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WITHIN JORDAN-WIGNER TRANSFORMATION

The Jordan—Wigner transformation is applied to the spatially anisotropic spin-1/2 Heisenberg
model on a square lattice with the nearest-neighbor and next-nearest-neighbor antiferromag-
netic interactions. The transformed Hamiltonian describes the interacting spinless fermions
that hop between neighbor sites in a gauge field. Using the mean-field-type approximation to
both the direct interaction between fermions and the phase factors, which represent the gauge
field, the problem is reduced to that concerning a free Fermi gas. Two types of antiferromag-
netic ordering (the Néel and collinear ones) are considered. By calculating the ground-state
energies, the phase transitions induced by the interaction frustration were analyzed.
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1. Introduction

Due to the discovery of a variety of layered mag-
netic materials — in particular, VOMoOy, Lios VOSiOy,
LiQVOGeO4, PbQVO(PO4)2, and SYZHVO(PO4)2 -
considerable attention is paid to the Heisenberg
model on two-dimensional frustrated lattices (see
works [1-8]). Those crystals are well described by the
spin-1/2 Heisenberg model on a square lattice with
the nearest-neighbor, J;, and next-nearest-neighbor,
Ja, interactions (the so-called J; —J; model). In three
first above-mentioned substances, the both interac-
tions are antiferromagnetic, whereas, in the last two,
J1 is ferromagnetic and J, is antiferromagnetic. The
spin-1/2 J; — Jo antiferromagnetic Heisenberg model
on the square lattice was initially proposed in works
[9-11], in which high-temperature cuprate supercon-
ductors were studied.

Besides the mentioned possibility for this frustrated
spin-1/2 Heisenberg model with antiferromagnetic Jy
and Js interactions to serve as a basis for simulating
real physical systems, it is also of purely theoretical
interest, being one of the simplest two-dimensional
models, in which the non-magnetic phases induced
by competing interactions can arise [12]. In the case
of weak Jp interaction, the Néel antiferromagnetic
(AF) ordering takes place in the ground state; oth-
erwise, i.e. if the diagonal interactions Jo are strong,
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the collinear stripe antiferromagnetic (CAF) ordering
emerges.

The intermediate case with the largest competition
between the interactions is very complicated for the
analysis. This case corresponds to a magnetically dis-
ordered ground state with strong quantum correla-
tions between the spins. The origin of this state and
the number of phases between the ordered magnetic
states remain a matter of discussion till now. Earlier,
it was supposed that, in the non-magnetic phase,
there is a crystal of valence bonds with a columnar
[11, 13] or plaquette [14] ordering. However, the re-
sults of the variational resonance-valence-bond the-
ory [15,16] and the tensor product state approach [17]
testify in favor of a spin-liquid phase in the indicated
region. Later results obtained in the framework of the
density-matrix renormalization group method [18]
and other numerical variational approaches [19, 20]
revealed the topological character of the spin-liquid
phase that arises in the J; — Jo model. Recent re-
searches distinguish two phases in the intermediate
region: the topological spin-liquid phase (at Jo/J; <
0.5) and the crystalline phase of valence bonds with
the plaquette [21] or columnar [22] symmetry (at
Ja/J1 > 0.5).

There are a lot of theoretical approaches to study
quantum-mechanical spin systems with frustrations.
For instance, the spin-1/2 J; — Jy antiferromagnetic
Heisenberg model on a square lattice was consid-
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ered, in particular, by using the high-temperature
expansion [5], density-matrix renormalization group
method [18, 21], and quantum Monte-Carlo method
[22], in the cluster approximation [24] and the
variational approach [25], on the basis of Green’s
function theory [26-28], as well as using the methods
of coupled clusters [29-31] and exact diagonalization
[32, 33]. Each of the approaches has its shortco-
mings. For instance, the results of numerical methods
strongly depend on the finite sizes of the system. On
the other hand, the analytical methods often cannot
describe strongly correlated disordered phases, which
can arise at intermediate values of diagonal inter-
actions. At the same time, while studying the low-
dimensional quantum-mechanical models with com-
peting interactions, the approaches, based on various
versions of the Jordan—Wigner fermionization, may
turn out to be rather efficient (see review [34]). An
advantage of such analytical methods is the fact that
the strongly correlated spin states can be described
compactly in terms of fermionic excitations. For the
first time, the one-dimensional Jordan-Wigner trans-
formation, which makes it possible to change from
spin operators to Fermi ones, was implemented for
the one-dimensional spin-1/2 XY chain [35]. Later,
various generalizations of fermionization onto two-
and three-dimensional cases were intensively applied
to the study of both the thermodynamic and dynamic
properties of various systems [36-45].

An interesting generalization of the J; — Jo model
is a spatially anisotropic model, in which interactions
between the nearest neighbors in orthogonal direc-
tions are different, and interactions J, are isotropic
(the so-called J; — Ji — Jo model). This spin-1/2
J1 — J| — Jy Heisenberg model on a square lattice was
introduced in work [46]. This model is of interest, first
of all, because the model with the spatial anisotropy
of interaction between both the nearest and the next-
nearest neighbors (the J; — J; — Jo — J} model) turns
out to be more adequate for the description of some
magnetic materials mentioned above than the spa-
tially isotropic model (see work [47]). In addition, the
spatial anisotropy of at least one interaction substan-
tially expands the class of real systems that can be
simulated in the framework of the two-dimensional
frustrated Heisenberg model. In particular, in work
[48], the applicability of the J; — J| — Jo Heisen-
berg model for the description of (NO)[Cu(NO3)s]
was demonstrated.
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Like its spatially isotropic J; — Jy counterpart,
the spin-1/2 J; — J; — Jo Heisenberg model on a
square lattice has already been studied, by using sev-
eral methods; in particular, the spin-wave expansion
method [49, 50], the density-matrix renormalization
group method [51], the effective-field method [52], in
the variational approach [53], the method of coupled
clusters [54], and the exact diagonalization method
[55]. Some results obtained in the cited works will
be mentioned below, while discussing our numerical
results.

In this work, the method based on the Jordan-
Wigner transformation is used to study the ground
state of the spin-1/2 J; —J; — Jo Heisenberg models
on a square lattice. Here, we performed the Jordan—
Wigner fermionization, which was proposed in work
[56] for a two-dimensional Heisenberg model, but with
the nearest-neighbor interaction only. In the mean-
field-like approximation, similarly to what was done
in works [37,56], we consider two possible types of an-
tiferromagnetic ordering. The thermodynamic func-
tions are obtained, and the magnetic order parameter
in the ground state is calculated. The results obtained
are compared with the results of other methods.

2. Jordan—Wigner
Fermionization. Mean-Field-Like
Approximation

Let us consider a quantum spin-1,/2 Heisenberg model
with exchange interactions between the nearest, .J;
and Ji, and the next-nearest, Jo, neighbors on a
square N x N, lattice (N, — oo, N, — oo ). The
system is described by the Hamiltonian

H=Hxy + Hz,

Nm N'y

Hey =33 [J{(Sf,j 1y TS5 )+
i=1 j—1

+ S (ST ST +57 55 ) +

+J2(SF ;581 ju1 + 5781 i T
+ Sf,jﬂsfﬂ,j + Szj+lsg+1,j)}’

N, N
Hz = ZZ{J{ P01y 15555

=1 j—1
2755 g1 + 5554057 )]

Here, for convenience, we separated the XY, Hxy,
and Ising, Hz, parts of the Heisenberg model. We
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are interested in the case of frustrated interactions,
when all of them are antiferromagnetic, i.e. J; > 0,
Ji >0, and J5 > 0. Without loss of generality let us
put J; < Jp.

Introducing the operators Si =57 £ 1Sf’j,
Hamiltonian components H xy and Hz can be rewrlt—
ten as follows:

Hyy = ZZ {Jl i3Sy T S5, +

1=1 j=1
(S S+ ST S+

+ Jo(S] i1 41 T St 419, T

+87 180 + St ;SE j+1)} (2)
N, Ny ) ,
Hy =Y [Jl (SLS,] ) (SZH]SHl ; 2)+
i=1 j=1
— _ 1
+ (S;FJSIJ >(SJ:_]+1SZJ+1 2>+
_ 1 _ 1
+J2 SZJSH 5 )8 411,541 -3 +
_ 1 _ 1
+J2 (S;,rj+1si,j+1 - 2> <S;5r1,j5i+1,j - 2>} (3)

It should be noted that the operators SJr and S;;
the same site satisfy the Fermi cornmutatlon relatlons

{SZJ,S+} =1 and {STJ,S*'} {5, S = 0;
and, at different sites, the Bose commutatlon rela-
tions [Sl]7Sl—~_rJ::[Sz—i_]’Sl—i_7J [Sz]’Sln}*

Let us use the variant of the Jordan—Wigner trans-
formation, which was proposed in work [56],

- _ alpi; —+
S »—etp'Jdiyj, Sz

,J 2J

-y ¥ Imln[l—i+i(n—j)}djndl,n. (5)

1(#4) n(#§)

= e ¥i dijv (4)

Here, the coefficients ¢; ; are chosen so that the op-
erators d:j and d;; should satisfy the Fermi com-
mutation relations both at the same site and at dif-
ferent sites: {d;fj7dl,n} = 0, ¥j, and {d:fj,dlfn} =
={d;j,din}=0.

On the basis of Eq. (4), let us present Hamiltonian
(1) in the fermionic form [34, 37, 56, 57]:

N, Ny
Hxy = = ZZ{JldJr i(pit1,5— %J)d+1j

i=1 j=1
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+ Jldz+1 el(%,j*wiﬂ,j)dm +
+ Jld;fjei(tpz:,prl—9071,j)di’j+1 +
+ Jld;tj_i_lei(%,j—<Pi,j+1)dm. +
+ ol(Cit141—0i5) g
+ Jod; e dit1,j4+1+

+ i(pi,j—Pit1,5
+Jadfyy @ TG

+ sz:j+1ei(%+1,j*Wﬂ'“)dﬁl,j +
1
T )
i=1j=1

1 1
+Ji (d?,_jdl}j — 2) (d:j+1di,j+1 - 2>+

1 1
+J2 (dz_jdi,j - 2) (dj+1,j+1di+1,j+1 - 2>+
N/, 1
+ T df 1 digan — 3 )\ i i — 5 |- (7)

The XY part of the Hamiltonian corresponds to spin-
less fermions on a square lattice, which jump between
the nearest and next-nearest sites in the gauge field
[56]. The part Hz describes the direct interaction be-
tween the fermions. It should be noted that, unlike
the XY chain, the fermionic representation of the
two-dimensional XY model already contains the in-
teraction between the fermions, which is hidden in
the phase factors.

For the further consideration of the fermionic Ha-
miltonian (Egs. (6) and (7)), an approximation of
the mean-field type [34, 56, 59] adapted to the model
with the next-nearest-neighbor interaction (see de-
tails in works [57,58]) will be used. In particular, for
the phase factors exp(=£iyp; ;) in Hamiltonian (6), the
operators of fermion number n; ; = d;fjdi,j are sub-
stituted by their average values. In this approxima-
tion, if the total magnetization of the lattice equals
zero, the part XY of the Hamiltonian transforms
[34, 56, 59| into a Hamiltonian for a system of spin-
less fermions that move in a uniform magnetic field
with the flux &y = 7 through an elementary square
plaquette. Accordingly, the flux through a triangular
plaquette (its two sides are the orthogonal basis vec-
tors of the lattice) is equal to 7/2 by analogy with
work [60].
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Fig. 1. Choice of the phase difference ¢; ; — ¢ 5, which pro-
vides the flux &g = 7 of the magnetic field through an elemen-
tary square plaquette and a flux of 7/2 through half a plaquette
in the form of a triangle, whose sides are the orthogonal basis
vectors of the lattice in the cases of Néel (a) and collinear (b)
orderings

The fermionic representation (6), as well as its
mean-field approximation, is invariant with respect to
the gauge transformation. Therefore, in case of Néel
antiferromagnetic ordering, we may, for convenience,
calibrate the vector potential, as it was done in works
[34,56,59] (see Fig. 1, a). Then, in the mean-field ap-
proximation, Eq. (6) can be rewritten in the form

y

3 = LS55 (R Ay + i) +

1=1 j=1
+ Ji(—
600

U (df i g+ dify jdig) —

—iJo (=) (dfdigr jir — dfy joadig +

+df digr g —df digia) } (8)

In the case of collinear stripe antiferromagnetic or-
dering, it is convenient to gauge the potential follow-
ing the scheme exhibited in Fig. 1, b. Then, we obtain
Eq. (6) in the mean-field approximation, but in a form
that is a little different from expression (8):

Z Z {Jl (dxjdi’jﬂ + dz‘fﬁldi,j) -

21]1

— J{(—l)y (dj,jdiJrl,j + dit—l,jdi’ ) +

CAF

+ iJQ(—l)j <d;tjdi+1’j+1 - d;rJrl’jJrldiJ‘ +
+df i dit — dﬁl,jdi,ﬁl)}- 9)

For the four-fermionic terms in Hyz (7), the used
mean-field-like approximation (see works [34, 37, 56,
59]) reads

(dJr d; >dJr din — <d;fjdi7j><d din)- (10)
Here, only the correlation of fermions at identical sites
are taken into account.

In the case of Néel antiferromagnetic ordering,
when the magnetizations of sublattices m4¥ and m#4F
are equal by magnitude, but opposite by sign, and

the lattice is split 1nto sublattices so that mAF =

= (S7;) = (di;di ;) — —m%F =
= _<Siz+1,j> = < zzg+1> ')’
we obtain

N, Ny
— 2mAF YOS (-1

)% (11)

Here, the notation J = Ji + J1 — 2J5 is used. Note
that, while deriving relation (11), as well as some
other ones given below, the periodic boundary condi-
tions were applied.

In the case of stripe-like antiferromagnetic or-
dering at J; < Jj, i.e. when the magnetizations

of sublattices are mGAF = (Si;) = (d:jdi,ﬁf

. 2 :< z+1,];r1>
_<di+1,jdi+1;j> +3=

) di g+

+ JN, N, (m4F

ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 7



Two-Dimensional Spin-1/2 J1 — J{ — J2 Heisenberg Model

*% = <Sf+17j> = e = *mgAF = *<Sf,j+1> =
= —(S%1,j41) = -+, we have
HEAF — 27'm CAFZZ Vidy,d;,

i=1 j=1
— J'N, N, (mGAF)2. (12)
Here, J' = J| — J; — 2.J5. Note that we accepted N,

in expression (12) to be an even number. For odd N,
the Hamiltonian HSAF also includes a term (see work
[58]), which is infinitesimally small in the thermody-
namic limit. Therefore, it is omitted hereafter.

After changing in Egs. (8), (11) and (9),
(12) to the momentum space (d;; = X

X Y aay d; = SN,
XD ) we obtain the Ha-
mlltoman H=Hxy + H 7 for the Heisenberg model
in the cases of ordering that were mentioned above:

—

N.N,

(e

ei((Iwi“F(ij)dq s

Qz1+Qy])d+ )7

HAF = Z {[ — iJ] sing,+2.J5 cosgysing, — 2m" j} X
qz,qy
+ +
x qu »qy dqfﬂ_ﬂ"qy -t Jl Cosqﬁ(hn yqy dqfﬂ ’qH} +

+ JN, N, (m4F)?, (13)

HCAF — Z {[—J{ cosq,+2iJy sing,, sinqy+2miAFj’} X

qz,qy

+ +
x dea‘]y dQJqu_ﬂ— + Jl Cosqy sz7deQw7Qy} -

_J/N N( CAF) ) (14)

Here, the summation is carried out over the first Bril-
louin zone.

Hamiltonian (13) can be written in the matrix
form,

’
AF _ + +
H - Z (ququ qu*TVA,‘Iy*ﬂ') X
q

CH CAF d -
(6 B ) e
(15)

where the notations C{f = J; cosqy and cif =
= meAFJ +2J; cosgy sing, —1J7 sing, are used and
the primed sum sign means that q belongs to the re-
gion —w < q, <, —7 + |Qy| <@ <m— |Qy‘

ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 7

Analogously, Hamiltonian (14) can also be expres-
sed in the matrix form:

CAF _ Y/ + +
H - Z (sz7Qy d‘]zv‘ly_ﬂ') x
q
CCAF ClchF dq g
z,qy J/N N CAF ,
((CCAF) 70101AF dqz,qy—ﬂ' ( )
(16)
where CSAY = J; cosqy, CAF =2mGAF J' — J; cosq, +

+ 2iJ; sing, sing,, and two primes near the sum sign
mean that q belongs to the upper half of the first
Brillouin zone.

The quadratic forms (15) and (16) can be reduced
to the diagonal form, by using the Bogolyubov canon-
ical transformation, so that

HAT =00 (81 Bq — adoq] +

q
+ NN, (m47)? (17)
HON =3 A [ g — g va) —

q
— J' NNy (mGAF)?, (18)

where (B8, o, Bq, aq) and (n, v, nq, 7q) are

Fermi operators, and )\éF and )\SAF are eigenvalues
of the corresponding matrices in formulas (15) and
(16), which are determined as follows:

)\qAF( AP = [(Jl cosgqy)? + (J; sing, )? +
1/2
- (—2JmAF 4 25 cosqy smqy)ﬂ : (19)
)\SAF(mgAF) = {(Jl cosqy)2 + (2J2 sing, sinqy)2 +
1/2
+(2J'mGAF — cosq_r)z} . (20)

Hence, we reduced our problem to a problem of the
ideal gas of fermions with the variational parameters
mAF and mGAT. The latter are determined from the
condition of the minimum of the Helmholtz free en-
ergy. On the basis of Egs. (17) and (18), we obtain the

ground-state energy per site, in the thermodynamic
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Fig. 2. Dependences of sublattice magnetizations on the pa-
rameter J2/Jp at J{ = J; obtained in various approaches: our
calculations (1); four-particle-cluster approximation [24] (2),
sixteen-particle-cluster approximation [24] (3), finite-size scal-
ing of exact diagonalization data [33] (4 ), density-matrix renor-
malization group method [18] (&), extrapolation of the data of
coupled-cluster method [29] (6), and methods based on Green’s
functions: [26] (7), [27] (8), and [28] (9)

limit, for the case of different antiferromagnetic or-
derings,

7—|dz|
d dga d
*7r+|qz
1 [d d

_ 5/ Q;r/ qy)\AF+J( )27 (21)
EgAF _ _/ dqa«'/dqy )\CAF J( CAF) (22)

NN, 2w 2w

-7 0

Here, the magnetizations of sublattices m4" and

mGAT are determined from the minimum conditions
for E5F(mAF) and EFAT (mGAT), respectively.

3. Results of Numerical
Calculations and Conclusions

Let us first consider the results of numerical calcu-
lations for the ground state in the case of spatially
isotropic model (J; = Ji). In Fig. 2, the dependences
of the sublattice magnetization on the frustration pa-
rameter Jo/Jy, which were obtained on the basis of
Egs. (21) and (22), are depicted. Here, for the sake of
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comparison, we also present results from other works
[18, 24, 26-29, 33]. The left curves correspond to the
Néel antiferromagnetic ordering, and the right ones
to the collinear stripe antiferromagnetic ordering.
First of all, we note that the results of such nu-
merical approaches as the density-matrix renormal-
ization group method [18] and the finite-size scal-
ing of exact diagonalization data [33], as well as the
data calculated in the coupled-cluster method [29],
are in rather good agreement with each other. In par-
ticular, they provide well-consistent, at the quanti-
tative level, values for the transition points J§'/J;
and Js2/.Jy, m4F-values that are close to each other
at small values of frustration parameter (J3/J; <
< J§/J1), and mGAF-values that are rather close
to each other at large frustration parameter values
(J2/J1 > J§?/J1). A shortcoming of those methods
is the fact that they cannot reliably predict the order
of phase transition. The results of many numerical
approaches [16, 22, 32, 61-64] testify that the order
parameter jumps to zero at the point J§?/.Jy, i.e. the
quantum phase transition from the collinear antifer-
romagnetic ordering to the quantum paramagnetic
(QP) one is of the first order. This conclusion is also
confirmed by a drastic vanishing of mGA¥ in a vicinity
of J§?/J1, together with a reduction of the parame-
ter Ja/J1 given by the coupled-cluster method [29]. It
should also be mentioned that the results of exact di-
agonalization with N, N, = 40, which were obtained
in the recent work [32], differ insignificantly from the
data in work [33] (see Fig. 2) obtained in a similar
approach with a smaller maximum number of sites.
The results obtained in the framework of the meth-
ods on the basis of Green’s functions [26-28], clus-
ter approximation [24], and variational approach (see
work [25]; its result is not shown in Fig. 2, because it
is very close to the result of the four-particle-cluster
approximation), as well as our results, are somewhat
different from those obtained in works [18,29,33]. For
instance, the variational method [25] and the approx-
imation on the basis of four- and sixteen-particle clus-
ters [24] predict too large values for m4Y at Jo/J; <
< Jst/Jy and mGAY at Jo/Jy > J§?/Jy, similarly
to what takes place in our approximation. However,
those three approaches assume that the phase tran-
sition between the quantum paramagnet and the
collinear antiferromagnet is of the first order, which
agrees, as was mentioned above, with the results of
many researches. In addition, the cluster approxima-
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tion and the variational method also predict rather
good values for J§'/J; and J$2/J;.

At the same time, the approaches on the basis
of Green’s functions, which were applied in works
[27, 28], unlike the approach used in work [26], pre-
dict very imprecise values for the transition points
J$/Jy and J§?/Jy. They also predict a too slow
decrease of mGAT to zero in a vicinity of the sec-
ond phase transition (with a reduction of Jo/J; at
Jo/J1 % J§?/J1). The advantage of the results of
those approaches in comparison with our ones con-
sists in a substantially slower decrease of mﬁF with
the growth of Jy/J7 in a vicinity of the left phase
transition (at Jo/J; S JS'/J1). In addition, in work
[27], a rather precise value of m4¥ was obtained for
the non-frustrated (Jz = 0) model.

Let us consider now the results of numerical calcu-
lations for the spatially anisotropic model (Jj/J; #
# 1), which we carried out on the basis of relations
(21) and (22). In Fig. 3, the dependences of sublattice
magnetizations in the ground state on the frustration
parameter Jo/.J; are depicted for various values of
spatial anisotropy Ji/Ji. Here again, the left curves
correspond to the Néel antiferromagnetic ordering,
and the right ones to the collinear stripe antiferro-
magnetic ordering. It is clear that the phase transi-
tion points were determined by comparing the energy
of the system in different phases. The results of cal-
culations are summarized in the phase diagram of the
ground state exhibited in Fig. 4.

At large Ji/Ji-values, when the ratio Jo/J; in-
creases, the system undergoes two phase transitions:
first, the transition of the second order from the Néel
antiferromagnetic phase into the magnetically disor-
dered one and, afterward, the transition of the first or-
der from the disordered phase into the antiferromag-
netic stripe one. At small values of Ji/Jy as Ja/J;
increases we observe only one phase transition of the
first order from antiferromagnetic Néel phase to the
antiferromagnetic stripe one with the magnetizations
of sublattices in vicinities of phase transition points,
being distinct from zero both in the Néel and stripe
phases.

Now, let us briefly mention the results of other
methods that are known to us. Note at once that they
differ qualitatively both from the ours and from one
another. For instance, in the coupled-cluster method
[54], if the Ji/Ji-values are large, there are also
two phase transitions as the parameter Jy/J; grows:
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Fig. 3. Dependences of sublattice magnetizations on the frus-
tration parameter Jo/J1 at various values of spatial anisotropy
parameter J{/J1 = 1 (1), 0.8 (2), 0.6 (3), 0.4 (4), and 0.2
(5). Left curves correspond to the Néel ordering, and right ones
to the stripe-like ordering
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Fig. 4. Phase diagram of the ground state. The solid curve
corresponds to the phase transition of the second order, and
the dashed one to the phase transition of the first order

Néel antiferromagnetic phase — quantum paramag-
net — stripe antiferromagnetic phase. However, the
both transitions are assumed to be continuous. At
small Ji/J;-values, the coupled-cluster method pre-
dicts one phase transition, as we do. However, in a
vicinity of the phase transition point, the magnetiza-
tions of sublattices tend to zero both to the left (in
the Néel antiferromagnetic phase) and to the right (in
the collinear stripe phase).

In the framework of the variational method applied
in work [53], the result obtained for large Ji/.J; is
in qualitative agreement with our results (the lower
phase transition is of the second order, and the upper
one of the first order). However, at small values of the
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spatial anisotropy parameter, the result differs quali-
tatively both from our results and from the result of
the coupled-cluster method: in a vicinity of the sin-
gle phase transition, the sublattice magnetization in
the Néel antiferromagnetic phase tends to zero (as in
the coupled-cluster method), whereas, in the antifer-
romagnetic stripe phase, it is different from zero (as
in our method).

The result obtained in the spin-wave approach [49]
considerably differs from all mentioned above. Na-
mely, at any Ji/Ji-values, two phase transitions are
predicted with the growth of parameter J/J;: Néel
antiferromagnetic phase — magnetically disordered
phase — stripe antiferromagnetic phase, with both
transitions being of the second order. Therefore, in
the phase diagram for the ground state obtained
in the spin-wave approximation, there is no ternary
point, which is characteristic of the mean-field ap-
proximation. This inconsistency follows from the fact
that the spin-wave expansion is inexact near the
phase transition, so that there arise artifacts in
the magnetization behavior [49]. This circumstance
makes the determination of the critical point prob-
lematic in this approximation.

Hence, the results obtained in this work give us
ground to assert that the simple approximation of the
mean-field type, which was used by us in the frame-
work of the Jordan—Wigner transformation method,
makes it possible to qualitatively describe the prop-
erties of the ground state in the frustrated spin-1,/2
Jy —J{ — J5 Heisenberg models on a square lattice at
a low spatial anisotropy (J;/J; = 1). In the opposite
case of strong spatial anisotropy, the issue concern-
ing the applicability of the mentioned approach re-
mains open, because different methods predict qual-
itatively different results. Moreover, we would like
to emphasize that, in order to obtain quantitatively
exact results in the framework of the fermionization
approach, the correlations at the neighbor sites have
to be taken into account self-consistently. This task
will be a subject of our further research.
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Translated from Ukrainian by O.I. Voitenko

O.P. Bapan, T.M. Beproasx

JBOBUMIPHA CIIIH-1/2 J; — J} — J2
MOJIEJIb TAI3EHBEPT'A B PAMKAX
I[IEPETBOPEHHS MOPIAHA-BII HEPA

Pezmowme

s mpocTopoBo anizorponnoi cmin-1/2 momeni laitzenGepra
Ha KBaJpaTHi# rparmi 3 aHTUEPOMATHITHUMU B3aEMOJISAMU
MiXK HaMOIMKINMH Ta HACTYIHUME IICJs HAROMMKYHX CyCi-
JlaMU BUKOPHCTaHO nepersopenns Mopaana—Birnepa i orpunma-
HO raMiJibTOHiaH Ge3cniHOBUX (epMioHIB, IO M1epecTPUdyIOThH
MiX cycigHiMu By3siaMu y KaJibpyBaJjibHOMY 1101i. B pesysibra-
Ti HaGJIMIKEHHSI THILY CEPEIHBOIO MOJIs Jjis (PAa30BUX MHOXKHU-
KiB (IO BiAIIOBIZAIOTH KaIiGpYyBaJbHOMY IIOJIIO), & TAKOXK JIJIs
npsiMOl B3aeMozIil MixK ¢pepmioHaMu, 3aja4da 3BEJAEHA JI0 Bijlb-
woro ragdy Pepwmi. Posrmsauyro gBa morkiausi Tunm anTrdepo-
MaruiTHux Brnopsakysaub (Heess ta kosineapne), o64ucieHo
eHepril OCHOBHOI'O CTaHy i Ha OCHOBI IIbOI'O JIOCJI?KEHO KBaH-
TOBi (Ha30Bi nepexonu, 3yMOBJIeHI (DPYCTPAIIEI0 B3AEMOIIN.
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