the basis of one of
the major characteristics of the excited states of con-
densed matter. This is the dispersive dependence of
the energy or frequency on a wave vector [1–15]. We
will also examine the general conditions, under which
the dynamical Dirac model becomes real. The prob-
lem of relationship between quantum and classical
methods of description of quasiparticles is considered
as well.

2. Materials and Methods. Common
Remarks About Dynamical Properties
of Quasiparticles in Crystals

2.1. Basic relations

We will analyze the dependence 𝐸(k) ≡ 𝐸(𝑘1, 𝑘2, 𝑘3).
Since the wave vector k is always associated with the
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wave momentum P = ~k, the quantity 𝐸 (k) acquires
at once the sense of Hamiltonian: 𝐸 (k) ≡ 𝐻 (P). In
this case, it is possible to find a speed of some classic
object, 𝑉𝑖 (k) = 𝜕𝐻(P)

𝜕𝑃𝑖
≡ 1

~
𝜕𝐸(k)
𝜕𝑘𝑖

≡ 𝜕𝜔(k)
𝜕𝑘𝑖

, and its

mass 𝑚−1
𝑖𝑗 (k) = 𝜕𝑉𝑖

𝜕𝑃𝑗
≡ 1

~
𝜕𝑉𝑖(k)
𝜕𝑘𝑖

≡ 1
~2

𝜕2𝐸(k)
𝜕𝑘𝑖𝜕𝑘𝑗

≡ 𝜕𝑉𝑗

𝜕𝑃𝑖
.

The expressions 𝐸 (k) and V (k) are parametric de-
pendences of the energy on the speed. If formulate
the energy as a function of the speed, it immediately
gets a status of the mechanical Lagrangian: 𝐸 (k) ≡
≡ 𝐿𝑚 (V), which determines the components of the
mechanical momentum P𝑚: 𝑃𝑖(𝑚) = 𝜕𝐿𝑚(V)

𝜕𝑉𝑖
. Here,

the index determines the Cartesian components of the
corresponding values. In [16], it was shown that this is
indeed a mechanical momentum, inasmuch as deter-
mined by the equality: 𝑃𝑖(𝑚) (k) = 𝑚𝑖𝑗 (k)𝑉𝑗 (k). As
is obvious from the last equation, the momentum P𝑚

differs from a momentum P, at least, by two circum-
stances: by the determination and the different rela-
tion to the mass.

The presence of two specifications of the classical
type for a free quasiparticle, which are based on the
equalities 𝐸 (k) ≡ 𝐻 (P) ≡ 𝐿𝑚 (V) , generates an
additional duality of the classic-classic type. Between
these two descriptions, there exists another “intersec-
tion”, which supplements this equality: both descrip-
tions have identical speed.

Here, we want to focus our attention on that the
dynamical Dirac model is universal for any points of
the k-space (except for the points of extrema) and for
any crystals, but not only for graphenes in vicinities of
the points 𝑘𝑖 ∼ 𝜋/2. For clarity of the presentation of
this problem, we have to give briefly some of the main
aspects of the dynamical description of quasiparticles,
which were discussed in [16] in detail.

2.2. Basic relations in crystals
2.2.1. Simple unit cell

Without regard for a reaction of the lattice to the
excitation [17], the typical Hamiltonian for single-
electronic excitations in simplest solids is determined
by the equality [3–6, 16, 18]

𝐸 ({𝑎}) = 1

2

{︂∑︁
n l

′
𝑤n,n+l +

∑︁
n

2𝐷n|𝑎n|2+

+
∑︁
n l

′
𝑀n,n+l

(︀
𝑎*n𝑎n+l + 𝑎*n+l𝑎n

)︀}︂
. (1)

The vectors n and l determine the spatial posi-
tion of a separate atom or molecule. The factor 𝑎n

is an unknown part of the wave function of the elec-
tronic subsystem of a crystal and is determined by the
condition of dynamical minimization of functional (1)
[4,16]. The eigenvalue 𝐸 (k) is determined simultane-
ously with 𝑎n. The matrix element 𝑤n,n+l determines
the interaction between atoms or molecules. The ma-
trix element 𝐷n is the energy, which determines the
interaction between the crystal and an external ex-
citation. The matrix element 𝑀n,n+l determines the
energy of the resonant exchange interaction. These el-
ements are determined in details in [16, 17]. The con-
dition of dynamical minimization of functional (1) is
equivalent to the procedure of reduction to the diag-
onal type of the operator proper to (1) [5]. This pro-
cedure enables one to find the energy 𝐸 (k) directly
at the operator level.

In the simplest case, the potential energy 𝐷n does
not depend on the variable n: 𝐷n = 𝐷0, and func-
tional (1) takes a simpler form:

𝐸 ({𝑎}) = 𝐸0 +
1

2

∑︁
n l

′
𝑀n,n+l

(︀
𝑎*n𝑎n+l + 𝑎*n+l𝑎n

)︀
. (2)

Here, 𝐸0 ≡ 𝑈0 +𝐷0𝑁 , where 𝑈0 ≡ (1/2)
∑︀′

n l 𝑤n l.
The common determination of norm is used: 𝑁 ≡
≡
∑︀

n |𝑎n|2. Using the procedure of Hamilton dynam-
ical minimization, 𝑖~𝜕𝑎n

𝜕𝑡 = 𝜕𝐸({𝑎})
𝜕𝑎*

n
, it is possible to

get the equation

𝑖~
𝜕𝑎n
𝜕𝑡

= −1

2

∑︁
l

′
|𝑀l| (𝑎n+l + 𝑎n−l). (3)

Here, two circumstances were taken into account
[16]. First, the matrix elements 𝑀n,n+l under the con-
ditions of ideal crystal depend only on the difference
of lower indices. Second, in typical crystals, they are
negative. Then functional (2) becomes

𝐸 ({𝑎}) = 𝐸0 −
1

2

∑︁
n l

′
|𝑀l|

(︀
𝑎*n𝑎n+l + 𝑎*n+l𝑎n

)︀
. (4)

Applying the formal operator identity 𝑎n±l ≡
≡ exp {± (l · ∇n)}𝑎n to Eq. (3), we see that it takes
form of the Schrödinger equation: 𝑖~𝜕𝑎n

𝜕𝑡 = ̂︀𝐻𝑎n,
wherê︀𝐻 ≡ −

∑︁
l

′
|𝑀l|ch (l · ∇n). (5)

As system (3) is complex, the function 𝑎n must be
represented firstly in a most general form [19]:

𝑎n (𝑡) = 𝜙n (𝑡) exp [𝑖Γn (𝑡)]. (6)
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Let us substitute (6) into (3) and separate the real
and imaginary parts from each other. Then system
(3) disintegrates into two subsystems for the functions
𝜙n and Γn.

The first approximation, which results in the dy-
namics of quasiparticles identical to the dynamics of
a free relativistic particle, is the approximation of a
plane wave in a phase: Γn = k ·n − 𝜔 𝑡, and a con-
dition of unallocated amplitude: 𝜙n (𝑡) = 1/

√
𝑁a,

where 𝑁a is the number of atoms in the excited re-
gion of a crystal. In this case, (6) takes the form

𝑎n (𝑡) =
1√
𝑁a

exp [𝑖 (k · n− 𝜔 𝑡)]. (7)

The substitution of (7) in energy (4) gives a law of
dispersion for the examined case (absence of a reac-
tion of the lattice on an excitation [17]):

𝜀 (k) = −
∑︁
l

′
|𝑀l| cos (k · l) ≡ ~𝜔 (k), (8)

where 𝜀 (k) ≡ 𝐸 (k)−𝐸0. The comparison of expres-
sion (8) with the definition of operator (5) shows that
the wave vector k can be put into accordance with
the operator − 𝑖∇n only (“minus” corresponds to the
physical correctness of this accordance). As the wave
vector k straightly determines a wave momentum P
only, it is possible to conclude that, in the transition
from the classical description to the quantum one, the
operator of gradient is equivalent only to the wave
momentum in the sense of the equality ̂︀P = − 𝑖 ~∇n,
but not to a mechanical momentum, which is deter-
mined by the equality 𝑃𝑖(𝑚) (k) = 𝑚𝑖𝑗 (k)𝑉𝑗 (k) and
is given in Subsection 2.1.

Next, the second and third approximations, which
result into the dynamics of quasiparticles identical
to the dynamics of a free relativistic particle, are
the approximation of the nearest neighbors typical
of crystals and the approximation of cubic lattice. In
these approximations, the lattice vector takes the
form b𝑖 ≡ 𝑏e𝑖 (e𝑖 are unit vectors of the Cartesian
system), and energy (8) is simplified to the equality

𝜀 (k) = −|𝑀 |
∑︁
𝑖

cos (𝑏𝑘𝑖). (9)

A new notation is introduced: 𝑀𝑏e𝑖
≡ 𝑀 . Using

the definitions of speed and mass, which are given in
Subsection 2.1, we have

𝑉𝑖 =
1

~
𝜕𝜀 (k)

𝜕𝑘𝑖
= 𝐶 sin (𝑏𝑘𝑖); (10)

𝑚𝑖𝑗 = 𝛿𝑖𝑗
𝑚

cos (𝑏𝑘𝑖)
≡ 𝛿𝑖𝑗

𝑚√︀
1− 𝛽2

𝑖

. (11)

Here, the standard notation of the relativistic dy-
namics is used: 𝛽𝑖 ≡ 𝑉𝑖/𝐶 are the components of a
vector 𝛽. For the dimensionless speed, formula (10)
yields

𝛽𝑖 = sin (𝑏𝑘𝑖) . (12)

In (10), a constant 𝐶 has the dimension of speed
and is determined by the equality

𝐶 ≡ 𝑏|𝑀 |
~

. (13)

It has a sense of the maximum possible speed of a
quasiparticle under study. In (11), a constant 𝑚 has
the dimension of mass and is defined by the equality

𝑚 ≡ ~2

|𝑀 |𝑏2
. (14)

It has the sense of a nondynamical part of the mass,
i.e., it is independent of the wave vector k). For the
mass 𝑚, we formulate another useful definition:

𝑚 ≡ ~
𝑏𝐶

. (15)

The result given in (11) is new for the quasi-
particles.

In the approximations of nearest neighbors and, es-
pecially, cubic lattice, the tensor of mass becomes di-
agonal. Moreover, due to the approximation of cubic
lattice, the tensor nature of mass is determined only
by its dynamical properties. A constant 𝑚 is a scalar
in these approximations. From the viewpoint of the
relativistic approximation in the dynamics of quasi-
particles, the equality 𝑚𝐶2 = |𝑀 |, which can be got
from (13) and (14), is of importance. In this case, en-
ergy (9) can be represented as

𝜀 (k) = −𝑚𝐶2
∑︁
𝑖

cos (𝑏𝑘𝑖), (16)

and the identity 𝐸 (k) ≡ 𝐻 (P) follows from the
equality

𝜀 (k) ≡ 𝐻 (P) = −𝑚𝐶2
∑︁
𝑖

cos

(︂
𝑏

~
𝑃𝑖

)︂
. (17)
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2.2.2. General case

In the general case of a complex unit cell (with several
atoms), functional (1) has the form [20]:

𝐸 ({𝑎}) = 1

2

{︂ ∑︁
n𝛼m𝛽

′
𝑤n𝛼m𝛽

+
∑︁
n𝛼

2𝐷n𝛼 |𝑎n𝛼 |
2
+

+
∑︁

n𝛼m𝛽

′
𝑀n𝛼m𝛽

(︁
𝑎*n𝛼

𝑎m𝛽
+ 𝑎*m𝛽

𝑎n𝛼

)︁}︂
.

Here, the vectors n𝛼, m𝛽 are determined by the
relations:

n𝛼 = n+ r𝛼, (18)

where n = 𝑛𝑖b𝑖 is an ordinary vector of the lat-
tice. Index 𝑖 runs from one up to three, by depend-
ing on the dimension of the crystal, and 𝑛𝑖 are in-
tegers corresponding to the number of unit cells:
𝑛𝑖 = 0, ±1, ±2, ... . The lattice vectors b𝑖 are given
by b𝑖 = 𝑏𝑖 𝜉e𝜉, where 𝑏𝑖 𝜉 are projections of the vectors
b𝑖 on the Cartesian unit vectors e𝜉 = (e𝑥, e𝑦, e𝑧).
Indices 𝛼 and 𝛽 take integer values from 0 to 𝑆 − 1,
where 𝑆 is the number of atoms in the unit cell. The
zero values (e.g., 𝛼 = 0) correspond to the basic
atoms of the unit cell, which are considered to de-
termine the unit cell itself. Herewith, it is assumed
that r0 = 0. For 𝛼 ̸= 0, the vectors r𝛼 are defined by
the obvious relations r𝛼 = 𝑥𝛼𝜉e𝜉, where 𝑥𝛼𝜉 are the
coordinates of the atom for 𝛼 ̸= 0.

Here, we will analyze only the general features of
the possible influence of the complex composition of
the unit cell on the dynamical properties of quasipar-
ticles that do not require a detailed consideration of
the lattice structure. In this case, by using the pro-
cedure of Hamilton dynamical minimization [4, 16],
𝑖~𝜕𝑎n𝛼

𝜕𝑡 = 𝜕𝐸({𝑎})
𝜕𝑎*

n𝛼

, we get the system of equations

𝑖~
𝜕𝑎n𝛼

𝜕𝑡
= 𝐷n𝛼

𝑎n𝛼
+

∑︁
m𝛽 (̸=n𝛼)

𝑀n𝛼m𝛽
𝑎m𝛽

. (19)

In the approximation of an ideal lattice, Eq. (19)
reduces to

𝑖~
𝜕𝑎n𝛼

𝜕𝑡
= 𝐷𝛼𝑎n𝛼 +

∑︁
m𝛽 (̸=n𝛼)

𝑀m𝛽−n𝛼 𝑎m𝛽
.

In view of representation (18), this system can be
presented as

𝑖~
𝜕𝑎n𝛼

𝜕𝑡
= 𝐷𝛼𝑎n𝛼

+
∑︁

m𝛽 (̸=n𝛼)

𝑀m−n+r𝛽−r𝛼 𝑎m𝛽
. (20)

Now, it is convenient to rewrite (20) as follows:

𝑖~
𝜕𝑎n𝛼

𝜕𝑡
= 𝐷𝛼𝑎n𝛼

+
∑︁

𝛽(̸=𝛼)

𝑀r𝛽−r𝛼 𝑎n𝛽
+

+
∑︁

m(̸=n)

𝑀m−n 𝑎m𝛼
+
∑︁

m(̸=n)

∑︁
𝛽(̸=𝛼)

𝑀m−n+r𝛽−r𝛼 𝑎m𝛽
.

(21)

The solution of this equation is usually sought in
the form

𝑎n𝛼
= 𝐴𝛼𝑒

𝑖 [(k·n)−𝜔𝑡], (22)

where, unlike the case of a simple lattice (one atom
per unit cell), the coefficients 𝐴𝛼 are complex quan-
tities. Then Eq. (21) takes the form of an algebraic
system for the coefficients 𝐴𝛼 and 𝐴*

𝛼:⎛⎝𝐷𝛼+
∑︁

n(̸=0)

𝑀n𝑒
𝑖(k·n)−~𝜔

⎞⎠𝐴𝛼 +
∑︁

𝛽(̸=𝛼)

𝑀r𝛽−r𝛼𝐴𝛽 +

+
∑︁

𝛽(̸=𝛼)

𝐴𝛽

∑︁
n(̸=0)

𝑀n+r𝛽−r𝛼𝑒
𝑖 (k·n) = 0;⎛⎝𝐷𝛼+

∑︁
n(̸=0)

𝑀n𝑒
−𝑖(k·n)−~𝜔

⎞⎠𝐴*
𝛼+

∑︁
𝛽(̸=𝛼)

𝑀r𝛽−r𝛼𝐴
*
𝛽 +

+
∑︁

𝛽( ̸=𝛼)

𝐴*
𝛽

∑︁
n(̸=0)

𝑀n+r𝛽−r𝛼𝑒
−𝑖 (k·n) = 0.

(23)

The term
∑︀

n(̸=0) 𝑀n𝑒
±𝑖 (k·n) describes the pro-

cesses of translation of an excitation between atoms of
different elementary cells, which correspond to any of
indices 𝛼. If the approximation of nearest neighbors
is used, then this sum is usually equal to zero.

The term 𝑀r𝛽−r𝛼 describes the processes of trans-
lation of an excitation between nonequivalent atoms
of the same elementary cell. These terms are gener-
ally determine the degree of complexity of a specific
band structure of the crystal.

Finally, the terms
∑︀

n( ̸=0)𝑀n+r𝛽−r𝛼𝑒
±𝑖 (k·n) de-

scribe the translation process of an excitation be-
tween atoms of different elementary cells non-
equivalent to one another. These terms determine
mainly the properties of each of the energy bands.

Non-trivial solutions of system (23) are determined
by the conditions of its compatibility, i.e. by the
equality of its determinant to zero. However, this con-
dition can be realized only under the specification of
the crystal lattice.
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Below, we will consider a simple lattice (one atom
per unit cell) in order to be able to focus on the gen-
eral dynamical properties of quasiparticles. A com-
plex lattice structure will be considered only in Sub-
section 3.3.2 to illustrate the use of system (23) and
some features of the dynamics of quasiparticles in the
case of graphene. In particular, a complicated unit
cell with two atoms, instead of two nested simple sub-
lattices, as is usually done. will be considered.

2.3. “Mechanical branch” of a dynamical
description for crystals with simple unit cell
(in relation to a mechanical momentum P𝑚)

To obtain the property 𝐸 (k) ≡ 𝐿𝑚 (V), which is
given in Subsection 2.1, it is necessary to eliminate
the wave vector k in (16) by definition (10). We ob-
tain

𝜀 (k) ≡ 𝐿𝑚 (𝛽) = −𝑚𝐶2
∑︁
𝑖

√︁
1− 𝛽2

𝑖 . (24)

Using definitions (10) and (11) with regard for the
relation 𝑃𝑖(𝑚)(k) = 𝑚𝑖𝑗(k)𝑉𝑗(k), which is given in
Subsection 2.1, and taking into account that the iden-
tity cos (𝑏𝑘𝑖) ≡

√︀
1− 𝛽2

𝑖 holds under three above-
mentioned approximations, we obtain

𝑃𝑖(𝑚) =
𝑚𝑉𝑖

cos (𝑏𝑘𝑖)
≡ 𝑚𝐶

𝛽𝑖√︀
1− 𝛽2

𝑖

. (25)

The appearance of the factor
√︀
1− 𝛽2

𝑖 in dynam-
ical relations under the excitation of condensed sys-
tems was also mentioned in other investigations (in
particular, in [3, 19]).

The definitions of Lagrangian (24) and momentum
(25) allow us to consider the mechanical description
of the dynamics of quasiparticles to be completed. It
is remains only to write the mechanical Hamiltonian
in the standard way: 𝐻𝑚 (P𝑚) = 𝐶

∑︀
𝑖 𝛽𝑖𝑃𝑖(𝑚) −

−𝐿𝑚 (𝛽). As a result, we obtain the following defi-
nition: 𝐻𝑚 (P𝑚) = 𝑚𝐶2

∑︀
𝑖

√︀
1 + (𝑝𝑖(𝑚))2, where is

marked: 𝑝𝑖(𝑚) ≡ 𝑃𝑖(𝑚)

⧸︀
𝑚𝐶 = 𝛽𝑖/

√︀
1− 𝛽2

𝑖 . Here,
𝑝𝑖(𝑚) are the components of the dimensionless me-
chanical momentum.

2.4. “Wave branch”of a dynamical
description in crystals with simple unit cell
(in relation to a wave momentum P)

For the final construction of this description, we have
the definition of Hamiltonian (17), whose dimen-

sionless form reads ℎ (p) = −
∑︀

𝑖 cos (𝑝𝑖), and rela-
tion (12) between a speed and a wave momentum:
𝛽𝑖 = sin (𝑝𝑖). The dimensionless wave momenta are
defined by the equation

𝑝𝑖 = 𝑏𝑘𝑖. (26)

It is not difficult to show, by using the definition
𝑃𝑖 = ~𝑘𝑖 and definition (15) written in the form
𝑚𝐶 = ~/𝑏 that 𝑏𝑘𝑖 =

𝑏
~𝑃𝑖 =

𝑃𝑖

𝑚𝐶 = 𝑝𝑖. To complete
this description, it is enough to define the proper La-
grangian. Again, we will use the standard definition

𝑙 (𝛽) =
∑︁
𝑖

𝛽𝑖𝑝𝑖 − ℎ (p). (27)

As a result, we have

𝑙 (𝛽) =
∑︁
𝑖

(︂
𝛽𝑖 arcsin (𝛽𝑖) +

√︁
1− 𝛽2

𝑖

)︂
. (28)

It is obvious that 𝑙 (𝛽) ≡ 𝐿 (𝛽)
⧸︀
𝑚𝐶2. Lagrangian

(28) is a new result. It belongs to the “wave branch”
of a dynamical description of the object, unlike
the mechanical Lagrangian (24), whose dimension-
less form is as follows: 𝑙𝑚 (𝛽) = −

∑︀
𝑖

√︀
1− 𝛽2

𝑖 . Lag-
rangian (28) at the implementation of the operations
𝜕𝑙 (𝛽)/𝜕𝛽𝑖 generates, indeed, the components of the
wave momentum: 𝑝𝑖 = arcsin (𝛽𝑖). The last equality
is inverse relative to (12) (if we use 𝑏𝑘𝑖 = 𝑝𝑖). The ne-
cessity to carry out the inverse transformation means
the limitation on the components of the momentum
𝑝𝑖 by such inequalities: |𝑝𝑖| ≤ 𝜋/2.

Thus, for the consideration of a quasiparticle, as a
classic object (material point), we have two descrip-
tions equal in rights. One of them (mechanical) can be
called the relativistic approximation, as it practically
have the same form and was got in three approxi-
mations listed above (plane wave in a phase, near-
est neighbors, and cubic lattice). Another description
(wave) has the Hamiltonian

ℎ (p) = −
∑︁
𝑖

cos (𝑝𝑖) (29)

and Lagrangian (28). In the general case, it is im-
possible to do the choice between these descrip-
tions without additional researches. Except for, per-
haps, the relativistic approximation, which is consid-
ered here and in which the mechanical Lagrangian
𝑙𝑚 (𝛽) = −

∑︀
𝑖

√︀
1− 𝛽2

𝑖 and the mechanical Hamilto-
nian ℎ𝑚 (p𝑚) =

∑︀
𝑖

√︀
1 + (𝑝𝑖(𝑚))2 have the familiar

“relativistic” form.
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3. Results and Discussion

3.1. Generalized de Broglie
ratio in crystals with simple unit cell

Here, we will stop on the general relation between the
momenta P and P𝑚. Using definition (12) in equal-
ity (25) and replacing components 𝑘𝑖 by the compo-
nents 𝑃𝑖 in accordance with the definition: 𝑘𝑖 = 𝑃𝑖/~,
we get 𝑃𝑖(𝑚) = 𝑚𝐶 𝑡𝑔 (𝑃𝑖/𝑚𝐶). This can be called
the generalized de Broglie relation. While deducing
the dependence 𝑃𝑖(𝑚) on 𝑃𝑖, the definition of mass
(15) written down in the form 𝑚𝐶 = ~/𝑏 was used
again. This definition, as mentioned above, yields the
definition of dimensionless wave momentum: 𝑝𝑖 ≡
≡𝑃𝑖/𝑚𝐶≡𝑏𝑘𝑖. Now, it is obvious that the correspon-
dence between the mechanical momentum and its op-
erator representation is more complicated than for the
wave momentum: ̂︀𝑃𝑗(𝑚) = −𝑖𝑚𝐶 th

(︀
(~/𝑚𝐶)∇𝑗

n

)︀
,

where ∇𝑗
n ≡ 𝜕/𝜕𝑥𝑗 . On the other hand, with an ac-

count of (15): ̂︀𝑃𝑗(𝑚) = −𝑖 (~/𝑏) th
(︀
𝑏∇𝑗

n

)︀
. The rela-

tion between momenta can be represented in the di-
mensionless form:

𝑝𝑖(𝑚) = tg (𝑝𝑖). (30)

Obviously, equality (30) becomes the de Broglie or-
dinary relation p𝑚 = p only in the case of very small
momenta and, accordingly, very small speeds. The re-
lation p𝑚 = p looks here as the zero approximation.

Relation (30) is a new result, which is, indeed, a
generalized de Broglie correlation in the approxima-
tions used here (plane wave in a phase, the nearest
neighbors, and the cubic lattice). In more complex
cases (concerning the structure of the lattice), this
ratio will be another. But the approximation p𝑚 = p
must always be applied, if all the dynamical charac-
teristics are small.

3.2. Relation of classic descriptions
to the quantum description in crystals
with simple unit cell

The quantum description in three accepted approxi-
mations is related to the wave function (7). In these
approximations, it takes such a form:

𝑎n (𝑡) =
1√
𝑁

exp [𝑖 (𝑝𝑗𝑥𝑗 − ℎ (p) 𝜏)]. (31)

The variables 𝑥𝑗 are components of the vector
of lattice n = {𝑏𝑥, 𝑏𝑦, 𝑏𝑧} in the approximation of

cubic lattice. The Hamiltonian ℎ (p) was defined in
(29). The dimensionless time 𝜏 has such definition:
𝜏 ≡

(︀
𝑚𝐶2/~

)︀
𝑡 = (|𝑀 |/ ~) 𝑡. Since function (31) is

formulated in terms of the wave momentum, it gives
advantage at once to a “wave branch” description of
the classical type.

The quantum description is always formulated in
an own coordinate system. To formulate solution (31)
in this system, we must find, at first, the point of con-
ditional localization of the excitation. Since a quasi-
particle has a speed 𝛽 = {𝛽𝑗}, its conditional location
at the time moment 𝜏 can be set by the vector x0 with
components: 𝑥𝑗

0 ≡ 𝛽𝑗𝜏 . With regard for the definition
of the relative variables: 𝑥𝑗−𝑥𝑗

0 ≡ 𝜉𝑗 and the common
definition of wave Lagrangian 𝑙 (𝛽) =

∑︀
𝑖 𝛽𝑖𝑝𝑖−ℎ (p),

we obtain 𝑎n (𝑡) = 1√
𝑁
exp [𝑖 (𝑝𝑗𝜉𝑗 + 𝑙 (𝛽) 𝜏)]. The

phase part of the solution is actually disintegrated
into two multipliers. The first one, exp [𝑖 (p · 𝜉)], is
the stationary quantum wave function of a free parti-
cle in the own coordinate system related to the point
x0. This point moves relative to the crystal lattice
with speed 𝛽. The second multiplier exp (𝑖 𝑙 (𝛽) 𝜏) de-
pends on the classical action 𝑆 (𝜏) =

∫︀ 𝜏

0
𝑙 (𝛽′) 𝑑𝜏 ′. In

the case of free motion, this action reduces to the
form 𝑆 (𝜏) = 𝑙 (𝛽) 𝜏 . It determines the dynamics of
the point x0. Such description is always presented in
the phase of the wave function as a separate term and
always has the meaning of the classical action of the
object.

3.3. The dynamical Dirac model
for graphenes as an approximation
in the generalized dynamical description

3.3.1. Simple unit cell

It is known [21, 22] that, in graphenes, the disper-
sion properties of electronic excitations 𝐸 (p) have
two features. One of these features is caused by the
lattice structure of a crystal. This feature leads to
the appearance of up to four coupled dispersion re-
lations. The second feature is caused by a series ex-
pansion of the dispersion relations near a point, where
the components of the dimensionless wave momentum
takes values |𝑝𝑖| = 𝜋/2. As a result, this leads to a for-
mal description, which resembles the Dirac theory of
electrons. Here, we consider the crystals with a simple
lattice. That is why we will stop only on the second
feature – on a Taylor series expansion. For a greater
physical clarity, we will consider the excitation energy
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in the form (17), but in a partly dimensionless form:
𝐻 (p) = −𝑚𝐶2

∑︀
𝑖 cos (𝑝𝑖), (𝑖 = {𝑥, 𝑦, 𝑧}).

At the point |𝑝𝑖| = 𝜋/2, we can get a series expan-
sion linear in p:

𝐻 (p) = 𝑚𝐶2

(︃∑︁
𝑖

𝑝𝑖

)︃
− 3𝜋𝑚𝐶2/2.

It is easy to verify that, for two-dimensional crys-
tals of the type of graphenes, this energy is reduced
to the form 𝐻 (p) = 𝑚𝐶2 (

∑︀
𝑖 𝑝𝑖) − 𝜋𝑚𝐶2, where

𝑖 = {𝑥, 𝑦}. But it can be shown that, at any point
p = p0, except for the point p = 0, one can get a
linear representation

𝐻 (p) = 𝑚𝐶2 (𝛽0 · p)− 𝐿 (𝛽0).

If p0 is a fixed vector with components 𝑝𝑖0, then
𝛽0 ≡ e𝑖 sin

(︀
𝑝𝑖0
)︀
; e𝑖 are the unit vectors of the coor-

dinate axes of the crystal; 𝐿 (𝛽0) ≡ 𝑚𝐶2𝑙 (𝛽0), and
the definition of 𝑙 (𝛽0) is given in (28).

3.3.2. General case

In this paragraph, we will stop in details on the ap-
plicability of Eq. (23) to a real graphene. The main
purpose of the return to the well-investigated ques-
tion of the crystal and energy electronic structure of
graphene lies in two circumstances. The first aim con-
sists in the consideration based on a complicated el-
ementary cell, rather than on two simple sublattices
(consideration based on a complicated elementary cell
is rarely used). The second aim is to demonstrate a
more important fact of the possibility to use a lin-
ear approximation, relative to the wave momentum,
not only at the points of contact of the energy bands,
but practically at any point of the k-space (except
for the point k = 0, if the extremum at it is imple-
mented). The figure shows a fragment of the graphene
lattice and its unit cell with two atoms.

The two-dimensional lattice vector is defined by the
equality n = 𝑛1b1+𝑛2b2. The elementary cell, which
is shown in detail in the Figure, corresponds to the
values 𝑛1 = 𝑛2 = 0. From the geometry of the unit
cell, we can see that b1 = e𝑥𝑏, b2 = e𝑥

1
2𝑏 + e𝑦

3
2𝑎,

where 𝑏 = 𝑎
√
3. Then we get for the vector n: n =

= e𝑥
(︀
𝑛1 +

1
2𝑛2

)︀
𝑏+ e𝑦

3
2𝑛2𝑎. Given k = e𝑥𝑘𝑥 + e𝑦𝑘𝑦,

the scalar product (k · n) in the definition of the fac-
tors 𝑒±𝑖 (k·n) of system (23) has the form (k · n) =
= 𝑛1𝑝1 + 𝑛2𝑝2. Here, the dimensionless momenta 𝑝1

Crystal lattice of graphene and its elementary cell. Basic dis-
tance between atoms is denoted by 𝑎. The vectors b1 and b2

determine the crystallographic directions. The unit cell con-
tains two atoms, which are marked by the numerals “0” (basic
atom) and “1” (an extra atom). Numerals “0′ ” and “0′′” de-
note the atoms of neighboring unit cells equivalent to atom
“0”. Numerals “1′” and “1′′” denote the atoms of neighboring
unit cells equivalent to atom “1”. Two circles centered at atoms
“0” and “1” show the first two coordinate “spheres”, which limit
the consideration by the approximation of nearest neighbors

and 𝑝2 are introduced in accordance with definitions
(26) and have the form 𝑝1 = (k · b1) = 𝑘𝑥𝑏 ≡ 𝑝𝑥;
𝑝2 = (k · b2) = 1

2𝑝𝑥 + 3
2𝑝𝑦, where 𝑝𝑦 ≡ 𝑘𝑦𝑎. Below,

all will be considered relative to the momenta 𝑝1 and
𝑝2. The momenta 𝑝𝑥 and 𝑝𝑦 will be used for illustra-
tive purposes.

Considering the parameters of the lattice, which
is shown in the Figure, one can obtain in the nearest
neighbor approximation (within the framework of two
first coordination “spheres” shown in the Figure):

(𝐷0 − ~𝜔)𝐴0 +𝑀𝑎(1 + 𝑒−𝑖𝑝1 + 𝑒−𝑖𝑝2)𝐴1 = 0;

(𝐷1 − ~𝜔)𝐴1 +𝑀𝑎(1 + 𝑒𝑖𝑝1 + 𝑒𝑖𝑝2)𝐴0 = 0;

(𝐷0 − ~𝜔)𝐴*
0 +𝑀𝑎(1 + 𝑒𝑖𝑝1 + 𝑒𝑖𝑝2)𝐴*

1 = 0;

(𝐷1 − ~𝜔)𝐴*
1 +𝑀𝑎(1 + 𝑒−𝑖𝑝1 + 𝑒−𝑖𝑝2)𝐴*

0 = 0.

(32)

In the representation 𝑒±𝑖𝑝1,2 =cos(𝑝1,2)±𝑖 sin(𝑝1,2),
system (32) can be written in the matrix form [11,12,
21–23], as is often done:

𝑀𝑎{1 + cos (𝑝1) + cos (𝑝2)}̂︀Σ1A+

+𝑀𝑎{sin (𝑝1) + sin (𝑝2)}̂︀Σ2A+ ̂︀𝐷A = ~𝜔̂︀𝐼A,
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where

A =

⎛⎝𝐴0
𝐴1
𝐴*

0
𝐴*

1

⎞⎠; ̂︀Σ1 =

⎛⎝0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎠ ≡
(︂̂︀𝜎𝑥

̂︀0̂︀0 ̂︀𝜎𝑥

)︂
;

̂︀Σ2 =

⎛⎝0 −𝑖 0 0
𝑖 0 0 0
0 0 0 𝑖
0 0 −𝑖 0

⎞⎠ ≡
(︂̂︀𝜎𝑦

̂︀0̂︀0 −̂︀𝜎𝑦

)︂
;

̂︀𝐷 =

⎛⎝𝐷0 0 0 0
0 𝐷1 0 0
0 0 𝐷0 0
0 0 0 𝐷1

⎞⎠; ̂︀𝐼 =

⎛⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎠.
We note that the matrices ̂︀Σ1 and ̂︀Σ2 can be rep-

resented via the Pauli matrices ̂︀𝜎𝑥 and ̂︀𝜎𝑦.
Like Subsection 3.3.1, a linear representation rel-

atively to the momentum p can be obtained in the
neighborhood of any point p0 ≡

{︀
𝑝01, 𝑝

0
2

}︀
, which dif-

fers from the point p0 = 0:

𝑝1

{︂
𝛽0
1
̂︀Σ1A− 1

𝜇0
1

̂︀Σ2A

}︂
+ 𝑝2

{︂
𝛽0
2
̂︀Σ1A− 1

𝜇0
2

̂︀Σ2A

}︂
−

−{𝑙 (𝛽0) + 1}̂︀Σ1A−

−
{︂
𝛽0
1 − 1

𝜇0
1

𝑝01 + 𝛽0
2 − 1

𝜇0
2

𝑝02

}︂̂︀Σ2A+ ̂︀𝐺A = Ω̂︀𝐼A. (33)

To provide a more compact recording and to
demonstrate the connection of the obtained linear
representation with the dynamical characteristics of
quasiparticles, the following definitions were taken
into account in Eq. (33): definition (12) for the
dimensionless speed 𝛽0

𝑖 = sin
(︀
𝑝0𝑖
)︀
; definition (28)

for the dimensionless wave Hamiltonian ℎ (p0) =
= −

∑︀
𝑖 cos

(︀
𝑝0𝑖
)︀
; definition (27) for the dimensionless

wave Lagrangian 𝑙 (𝛽0) =
∑︀

𝑖 𝛽
0
𝑖 𝑝

0
𝑖 − ℎ (p0); and the

definition of the tensor components of the dimension-
less dynamical mass [17]: cos

(︀
𝑝0𝑖
)︀
= 1/𝜇0

𝑖 . We used
also the relation 𝑀𝑎 = −|𝑀𝑎| typical of the crystals
[16], [17] and introduced the notations ̂︀𝐺 ≡ 1

|𝑀𝑎|
̂︀𝐷,

Ω ≡ ~𝜔
|𝑀𝑎| .

Equation (33) includes the dynamical masses 𝜇0
𝑖 ,

which disappear (due to the conditions
(︀
1/𝜇0

𝑖

)︀
= 0)

only at the points of contact of the energy bands,
where 𝑝0𝑥 = 𝜋

2 , 𝑝0𝑦 = 𝜋
6 and, respectively, p0 =

{︀
𝜋
2 ,

𝜋
2

}︀
,

𝛽0 = {1, 1}, 𝑙 (p0) = 𝜋. At these points, Eq. (33) is
simplified up to the form

(𝑝1 + 𝑝2) ̂︀Σ1A− (𝜋 + 1) ̂︀Σ1A− 2 ̂︀Σ2A+ ̂︀𝐺A = Ω̂︀𝐼A.

Relative to the momenta 𝑝𝑥 and 𝑝𝑦, this equation
looks like

(𝑝𝑥 + 𝑝𝑦) ̂︀Σ1A− (2/3) (𝜋 + 1) ̂︀Σ1A− (4/3) ̂︀Σ2A+

+(2/3) ̂︀𝐺A = (2/3)Ω̂︀𝐼A.

To determine the energy eigenvalues ~𝜔, it is neces-
sary to return to system (32). The compatibility con-
dition for this system gives [(𝐷0 − ~𝜔)(𝐷1 − ~𝜔)−
−𝑀2

𝑎 (1 + 𝑒−𝑖𝑝1 + 𝑒−𝑖𝑝2)(1 + 𝑒𝑖𝑝1 + 𝑒𝑖𝑝2)]2 = 0. From
whence, we obtain

(𝐷0 − ~𝜔) (𝐷1 − ~𝜔) =

= 𝑀2
𝑎{1 + 2[1 + cos (𝑝1) + cos (𝑝2) + cos (𝑝2 − 𝑝1)]}.

If 𝐷0 = 𝐷1 = 𝐷 (this is realized only under the
ideal conditions of infinite crystal), then ~𝜔± = 𝐷±
±𝑀𝑎

√︀
1 + 2 (1 + cos (𝑝1) + cos (𝑝2) + cos (𝑝2 − 𝑝1)).

In the {𝑝𝑥, 𝑝𝑦}-representation for this energy, we
obtain ~𝜔± = 𝐷±𝑀𝑎

{︀
1+2

(︀
1+ cos(𝑝𝑥)+ cos

(︀
3
2𝑝𝑦 +

+ 1
2𝑝𝑥
)︀

+ cos
(︀
3
2𝑝𝑦 − 1

2𝑝𝑥
)︀)︀}︀1/2. Using the cosine

transformation for the sum and the difference of ar-
guments, as well as for the cosine of double argument,
we can obtain the standard expression [23] (to within
the notations of parameters and axes): Δ𝐸± =
= ±𝑀𝑎

√︀
1 + 4 cos2 (𝑝𝑥/2) + 4 cos (𝑝𝑥/2) cos (3𝑝𝑦/2),

where Δ𝐸± ≡ ~𝜔± −𝐷.

4. Conclusions

The basic principles of construction of the general dy-
namical properties for quasiparticles under the exci-
tation of materials with the structure of solids (crys-
tals) have been analyzed. Most of the results obtained
in this research are related to the crystals with a
simple cubic lattice. But it is shown that these re-
sults can be considered as a zero (base) approxima-
tion for the analysis of the general dynamic proper-
ties of excited nano-objects and crystals with more
complex structures of a crystal lattice. In particu-
lar, on the example of the application of the results
obtained for the crystals with complex unit cell to
graphene, it is shown that the Hamiltonian (Dirac
representation) linear in the momentum may be valid
for any crystal and for any point of the k-space, ex-
cept for the points, where the dispersive ratio have
extrema.

The excitation is realized as the dispersive depen-
dence 𝐸 (k) or 𝜔 (k). In order to focus attention on
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the general dynamical properties, the results of anal-
ysis in most cases are illustrated on the example of
the simplest electronic excitations of crystals. These
excitations, in particular, include the injection of an
electron into the conduction band of a semiconduc-
tor, or they can be of the type of a Frenkel exciton in
materials with the structure of molecular crystals.

It is shown that such excitations can be simultane-
ously described by three methods.

The first one is the quantum (basic) method, which
gives the description of the examined excitations in
terms of wave functions and eigenvalues of energy.

The second method is classical. It arises from the
quantum method and is formulated in terms of a
wave momentum. This second description exists in
the phase of the wave function as an element, whose
sense is fully identical to the classic action for the
trajectory of a point of conditional localization of the
excitation. The description of a quasiparticle in terms
of the second method can be called the wave classical-
type description.

The third method originated from the second one
is also the classical-type description, but in terms of
another momentum, the mechanical one. In the ap-
proximations used here (plane wave in a phase, near-
est neighbors, and cubic lattice), the third method
of description practically coincides with the known
dynamical description of a free relativistic particle.

A question about the “relation” of both classic de-
scriptions to the first quantum one is considered. The
generalized de Broglie correlation is found. It is shown
that the Dirac dynamical model in graphene is an ap-
proximation of the generalized dynamical description
of quasiparticles in crystals.

The further applications of the obtained results are
as follows: investigation of the dynamics of quasipar-
ticles in an external potential field; use of the gener-
alized de Broglie relations for the more correct con-
version of the momentum of an electron at its injec-
tion into a crystal; investigations in plasma, where
the dispersive dependences of the kind of 𝜔 (k) are
used; experimental verification of the existence of an
anisotropy of the dynamical mass, which supplements
the anisotropy of a crystal.
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А.Д.Супрун, Л.В.Шмельова

ДЕЯКI АСПЕКТИ УЗАГАЛЬНЕНОЇ
ДИНАМIКИ КВАЗIЧАСТИНОК В КРИСТАЛАХ
З ЕЛЕМЕНТАРНОЮ КОМIРКОЮ
ДОВIЛЬНОЇ СКЛАДНОСТI

Р е з ю м е

Проаналiзовано умови, за яких загальний опис динамi-
чних властивостей квазiчастинок майже збiгається з ана-
логiчним описом для реальних релятивiстських частинок.
Такий аналiз на сьогоднi актуальний у зв’язку iз зростан-
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ням iнтересу до електронних властивостей графена та iн-
ших наноструктур вуглецевого походження (фулерени, на-
нотрубки i таке iнше). Розвиток традицiйних застосувань
квазiчастинок (надплиннiсть, перенос заряду або енергiї)
також вимагає узагальненого аналiзу динамiчних власти-
востей квазiчастинок. Розглянуто проблему спiввiдношен-
ня квантового i класичного способiв опису для збуджених
станiв кристалiв. Для того, щоб зосередити увагу на обго-
ворюванiй проблемi, отриманi результати були продемон-
строванi на прикладах електронних збуджень кристалiв у
найпростiшому випадку, коли iншими ефектами нехтують
(фононами, дефектами, високою щiльнiстю збуджень, яка

вимагає врахування взаємодiї мiж ними, реакцiєю ґратки
на збудження i таке iнше). Було показано, що такi збудже-
ння описуються трьома способами одночасно. Перший – це
квантовий спосiб, який дає опис розглянутих збуджень в
термiнах хвильових функцiй i власних значень енергiї. Дру-
гий спосiб – класичний. Вiн виникає з квантового спосо-
бу i формулюється по вiдношенню до хвильового iмпульсу.
Третiй спосiб, який є похiдним вiд другого, також є опи-
сом класичного типу, але по вiдношенню до iншого iмпуль-
су – механiчного. Цей (третiй або другий класичний) опис
дозволяє iнтерпретувати експериментальнi данi в термiнах
звичайної релятивiстської динамiки.
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