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RESIDUAL INTERACTION EFFECT
ON ISOSCALAR DIPOLE MODES IN HEAVY NUCLEIPACS 21.60.Ev

Isoscalar collective dipole excitations in heavy nuclei have been studied in the framework of the
kinetic model for small vibrations in a finite Fermi system with a moving surface. An analytical
expression for the second-order isoscalar response function of the dipole moment is obtained
taking the residual interaction between nucleons into account in the separable approximation. It
is shown that the inclusion of the residual interaction does not violate the translation invariance
of the model. The strength function has a two-resonance structure, like in the zeroth-order
approximation (i.e. neglecting the residual interaction). The account for the isoscalar dipole
residual interaction decreases the compressibility of a system and shifts the resonances toward
low frequencies, which improves the agreement with experimental data for both low- and high-
energy isoscalar dipole modes in heavy nuclei.
K e yw o r d s: Vlasov kinetic equation, isoscalar dipole modes, residual interaction, strength
function.

1. Introduction

Isoscalar dipole excitations take a special place among
collective excitations in a nucleus. Those excitations
are associated with the nuclear compression [1]. In
particular, the high-energy isoscalar dipole mode is
called the anisotropic compression mode in contrast
to the isotropic monopole compression mode. There-
fore, their research should provide additional infor-
mation on the compressibility of atomic nuclei.

New experimental data have been obtained recent-
ly, which revealed a low-energy isoscalar dipole reso-
nance [2–5]. Isoscalar dipole excitations of nuclei were
studied theoretically in the framework of quantum-
mechanical approaches of the random-phase-approxi-
mation (RPA) type [6–10], including their relativis-
tic generalization [11, 12]. Semiclassical approaches,
which are based on the study of the dynamics in the
phase space, were also used [13–16]. The low-ener-
gy resonance was found to have an essentially vortex
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character (the toroidal mode) [13, 17–20]. From the
theoretical viewpoint, the consideration of isoscalar
dipole excitations in a finite Fermi system becomes
complicated owing to the fact that those excitations
can be connected with the motion of the center of
mass. Therefore, in order to study isoscalar dipole
excitations, a model is required, in which the trans-
lation invariance is not violated, and the excitations
of the center of mass are separated from the internal
excitations.

In this work, the isoscalar dipole excitations of hea-
vy nuclei are considered in the framework of the kine-
tic model describing small vibrations in a finite Fermi
system confined by a moving surface [21]. This work is
a continuation of work [15], in which the main atten-
tion was focused on the study of isoscalar dipole ex-
citations in the zeroth-order approximation, i.e. neg-
lecting residual interactions in the system. Owing to
the condition of agreement between the motion of the
surface and the motion of nucleons in the system, col-
lective isoscalar dipole excitations arise in this kinetic
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model already in the zeroth-order approximation. In
this work, in order to estimate the effects of a residual
interaction between the nucleons at isoscalar dipole
vibrations, the separable interaction of the dipole-
dipole type is considered. Making allowance for the
residual interaction modifies the compressibility of
the Fermi system and, hence, can affect isoscalar
dipole modes. In this work, we use the exact solu-
tion of the equation obtained in the framework of the
kinetic model and consider the residual interaction in
the separable approximation.

In Section 2, the master equations of the kinetic
model are considered for isoscalar dipole excitations
in a finite Fermi system, and the isoscalar dipole
second-order response function for the dipole mo-
ment, which is a solution of the kinetic equation (in
the first-order approximation, the isoscalar dipole re-
sponse of the system is a response of the center of
mass), is determined. In Section 3, the solution ob-
tained in the zeroth-order approximation [15] is con-
sidered. In Section 4, this solution is used to obtain
an analytical expression for the response function
with regard for the residual interaction between nu-
cleons. With the help of the obtained response func-
tion, the motion of the center of mass of the system is
discussed, the relation of the internal response func-
tion with the energy-weighed and hydrodynamic sum
rules is considered, and the effects of the residual in-
teraction on the compressibility parameter for a fi-
nite Fermi system are analyzed. Finally, the strength
function is calculated numerically.

2. Kinetic Model of Small
Vibrations in a Finite Fermi System

In our model, the Vlasov kinetic equation in the linear
approximation is used as the dynamical equation. In
so doing, we suppose the system to be saturated in
the spin-isospin space, so that there is no necessity
in introducing those variables explicitly. The dynam-
ical equations for our model can be written in the
following form [21]:

𝜕

𝜕𝑡
𝛿𝑛(r,p, 𝑡) +

p

𝑚

𝜕

𝜕r

[︁
𝛿𝑛(r,p, 𝑡)−

− 𝑑𝑛0(𝜖)

𝑑𝜖
[𝛿𝑉 (r, 𝑡) + 𝑉ext(r, 𝑡)]

]︂
= 0, (1)

𝑅(𝜃, 𝜙, 𝑡) = 𝑅+ 𝛿𝑅(𝜃, 𝜙, 𝑡), (2)

where

𝛿𝑅(𝜃, 𝜙, 𝑡) =
∑︁
𝑀

𝛿𝑅1𝑀 (𝑡)𝑌1𝑀 (𝜃, 𝜙), (3)

𝛿𝑉 (r, 𝑡) =

∫︁
𝑑r ′ 𝑣(r, r ′) 𝛿𝜚(r ′, 𝑡). (4)

The external field 𝑉ext(r, 𝑡) and the residual interac-
tion 𝑣(r, r ′) are defined below (see Eqs. (8) and (13)).

Thus, we have the equations of motion for the
distribution function variation in the phase space,
𝛿𝑛(r,p, 𝑡), with respect to the equilibrium distribu-
tion 𝑛0(r,p) and for the variation 𝛿𝑅(𝜃, 𝜙, 𝑡) of the
equilibrium radius 𝑅 of the system. We assume that
the equations of motion satisfy the following bound-
ary conditions implying the free surface:

[𝛿𝑛(r,p⊥, 𝑝𝑟, 𝑡) − 𝛿𝑛(r,p⊥,−𝑝𝑟, 𝑡)]
⃒⃒
𝑟=𝑅

=

= −2𝑝𝑟
𝑑𝑛0

𝑑𝜖

𝜕

𝜕𝑡
𝛿𝑅(𝜃, 𝜙, 𝑡), (5)

[𝛿Π𝑟𝑟(r, 𝑡)]
⃒⃒
𝑟=𝑅

= 0, (6)

where 𝑝𝑟 = 𝑚𝑣𝑟 is the radial momentum of the parti-
cle, and p⊥ = (0, 𝑝𝜃, 𝑝𝜙). The variation of the normal
component of the momentum flux tensor, 𝛿Π𝑟𝑟(r, 𝑡),
is defined by the equation [22]

𝛿Π𝑟𝑟(r, 𝑡) =

=

∫︁
𝑑p𝑝𝑟𝑣𝑟[𝛿𝑛(r,p, 𝑡)−

𝑑𝑛0(𝜖(r,p))

𝑑𝜖
𝛿𝑉 (r, 𝑡)]. (7)

Let us assume below that the equilibrium distribution
functions 𝑛0(r,p) depend only on the one-particle
energies 𝜖(r,p) and use the approximation of the
Thomas–Fermi type

𝑑𝑛0(𝜖(r,p))

𝑑𝜖
= − 4

ℎ3
𝛿(𝜖− 𝜖F),

where 𝜖F is the Fermi energy.
Isoscalar dipole excitations are an effect of the sec-

ond order for the dipole moment (in the first or-
der, they correspond to the center-of-mass motion
[15]). Therefore, we are interested in the second-order
isoscalar response function for the dipole moment and
suppose that, at the time moment 𝑡 = 0, our system
is excited by a weak external field, which looks like

𝑉ext(r, 𝑡) = 𝛽𝛿(𝑡)𝑄(3)(𝑟)𝑌1𝑀 (𝜃, 𝜙), (8)
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where 𝑄(3)(𝑟) = 𝑟3 is the radial form factor, 𝛿(𝑡) is
the Dirac delta-function in time, and 𝛽 is a parameter
that describes the external field strength. The consid-
ered kinetic model is translation-invariant. Therefore,
the force associated with the excitation of the center
of mass by the external field (8) becomes concentrated
at the zero energy. The isoscalar response function for
the system with a moving surface is defined as follows:

ℛ̃33(𝜔) =
1

𝛽

∫︁
𝑑r 𝑟3 𝑌 *

1𝑀 (𝜃, 𝜙) 𝛿𝜚3(r, 𝜔). (9)

Here, 𝛿𝜚3(r, 𝜔) is the temporal Fourier transform of
the modified particle density variation. In the kinetic
model, the latter is defined as follows [23]:

𝛿𝜚3(r, 𝜔) = 𝛿𝜚3(r, 𝜔)+𝜚0 𝛿(𝑟−𝑅) 𝛿𝑅1𝑀 (𝜃, 𝜙, 𝜔), (10)

where
𝛿𝜚3(r, 𝜔) =

∫︁
𝑑p 𝛿𝑛3(r,p, 𝜔). (11)

Before the solution of the dynamical equations (2)
and (1) with the boundary conditions (3) and (4) for
spherical systems, it is convenient to change from the
phase variables (r,p) to new variables (𝑟, 𝜖, 𝑙, 𝛼, 𝛽, 𝛾).
Here, 𝜖 is the energy of the particle; 𝑙 its angular
momentum; and 𝛼, 𝛽, and 𝛾 are the Euler angles,
which describe the rotation to the coordinate system
with the 𝑧-axis directed along the vector l = r×p and
the 𝑦-axis directed along the vector r. The variations
of the distribution function are written in terms of
new variables as the series expansion

𝛿𝑛3(r,p, 𝜔) =

=
∑︁
𝑀𝑁

[︁
𝛿𝑛1+

𝑀𝑁 (𝜖, 𝑙, 𝑟, 𝜔) + 𝛿𝑛1−
𝑀𝑁 (𝜖, 𝑙, 𝑟, 𝜔)

]︁
×

×
(︁
𝒟1

𝑀𝑁 (𝛼, 𝛽, 𝛾)
)︁*

𝑌1𝑁 (
𝜋

2
,
𝜋

2
). (12)

In order to estimate the influence of the residual
interaction on the isoscalar dipole response, we will
use a separable interaction of the dipole-dipole type,

𝑣(r , r′) = 𝜅1

∑︁
𝑀

𝑟𝑟′𝑌1𝑀 (𝜃, 𝜙)𝑌 *
1𝑀 (𝜃′, 𝜙′), (13)

where 𝜅1 is the isoscalar dipole interaction strength.
This parameter will be chosen, by using the prop-
erties of the monopole compression mode (the giant
monopole resonance) obtained in the framework of
the applied kinetic model.

3. Zeroth-Order Approximation
for the Response Function

The solution of the dynamical equations (2) and (1)
with the boundary conditions (3) and (4) can be ob-
tained in various approximations. First, let us con-
sider the zeroth-order approximation by neglecting
the residual interaction between nucleons in the sys-
tem [15]. It should be noted that the zeroth-order ap-
proximation for a system with a moving surface in-
volves the variations of the particle density induced
by an external field and associated with the reflection
of particles from the moving surface. That is why a
finite Fermi system can have collective excitations al-
ready in this approximation. The response function
(9) in the zeroth-order approximation, ℛ̃0

33(𝜔), con-
tains the term ℛ̃0

c.m.(𝜔) proportional to 1/𝜔2, which
is a displacement of the center of mass induced by the
external field (8). This term does not excite the sys-
tem at 𝜔 ̸= 0. Besides the center-of-mass response,
the function ℛ̃0

33(𝜔) also includes the internal term
ℛ̃0

intr(𝜔), which describes excitations with a positive
frequency. Hereafter, the tilde sign is used to desig-
nate the response functions for the system with a
moving surface and distinguish them from the re-
sponse functions for the system with a fixed sur-
face. Therefore, the response function ℛ̃0

33(𝜔) is con-
venient to be presented in the form

ℛ̃0
33(𝜔) = ℛ̃0

c.m.(𝜔) + ℛ̃0
intr(𝜔), (14)

where

ℛ̃0
c.m.(𝜔) =

3

4𝜋

𝐴𝑅4

𝑚𝜔2
, (15)

ℛ̃0
intr(𝜔) = ℛ0

33(𝜔)−
[𝜒0

3(𝜔)]
2

𝜒1(𝜔)
− ℛ̃0

c.m.(𝜔), (16)

and ℛ0
33(𝜔) is the response function for the sys-

tem with a fixed surface in the zeroth-order approx-
imation (this function is analogous to the quantum-
mechanical one-particle response function). The func-
tion ℛ0

𝑗𝑘(𝑠) can be written in the form [15]

ℛ0
𝑗𝑘(𝑠) =

9𝐴

16𝜋

1

𝜖F

∑︁
𝑁=±1

∞∑︁
𝑛=−∞

1∫︁
0

𝑑𝑥𝑥2𝑠𝑛𝑁 (𝑥)×

×
𝑄𝑗

𝑛𝑁 (𝑥)𝑄𝑘
𝑛𝑁 (𝑥)

𝑠+ 𝑖𝜀− 𝑠𝑛𝑁 (𝑥)
(𝑗, 𝑘 = 1, 3), (17)
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Fig. 1. Dipole strength function (9) in the zeroth-order ap-
proximation for systems with moving (solid curve, Eq. (14))
and fixed (dashed curve, Eq. (17) at 𝑗 = 𝑘 = 3) surfaces. In
calculations, the external field (8) with the radial form factor
𝑄(3)(𝑟) = 𝑟3 − 𝑅2𝑟 is used. The system contains 𝐴 = 208

nucleons

where 𝑗 = 𝑘 = 3. The functions 𝜒0
3(𝜔) and 𝜒1(𝜔) de-

scribe the dynamical surface effects. They are defined
as follows:

𝜒0
𝑘(𝑠) =

9𝐴

8𝜋

∑︁
𝑁=±1

∞∑︁
𝑛=−∞

1∫︁
0

𝑑𝑥𝑥2𝑠𝑛𝑁 (𝑥)×

× (−1)𝑛𝑄𝑘
𝑛𝑁 (𝑥)

𝑠+ 𝑖𝜀− 𝑠𝑛𝑁 (𝑥)
(𝑘 = 1, 3), (18)

𝜒1(𝑠) = −9𝐴

4𝜋
𝜖F(𝑠+ 𝑖𝜀)×

×
∑︁

𝑁=±1

∞∑︁
𝑛=−∞

1∫︁
0

𝑑𝑥𝑥2 1

𝑠+ 𝑖𝜀− 𝑠𝑛𝑁 (𝑥)
, (19)

where the dimensionless frequencies 𝑠 and 𝑠𝑛𝑁 and
the dimensionless angular momentum of the parti-
cle 𝑥,
𝑠 =

𝜔

𝑣F/𝑅
, 𝑠𝑛𝑁 =

𝜔𝑛𝑁

𝑣F/𝑅
, 𝑥 =

√︀
1− (𝑙/𝑝F𝑅)2,

𝑠𝑛𝑁 (𝑥) =
𝑛𝜋 +𝑁 arcsin(𝑥)

𝑥
,

are used, and the quantity 𝑄𝑘
𝑛𝑁 (𝑥) is the classical

limit of the quantum-mechanical radial matrix ele-
ments of the dipole operators 𝑟𝑘 (𝑘 = 1, 3):

𝑄1
𝑛𝑁 (𝑥) = (−1)𝑛𝑅

1

𝑠2𝑛𝑁 (𝑥)
, (20)

𝑄3
𝑛𝑁 (𝑥) = 3𝑅2𝑄1

𝑛𝑁 (𝑥)×

×

(︃
1 +

4

3
𝑁

√
1− 𝑥2

𝑠𝑛𝑁 (𝑥)
− 2

𝑠2𝑛𝑁 (𝑥)

)︃
. (21)

Let us compare the zeroth-order approximations
for the dipole strength functions obtained in the
examined kinetic model with moving and fixed
(𝛿𝑅(𝜃, 𝜙, 𝑡) = 0 in Eq. (5)) surfaces (see Fig. 1). The
strength function is determined by the imaginary part
of the response function (16) (see Eq. (34) below).

In calculations, we used the effective external field
(8) with the radial form factor 𝑄(3)(𝑟) = 𝑟3−𝑅2𝑟. In
this field, response function (14) of the system with
a moving surface is equal to the internal response
function (16), which does not contain excitations as-
sociated with the motion of the center of mass. On
the other hand, although the response function of
the system with a fixed surface, ℛ0

33(𝜔), satisfies the
energy-weighed sum rule (see Eq. (27) below), it con-
tains spurious excitations associated with the mo-
tion of the center of mass. In numerical calculations,
the average static nuclear field was approximated
by a spherical well of the radius 𝑅 = 1.25𝐴1/3 fm,
and a system with 𝐴 = 208 nucleons was consid-
ered. The Fermi energy was given with the help of
the parameter that was chosen above for the radius,
𝜖F ≈ 31 MeV. We also used the value 𝜀 = 0.1 MeV
(see Eqs. (17)–(19)).

In Fig. 1, one can see that the isoscalar dipole re-
sponse of the system with a moving surface has a
pronounced two-resonance structure already in the
zeroth-order approximation [15]. Therefore, in the
model concerned, besides the high-energy compres-
sion mode, which also presents in the model of small
vibrations of a liquid droplet [15], there is also a low-
energy mode. It is known that the new experimen-
tal data obtained recently [2–5] revealed a low-energy
isoscalar dipole resonance in heavy nuclei.
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4. Residual Interaction
Effect on Isoscalar Dipole Vibrations

Now, let us consider the isoscalar dipole response
function (9) taking the residual interaction between
nucleons into account. To study the effects of the
residual interaction on dipole excitations, we use a
separable interaction of the dipole-dipole type (13).
By solving the dynamical equations (2) and (1) with
the boundary conditions (3) and (4), we obtain the
semiclassical dipole response function (9) in the form
similar to that obtained in the zeroth-order approxi-
mation (see Eq. (14)),

ℛ̃33(𝜔) = ℛ̃c.m.(𝜔) + ℛ̃intr(𝜔). (22)

Here, the expression for the response of the center
of mass, ℛ̃c.m.(𝜔), is the same as in the zeroth-order
approximation (see Eq. (15)). The internal response
function ℛ̃intr(𝜔) can be written in the form

ℛ̃intr(𝜔) = ℛ33(𝜔) + 𝒮33(𝜔)− ℛ̃c.m.(𝜔), (23)

where ℛ33(𝜔) is the collective response function of
the system with a fixed surface. The expression for
the latter contains not only the response function for
the system with a fixed surface in the zeroth-order ap-
proximation, ℛ0

33(𝜔), but also the functions ℛ0
11(𝜔)

and ℛ0
13(𝜔), determined above (see Eq. (17)), namely,

ℛ33(𝜔) = ℛ0
33(𝜔) + 𝜅1

[ℛ0
13(𝜔)]

2

1− 𝜅1ℛ0
11(𝜔)

. (24)

The second term 𝒮33(𝜔) in the internal response func-
tion (23) is a contribution made by surface vibra-
tions. It can be written in the form

𝒮33(𝜔) = − 1

1− 𝜅1ℛ0
11(𝜔)

×

× [𝜒0
3(𝜔)− 𝜒0

3(0)𝜅1ℛ0
11(𝜔)]

2

[−𝜒1(𝜔)][1− 𝜅1ℛ0
11(𝜔)] + 𝜅1[𝜒0

1(𝜔)− 𝜒0
1(0)]

2
.

(25)

Here, the functions 𝜒0
𝑘(𝜔) and 𝜒1(𝜔) are determined

by Eqs. (18) and (19). Equation (23) is the main re-
sult of this work.

One can found that the poles of the dipole response
ℛ̃intr(𝜔), which determine the frequencies of collec-
tive isoscalar dipole modes, are the solutions of the
equation

[−𝜒1(𝜔)][1−𝜅1ℛ0
11(𝜔)]+𝜅1[𝜒

0
1(𝜔)−𝜒0

1(0)]
2 = 0. (26)

By neglecting the residual interaction between the nu-
cleons (𝜅1 = 0 in Eq. (26)), we obtain an equation for
the poles of the internal dipole response in the zeroth-
order approximation, 𝜒1(𝜔) = 0 (see also Eq. (16)).

The internal response function ℛ̃intr(𝜔) satisfies
the quantum-mechanical energy-weighed sum rule
𝑚1, which for a system with a sharp surface is given
by the formula [6]

𝑚1 =
3~2

14𝜋

𝐴𝑅4

𝑚
. (27)

It can be verified with the help of the theorem about
the relation between the high-frequency limit of a re-
sponse function and the energy-weighed sum rule [24]:

�̃�intr(𝜔)|𝜔→∞ =
𝑚1

2

1

(~𝜔)2
+𝑂

(︂
1

𝜔4

)︂
. (28)

On the other hand, the low-frequency limit of the
response function ℛ̃intr(𝜔) is related to the hydrody-
namic sum rule 𝑚−1 [24],

lim
𝜔→0

�̃�0
intr(𝜔) = −2𝑚−1, (29)

which allows us to obtain an expression for the nu-
clear compressibility in the framework of our kinetic
model. Really, the hydrodynamic sum rule is defined
as

𝑚−1 =

∞∫︁
0

𝑑𝜔
1

𝜔

[︂
− 1

𝜋
Imℛ̃0

intr(𝜔)

]︂
. (30)

For a system with a sharp surface and in the presence
of the external field (8), it can be written in the form
[24]

𝑚−1 =
3

35𝜋

𝐴𝑅6

𝐾𝐴
, (31)

where the parameter 𝐾𝐴 is defined as the compress-
ibility of the system. Calculating the low-frequency
limit of the response function ℛ̃intr(𝜔), we obtain

lim
𝜔→0

ℛ̃intr(𝜔) = − 6

35𝜋

𝐴𝑅6

𝐾𝐴
, (32)

where

𝐾𝐴 = 𝐾FG
1− 𝜅1ℛ0

11(𝜔 = 0)

1− 5
14𝜅1ℛ0

11(𝜔 = 0)
. (33)

Here, 𝐾FG = 6𝜀F is the parameter of Fermi gas com-
pressibility. Since the function ℛ0

11(𝜔 = 0) < 0 (see
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Fig. 2. Internal dipole strength function for a system confined
by a moving surface calculated with regard for the residual
interaction between nucleons (solid curve, Eq. (23)) and in the
zeroth-order approximation (dashed curve, see Eq. (16)). The
system contains 𝐴 = 208 nucleons

Eq. 17) at 𝑗 = 𝑘 = 1 and 𝜔 = 0) and the strength
parameter 𝜅1 < 0 (residual interaction (13) is attrac-
tive), the compressibility parameter 𝐾𝐴 < 𝐾FG.

In Fig. 2, the internal dipole strength function
𝑆(𝐸), where 𝐸 = ~𝜔, is exhibited. This function is
related to the imaginary part of the response func-
tion (23):

𝒮(𝐸) = − 1

𝜋
Imℛ̃intr(~𝜔). (34)

In the calculations, the parameter of the residual
interaction (see Eq. (13)) was selected to be 𝜅1 =
= −7.5 × 10−3 MeV/fm2 with the aim of repro-
ducing the experimental value for the energy of the
giant monopole resonance in Pb208 nucleus in the
framework of the considered kinetic model. The cor-
responding compressibility parameter equals 𝐾𝐴 =
= 160 MeV (see Eq. (33)). From Fig. 2, one can see
that the considered semiclassical model reproduces
the experimentally revealed splitting of the isoscalar

dipole force into two components (the solid curve).
If the residual interaction between nucleons is ne-
glected, the centroids of two resonances are located
at higher energies (the dashed curve). The positions
of resonance centroids are shifted insignificantly, but
the main effect consists in a change of the relative
weights of two resonances. The account of the resid-
ual interaction improves the agreement with experi-
mental data. The experimental values for the centroid
energies of low- and high-energy isoscalar dipole res-
onances in Pb208 nucleus equal 12.7 ± 0.2 MeV and
23.0 ± 0.3 MeV, respectively [4]. Our model repro-
duces these data satisfactorily (see Fig. 2, the solid
curve).

5. Conclusions

To summarize, an analytical expression for the se-
cond-order isoscalar response function of the dipole
moment, which takes the residual interaction between
nucleons into account, is obtained in the framework of
the kinetic model of small vibrations in a finite Fermi
system confined by a moving surface. It is found that
the motion of the center of mass does not bring about
internal excitations with a positive frequency. There-
fore, the inclusion of a separable residual interaction
of the dipole-dipole type does not violate the trans-
lation invariance of the model. The inclusion of the
residual isoscalar dipole interaction reduces the com-
pressibility and insignificantly affects the isoscalar
dipole resonances. The strength function calculated
making allowance for the residual interaction has a
two-resonance structure, which manifests itself in the
zeroth-order approximation as well. The account of
the residual interaction gives rise to a shift of the
resonances toward low frequencies and improves the
agreement with experimental data obtained for low-
and high-energy isoscalar dipole modes in heavy nu-
clei. The considered kinetic model allows the origin
of isoscalar dipole modes to be studied in more de-
tails, in particular, the character of the velocity field
and the properties of the momentum flux tensor at
low-frequency isoscalar dipole vibrations. The corre-
sponding result will be published elsewhere.
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ВПЛИВ ЗАЛИШКОВОЇ
ВЗАЄМОДIЇ НА IЗОСКАЛЯРНI
ДИПОЛЬНI МОДИ У ВАЖКИХ ЯДРАХ

Р е з ю м е

Iзоскалярнi колективнi дипольнi збудження у важких
ядрах розглянуто в рамках кiнетичної моделi малих коли-
вань скiнченної фермi-системi, обмеженої рухомою поверх-
нею. Отримано аналiтичний вираз для iзоскалярної функцiї
вiдгуку дипольного моменту другого порядку з урахуван-
ням залишкової взаємодiї мiж нуклонами у сепарабельному
наближеннi. Показано, що включення залишкової взаємо-
дiї не порушує трансляцiйної iнварiантностi моделi. Сило-
ва функцiя, як i в нульовому наближеннi (без урахування
залишкової взаємодiї), має дворезонансну структуру. Вра-
хування iзоскалярної дипольної залишкової взаємодiї змен-
шує стисливiсть системи i призводить до змiщення резо-
нансiв в область бiльш низьких частот, що покращує узго-
дженiсть з експериментальними даними для низькоенерге-
тичної i високоенергетичної iзоскалярних дипольних мод у
важких ядрах.
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