
SOLID MATTER

826 ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 9

doi: 10.15407/ujpe61.09.0826

A.YA. DZYUBLIK, V.YU. SPIVAK
Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
(47, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: dzyublik@ukr.net)

LAUE DIFFRACTION
OF SPHERICAL MÖSSBAUER WAVES
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The symmetric Laue diffraction of Mössbauer rays is analyzed in the spherical-wave approxi-
mation. The saddle-point method is applied to calculate the 𝛾-photon wave function within the
Borrmann triangle in a thick crystal with strong nuclear absorption. Both the Rayleigh and res-
onant nuclear scatterings are taken into account. The interference oscillations of the diffracted
beam intensity are shown to appear in the case of the Rayleigh scattering of Mössbauer radia-
tion, which may be used for precision measurements of crystal parameters.
K e yw o r d s: Mössbauer effect, Laue diffraction, spherical wave, Borrmann triangle, 𝛾-photon
wave function.

Huge number of works has been devoted to the
diffraction of x-rays and synchrotron radiation as
well as Mössbauer radiation and matter waves (neu-
trons, electrons, etc.). In this way, a number of ef-
fects were discovered, among which the most striking
were the pendellösung effect and the anomalous trans-
mission of 𝛾-photons and neutrons through a per-
fect crystal in the Laue (transmission) geometry. In
the x-ray optics, the latter effect has been discov-
ered by Borrmann [1–3]. The explanation of these
phenomena has been given by the dynamical scat-
tering theory [1–3] extended to the case of the res-
onant nuclear scattering by Kagan and Afanas’ev
[4]. Its simplest version describes the case where sin-
gle Bragg’s condition is fulfilled. In such two-wave
case, the incident plane electromagnetic wave gen-
erates two couples of waves inside the crystal, both
of which are coherent superpositions of the trans-
mitted and reflected waves. One of such couples
has nodes at the scattering atoms and is therefore
anomalously weakly absorbed, whereas another one
strongly absorbed pare of the waves has antinodes
there.
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The multiple scattering of x-ray photons by crystals
is always described by the Maxwell equations [1–3]. In
the same quasiclassical manner, Afanas’ev and Ka-
gan [4] treated the resonant scattering of Mössbauer
radiation by a perfect crystal. A more rigorous dy-
namical theory of the Mössbauer diffraction has been
developed in the framework of the quantum electro-
dynamics by Hannon and Trammell [6, 7].

In typical Laue-diffraction experiments, the inci-
dent 𝛾 quanta are first collimated by a slit, lying
on the crystal surface and being parallel to the re-
flecting planes (see Fig. 1). The radiation transmit-
ted through the entrance slit is spread in an angular
region of the order of

𝜎 =
(︁
Δ𝜃2

)︁1/2
≪ 1, (1)

where Δ𝜃 = 𝜃− 𝜃B is the departure from Bragg’s an-
gle 𝜃B. Usually, the distribution width 𝜎 for x-rays or
Mössbauer rays is much larger than the angular inter-
val, where the diffraction is still significant and which
only amounts several angular seconds, which allows
one to treat the task in the spherical wave approxima-
tion [7–10]. The collimated radiation spreads within
the angular region from −𝜃B to 𝜃B, which forms the
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so-called Borrmann triangle. The intensity distribu-
tion of the transmitted and reflected radiation over
the basis of the Borrmann triangle is analyzed with
the aid of one more slit, which is also parallel to the
reflecting crystal planes.

Kato [8–11] considered the incident x-ray spherical
wave as a superposition of the classical electromag-
netic plane waves, i.e., as a wave packet, spread over
the angle 𝜃 about the Bragg angle 𝜃B. Every such
plane component independently of one another are
scattered by atoms of the crystal, forming the refrac-
ted and diffracted wave packets represented by the
integrals over the angle 𝜃. Their diffraction was de-
scribed in the two-wave approximation. Assuming the
crystal thickness 𝐷 to be much larger than the pen-
dellösung length ΛL, Kato [8–11] estimated these in-
tegrals over 𝜃 with the aid of the stationary-phase ap-
proximation. This method can be used only if the lar-
ge parameter 𝐷/ΛL is a real number. In other words,
it can be applied only to weakly absorbing crystals.

At the same time, for the Mössbauer diffraction,
when the resonant scattering amplitude of 𝛾-quanta
is already a complex number, the stationary-phase
method is not applicable. In this case, such integrals
should be estimated by the more general saddle-point
method. To the best of our knowledge, so far there is
no theory for the Mössbauer diffraction of spherical
wave packets, spread over the energy and angle. The-
refore, we will solve this task in the present paper. For
simplicity, we consider the symmetric Laue case.

As was mentioned above, Hannon and Trammell
[6, 7] described the 𝛾-photons by the vector poten-
tial A(r, 𝑡). Note, however, that the vector potential
written in the momentum representation represents
the photon wave function, while A(r, 𝑡), as a func-
tion of time and coordinates, does not [12]. Bialy-
nicki–Birula [13] and Cipe [14] (see also [15–19]) made
break-through, having found that the photon wave
function must be written in the form

Ψ(r, 𝑡) =
∑︁
𝜆=±1

∫︁
𝑑𝜅

(2𝜋)3/2
𝑓𝜆(𝜅)𝜒𝜅𝜆(r, 𝑡), (2)

representing a superposition of photon plane waves

𝜒𝜅𝜆(r, 𝑡) = e𝜆
√
~𝜔𝑒𝑖𝜅r−𝑖𝜔𝑡 (3)

with the wave vector 𝜅, helicity 𝜆 = ±1, and fre-
quency 𝜔 = 𝑐𝜅. If the momentum wave function of a

Fig. 1. Scheme of the Laue diffraction of the collimated Möss-
bauer radiation

photon 𝑓𝜆(𝜅) is normalized as∑︁
𝜆=±1

∫︁
𝑑𝜅|𝑓𝜆(𝜅)|2 = 1, (4)

then the squared modulus of Ψ(r, 𝑡) determines the
density of photon’s mean energy at a given position r
and the time 𝑡 [13–19]. Note that such a wave function
was already employed in the quantum theory of the 𝛾-
photon transmission through vibrating crystals [20].

1. Basic Formulas

We choose the coordinate frame 𝑥, 𝑦, 𝑧, having the
origin on the face crystal surface in the middle of the
collimating slit, with the axis 𝑧 perpendicular to the
crystal surface and directed inside the crystal and the
axis 𝑦 along the slit. We consider here the symmetric
Laue diffraction, when the axis 𝑧 is parallel to the re-
flecting planes. We suppose that all the incident rays
propagate along the plane 𝑥, 𝑧 perpendicular to the
slit, so that their wave vectors expressed in the spher-
ical coordinates 𝜅, 𝜃, 𝜙 are given by

𝜅 ≡ 𝜅(𝜃) = {𝜅 sin 𝜃, 0, 𝜅 cos 𝜃}. (5)

In the general case, the polarizations of 𝛾-quanta
are mixed in the resonant scattering by nuclei. Below,
we only consider the scattering by unpolarized
Mössbauer nuclei with unsplt sublevels labeled by the
magnetic quantum number. In this case, the mixing
is avoided if 𝛾-quanta have either 𝜋-polarization e𝑠=1,
lying in the scattering plane or 𝜎-polarization e𝑠=2,
being perpendicular to this plane [21].

The frequency distribution for the phononless emis-
sion line is determined by the function

𝐺𝑒(𝜔) =

(︂
Γ𝑒

2𝜋~

)︂1/2
𝑒𝑖𝜔𝑡0

𝜔 − 𝜔0 + 𝑖Γ𝑒/2~
, (6)
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where Γ𝑒 and ~𝜔0 are, respectively, the width and the
energy of the excited level of the emitting nucleus.
The function 𝐺𝑒(𝜔) is normalized to unity:

∞∫︁
−∞

𝑑𝜔|𝐺𝑒(𝜔)|2 = 1. (7)

The angular dependence of the incident radiation
can be described by the Gaussian function

𝒢(𝜃) ∼ exp

[︂
− (Δ𝜃)2

2𝜎2

]︂
. (8)

Usually, the dispersion 𝜎 is much larger than the
characteristic angle departure Δ𝜃0, where the Bragg
diffraction disappears. This fact enables us to use
the spherical wave approximation, i.e., to replace
𝒢(𝜃) by 1.

Then the wave function of an incident 𝛾-quantum
with polarization e𝑠 takes the form

Ψ
(𝑠)
in (r, 𝑡) =

∞∫︁
−∞

𝑑𝜔𝐺𝑒(𝜔)

∞∫︁
−∞

𝑑𝜃𝜒𝜅(𝜃)𝑠(r, 𝑡). (9)

The polarization vectors e𝑠(𝜅) are perpendicular to
the wave vector 𝜅 and, therefore, depend also on the
angle 𝜃. However, one can neglect this dependence
due to the inequality 𝜎 ≪ 1.

The time dependence of a 𝛾-quantum incident at
the face surface (𝑧 = 0) is described by the expo-
nential:

|Ψ(𝑠)
in (0, 𝑡)|2 ∼ exp[−Γ𝑒(𝑡− 𝑡0)/~]𝜃(𝑡− 𝑡0), (10)

where
𝜃(𝑥) =

{︁
1, 𝑥 > 0,
0, 𝑥 < 0 (11)

is the Heaviside step function. According to (10), 𝑡0
means the moment of photon’s arrival at the crystal.

The coherent scattering amplitude of 𝛾-quanta by
the 𝑗-th nucleus with unsplit sublevels is given by [21]

𝑓coh(𝜅, e𝑠;𝜅
′, e′𝑠)

𝑁
𝑗 = −𝑐0

(︂
2𝐼𝑒 + 1

2𝐼𝑔 + 1

)︂
×

× 1

4𝜅

Γ𝛾𝑒
−𝑊𝑗(𝜅)−𝑊𝑗(𝜅

′)

~(𝜔 − 𝜔′
0) + 𝑖Γ/2

𝑃𝑁
𝑠 , (12)

where 𝑐0 is the relative concentration of the Möss-
bauer isotope, 𝐼𝑒 and 𝐼𝑔 are the nuclear spins in

the excited and ground states, 𝑒−𝑊𝑗(k) is the Lamb–
Mössbauer factor, 𝑃𝑁

𝑠 is the nuclear polarization fac-
tor, Γ and Γ𝛾 are, respectively, the total and radiative
widths of the resonant nuclear level with the energy
~𝜔′

0. In the case of M1 transitions, 𝑃𝑁
𝑠 = 1 for the

𝜋-polarization, and 𝑃𝑁
𝑠 = e · e′ for the 𝜎-polariza-

tion [21].
The coherent Rayleigh scattering amplitude by the

𝑗th atom is determined by the expression

𝑓coh(𝜅, e𝑠;𝜅
′, e′𝑠)

𝑅
𝑗 = 𝑒−𝑊𝑗(Q)𝑟0𝐹

(𝑗)
𝑒 (Q)(e𝑠 · e′*𝑠 )+

+ 𝑖(𝜅/4𝜋)𝜎(𝑗)
𝑒 , (13)

where the form-factor of the 𝑗th atom

𝐹 (𝑗)
𝑒 (Q) =

∫︁
𝜚(𝑗)𝑒 (r)𝑒𝑖Qr𝑑r, (14)

Q = 𝜅 − 𝜅′ is the scattering vector, 𝜚
(𝑗)
𝑒 (r) is the

density of atomic electrons, 𝑟0 = 𝑒2/𝑚𝑐2 denotes the
classical radius of an electron, 𝜎(𝑗)

𝑒 is the absorption
cross section of 𝛾-quanta by electrons of the 𝑗th atom.

The coherent scattering amplitude of 𝛾-quanta by
an elementary cell of the crystal reads

𝐹coh(𝜅, e;𝜅
′, e′) = 𝐹coh(𝜅, e;𝜅

′, e′)𝑁 +

+𝐹coh(𝜅, e;𝜅
′, e′)𝑅, (15)

where
𝐹coh(𝜅, e;𝜅

′, e′)𝑁(𝑅) =
∑︁
𝑗

𝑒𝑖Q𝜌𝑗 ×

× 𝑓coh(𝜅, e;𝜅
′, e′)

𝑁(𝑅)
𝑗 (16)

are the nuclear and Rayleigh coherent scattering am-
plitudes depending on the radius-vector 𝜌𝑗 for the
equilibrium position of the 𝑗-th atom in the elemen-
tary cell.

2. Dynamical Scattering Theory

Every incident plane wave 𝜒𝜅𝑠(r, 𝑡) of the wave
packet (8) is scattered independently of one another
by atoms of the crystal bearing the wave 𝜓𝜅𝑠(r, 𝑡).
In other words, the complete wave function of the
photon will be

Ψ𝑠(r, 𝑡) =

∞∫︁
−∞

𝑑𝜔𝐺𝑒(𝜔)

∞∫︁
−∞

𝑑𝜃𝜓𝜅𝑠(r, 𝑡). (17)

In the two-wave case, the wave vectors of the re-
fracted and diffracted waves inside the crystal are
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k(𝜃) and k1(𝜃) = k(𝜃)+𝜏1, respectively. Here, 𝜏1 de-
notes a reciprocal lattice vector divided by 2𝜋. The
components of the vectors k(𝜃) and 𝜅(𝜃) along the
face surface 𝑧 = 0 coincide. Therefore, the vector k(𝜃)
can be written as

k(𝜃) = 𝜅(𝜃) + 𝛿(𝜃)n, (18)

where n is the unit vector along the axis 𝑧. Note that
the parameter 𝛿(𝜃) = 𝑘𝑧(𝜃) − 𝜅𝑧(𝜃) depends in ad-
dition on the wave number 𝜅 of the 𝛾-quantum in
vacuum. For brevity, this dependence is not written
down.

Then the wave function 𝜓𝜅𝑠(r, 𝑡) inside the crystal
is
𝜓𝜅𝑠(r, 𝑡) =

∑︁
𝜈=0,1

e𝜈𝑠
√
~𝜔×

×
∑︁
𝜄=1,2

𝐶(𝜄)
𝜈𝑠 (𝜃)𝑒

𝑖𝜅𝜈(𝜃)r+𝑖𝛿𝜄𝑠(𝜃)𝑧−𝑖𝜔𝑡. (19)

Note that all the wave parameters written above de-
pend still on the frequency 𝜔.

The amplitudes 𝐶 and the wave vectors k are de-
termined by the algebraic equations [4]

(𝑘2(𝜃)/𝜅2(𝜃)− 1)𝐶0𝑠 = 𝑔
(𝑠)
00 𝐶0𝑠 + 𝑔

(𝑠)
01 𝐶1𝑠,

(𝑘21(𝜃)/𝜅
2(𝜃)− 1)𝐶1𝑠 = 𝑔

(𝑠)
10 𝐶0𝑠 + 𝑔

(𝑠)
11 𝐶1𝑠.

(20)

The scattering matrix 𝑔
(𝑠)
𝜇𝜈 is defined by the expression

𝑔(𝑠)𝜇𝜈 =
4𝜋

𝜅2𝑣0
𝐹 (𝑠)
𝜈𝜇 , 𝜇, 𝜈 = 0, 1, (21)

where 𝑣0 stands for the volume of the elementary cell
and the abbreviation 𝐹

(𝑠)
𝜈𝜇 = 𝐹coh(𝜅𝜈 , e𝜈𝑠;𝜅𝜇, e𝜇𝑠) is

used together with the wave vectors 𝜅0 = 𝜅(𝜃B) and
𝜅1 = 𝜅0 + 𝜏1.

The solution of Eqs. (20) in the case of symmetric
Laue diffraction is

𝛿𝜄𝑠(𝜃) =
𝜅

2𝛾0

[︂
𝑔
(𝑠)
00 + sin(2𝜃B)Δ𝜃+

+(−1)𝜄+1

√︁
𝑔
(𝑠)
01 𝑔

(𝑠)
10 + sin2(2𝜃B)(Δ𝜃)2

]︂
, (22)

where 𝜄 = 1, 2 and 𝛾0 = cos 𝜃B.
Introducing the deviation parameter

𝜂 =
sin 2𝜃B√︁
𝑔
(𝑠)
01 𝑔

(𝑠)
10

Δ𝜃, (23)

we rewrite (22) as

𝛿𝜄𝑠 =
𝜅𝑔

(𝑠)
00

2𝛾0
+

𝜋

ΛL

(︁
𝜂 + (−1)𝜄+1

√︀
1 + 𝜂2

)︁
, (24)

where
ΛL =

2𝜋𝛾0

𝜅

√︁
𝑔
(𝑠)
01 𝑔

(𝑠)
10

. (25)

In the case of the x-ray scattering in weakly absorbing
crystals, the parameter ΛL means the pendellösung
distance, defining the period of the intensity swings
between the diffracted and refracted beams (see also
[2]). But, in a close vicinity of the nuclear resonance,
where ReΛL ∼ ImΛL, this parameter loses such a
simple interpretation.

The amplitudes of the waves satisfy the following
boundary conditions at the entrance surface of the
crystal:∑︁
𝜄=1,2

𝐶
(𝜄)
0𝑠 (𝜂) = 1,

∑︁
𝜄=1,2

𝐶
(𝜄)
1𝑠 (𝜂) = 0. (26)

From Eqs. (20) and (26), one has

𝐶
(𝜄)
0𝑠 (𝜂) =

1

2

(︃
1 + (−1)𝜄

𝜂√︀
1 + 𝜂2

)︃
,

𝐶
(𝜄)
1𝑠 (𝜂) =

(−1)𝜄+1

2

(︃
𝑔
(𝑠)
10

𝑔
(𝑠)
01

)︃1/2
1√︀

1 + 𝜂2
.

(27)

The intensity distribution of 𝛾-photons over the ba-
sis of the Borrmann triangle is analyzed with the aid
of the scanning slit located on the rear surface and
also directed along the axis 𝑦. The position of such a
slit is determined by the dimensionless parameter

𝑝 = tan 𝜖/ tan 𝜃B, (28)

where tan 𝜖 = 𝑥𝑎/𝐷, and 𝑥𝑎 is the usual coordinate
of the analyzing slit [1].

In order to get the refracted and diffracted waves,
we substitute (19) into (17) and expand the vectors
𝜅 of the exponential 𝑒𝑖𝜅r in Δ𝜃, by keeping only the
linear terms. In addition, we introduce the designa-
tions

𝑁 =
𝜋𝐷

|ΛL|
(29)

and

𝑆𝜄(𝜂) = 𝑖 (|ΛL|/ΛL)
[︁
𝑝𝜂 + (−1)𝜄+1

√︀
1 + 𝜂2

]︁
. (30)

ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 9 829



A.Ya. Dzyublik, V.Yu. Spivak

Then, behind the crystal, the waves are

Ψ𝜈𝑠(r, 𝑡) =

∞∫︁
−∞

𝑑𝜔𝐺𝑒(𝜔)

√︁
𝑔
(𝑠)
01 𝑔

(𝑠)
10

sin 2𝜃B
Φ𝜈𝑠(𝜔; r, 𝑡), (31)

where the function

Φ𝜈𝑠(𝜔; r, 𝑡) =

∞∫︁
−∞

𝑑𝜂×

×
∑︁
𝜄=1,2

𝐶(𝜄)
𝜈𝑠 (𝜂)𝑒

𝑁𝑆𝜄(𝜂)𝜒𝜅𝜈𝑠(r, 𝑡) (32)

describes the wave packet with fixed frequency 𝜔 =
= 𝜅𝑐, and the wave vectors 𝜅𝜈 = 𝜅𝜈(𝜃B), indicating
the direction of propagation.

For a thick crystal as 𝑁 ≫ 1, one can estimate
the integral over 𝜂 with the aid of the saddle-point
method (see, e.g., [22]). By equating the derivative
𝑆′
𝜄(𝜂) to zero, one finds the saddle point for the 𝜄-th

branch:

𝜂
(𝜄)
0 = (−1)𝜄

𝑝√︀
1− 𝑝2

. (33)

After that the integration contour is displaced to the
complex plane 𝜂 = 𝜂𝑟+ 𝑖𝜂𝑖, where 𝜂𝑟 and 𝜂𝑖 represent
the real and imaginary parts of 𝜂. This contour should
cross the 𝜄-th saddle point along the direct line, where
Im𝑆𝜄(𝜂) = const, which provides a steepest descent of
the function 𝑆𝜄(𝜂). Such a line is declined with respect
to the real axis 𝜂𝑟 by the angle

𝜗𝜄 =
𝜋

2
− 1

2
arg 𝑆′′

𝜄 (𝜂0), (34)

where the second derivative of 𝑆𝜄(𝜂) at the saddle
point is

𝑆′′
𝜄 (𝜂0) = 𝑖(−1)𝜄+1

(︂
|ΛL|
ΛL

)︂
(1− 𝑝2)3/2. (35)

The substitution of (35) into (34) at |𝑝| < 1 gives

𝜗𝜄 = (−1)𝜄+1𝜋

4
+

1

2
arg ΛL. (36)

For |𝑝| > 1, one should add 𝜋/4 to this expression.
The saddle-point estimation of integral (32) results

in
Φ𝜈𝑠(𝜔; r, 𝑡) =

∑︁
𝜄=1,2

𝐶(𝜄)
𝜈 (𝜂0)𝑒

𝑁𝑆𝜄(𝜂0) ×

×

√︃
2𝜋

𝑁 |𝑆′′
𝜄 (𝜂0)|

𝑒𝑖𝜗𝜄𝜒𝜅𝑠(r, 𝑡). (37)

It is convenient to introduce the dimensionless pa-
rameters

𝑥 =
2~(𝜔 − 𝜔′

0)

Γ
, Δ𝑥0 =

2~(𝜔0 − 𝜔′
0)

Γ
,

Γ̃𝑒 =
Γ𝑒

Γ
,

(38)

and the function

𝜁(𝑥) =
𝜋𝐷

ΛL(𝑥)

√︀
1− 𝑝2. (39)

By using all these definitions and incorporating all
the above formulas in Eq. (37), one gets the 𝛾-photon
wave function beside the detector separated at the
distance 𝑅 from the analyzing slit, having the coor-
dinate 𝑥𝑎. For the diffracted wave function up to an
unessential factor exp(𝜅 sin 𝜃B𝑥𝑎), we obtain the ex-
pression

Ψ1𝑠(r, 𝑡) =

∞∫︁
−∞

𝑑𝑥
𝑒−𝑖𝑥𝑡*/2𝜏𝑁

𝑥−Δ𝑥0 + 𝑖Γ̃𝑒

1

(1− 𝑝2)1/4
×

×
{︁
exp

[︁
−𝑖
(︁
𝜁(𝑥) +

𝜋

4

)︁]︁
− exp

[︁
𝑖
(︁
𝜁(𝑥) +

𝜋

4

)︁]︁}︁
×

×𝐵1𝑠(𝑥)e1𝑠
√︀

~𝜔′
0𝑒

−𝑖𝜔′
0𝑡

*
, (40)

where

𝑡* = 𝑡− 𝑡0 −𝑅/𝑐 (41)

means the retarded time, 𝜏𝑁 = ~/Γ the nuclear life-
time,

𝐵1𝑠(𝑥) =
𝑔
(𝑠)
10 (𝑥)

2 sin 2𝜃B
×

×
√︂

Γ𝑒

~

(︂
2ΛL(𝑥)

𝐷

)︂1/2
exp

[︃
𝑖𝜅𝐷𝑔

(𝑠)
00 (𝑥)

2𝛾0

]︃
. (42)

As to the refracted wave, it is given by

Ψ0𝑠(r, 𝑡) =

∞∫︁
−∞

𝑑𝑥
𝑒−𝑖𝑥𝑡*/2𝜏𝑁

𝑥−Δ𝑥0 + 𝑖Γ̃𝑒

1 + 𝑝

(1− 𝑝2)3/4
×

×
{︁
exp

[︁
−𝑖
(︁
𝜁(𝑥) +

𝜋

4

)︁]︁
+ exp

[︁
𝑖
(︁
𝜁(𝑥) +

𝜋

4

)︁]︁}︁
×

×𝐵0𝑠(𝑥)e0𝑠
√︀
~𝜔′

0𝑒
−𝑖𝜔′

0𝑡
*
, (43)
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where

𝐵0𝑠(𝑥) =

(︃
𝑔
(𝑠)
01 (𝑥)

𝑔
(𝑠)
10 (𝑥)

)︃1/2
𝐵1𝑠(𝑥). (44)

Inequalities (1) along with Γ𝑒 ≪ ~𝜔0 allow us to
replace the function

√
~𝜔 in the integrals over 𝜔

by
√
~𝜔0.

Inside the Borrmann triangle, −1 < 𝑝 < 1, the
diffracted beam intensity is

𝐼1𝑠(𝑝) ∼
1√︀

1− 𝑝2

∞∫︁
−∞

𝑑𝑥
𝑒−𝜇(𝑥)𝐷/𝛾0

[(𝑥−Δ𝑥0)2 + Γ̃2
𝑒]

×

×

⃒⃒⃒⃒
⃒𝑔(𝑠)10 (𝑥)

𝑔
(𝑠)
01 (𝑥)

⃒⃒⃒⃒
⃒ {︁sinh2 [𝜁𝑖(𝑥)] + sin2

[︁
𝜁𝑟(𝑥) +

𝜋

4

]︁}︁
, (45)

and the refracted one is

𝐼0𝑠(𝑝) ∼
1√︀

1− 𝑝2

(︂
1 + 𝑝

1− 𝑝

)︂
×

×
∞∫︁

−∞

𝑑𝑥
𝑒−𝜇(𝑥)𝐷/𝛾0

[(𝑥−Δ𝑥0)2 + Γ̃2
𝑒]

×

×
{︁
sinh2 [𝜁𝑖(𝑥)] + sin2

[︁
𝜁𝑟(𝑥)−

𝜋

4

]︁}︁
, (46)

where 𝜁𝑟(𝑥) and 𝜁𝑖(𝑥) denote the real and imaginary
parts of the complex function 𝜁(𝑥), and

𝜇(𝑥) = 𝜅 Im 𝑔
(𝑠)
00 (𝑥) (47)

stands for the absorption coefficient of 𝛾-quanta
far from the Bragg condition. Recall that the func-
tion 𝜁(𝑥) defined by Eq. (39) contains the factor√︀

1− 𝑝2. Note also that, strictly speaking, the prod-
uct 𝑁

√︀
1− 𝑝2 serves, rather than 𝑁, as a large pa-

rameter in the saddle-point approximation. Therefo-
re, the derived formulas cannot be applied at |𝑝| ≈ 1.

Some simplifications of the formulas appear, when
the elementary cell contains a single Mössbauer atom.
Then the transmission of 𝛾-quanta is usually specified
by the nuclear thickness parameter

𝛽 = 𝜎0𝑒
−2𝑊 (𝜅)𝑛0 (48)

depending on the resonant value of absorption cross
section

𝜎0 =
2𝜋

𝜅2

(︂
2𝐼𝑒 + 1

2𝐼𝑔 + 1

)︂
Γ𝛾

Γ
, (49)

and the number of resonant nuclei per unit square
of the absorber 𝑛0 = 𝑐0𝐷/𝑣0. We assume also that
the vibrations of atoms in the crystal are isotropic,
so that the Lamb–Mössbauer factor 𝑒−𝑊 (𝜅) does not
depend on the orientation of the wave vector 𝜅. All
this enables us to rewrite the constituents of the func-
tion 𝜁(𝑥) = 𝜁𝑟(𝑥) + 𝑖𝜁𝑖(𝑥) as

𝜁𝑟(𝑥) =

[︂
−𝛽

2

𝑥

1 + 𝑥2
𝑃𝑁 +

(︂
2𝜋𝐷

𝜅𝑣0

)︂
Re𝐹𝑅

01

]︂ √︀
1− 𝑝2

𝛾0
,

(50)
and

𝜁𝑖(𝑥) =

[︂
𝛽

2

1

1 + 𝑥2
𝑃𝑁 +

(︂
2𝜋𝐷

𝜅𝑣0

)︂
Im𝐹𝑅

01

]︂ √︀
1− 𝑝2

𝛾0
.

(51)

In the same case, the absorption coefficient (47) be-
comes

𝜇(𝑥) = 𝜇𝑁 (𝑥) + 𝜇𝑒, (52)

where the absorption coefficients of 𝛾-quanta by nu-
clei and electrons are defined by the expressions

𝜇𝑁 (𝑥) =
𝛽/𝐷

1 + 𝑥2
(53)

and
𝜇𝑒 =

1

𝑣0

∑︁
𝑗

𝜎(𝑗)
𝑒 , (54)

respectively.

3. Discussion

We have generalized Kato’s theory [8–11] for the Laue
diffraction of the so-called spherical x-ray waves to
the case of Mössbauer diffraction. The analysis is con-
fined by the symmetric Laue diffraction. Following
[20], we have described the 𝛾-photons by the wave
packets Ψ(r𝑡) of Bialynicki–Birula [13] and Sipe
[14]. They are formed by the plane waves 𝜒𝜅𝑠(r, 𝑡),
which are spread over the frequency 𝜔 and angle
𝜃. By assumption, the wave vector 𝜅0 correspond-
ing to the distribution maximum exactly satisfies
the Bragg condition specifying a two-wave diffrac-
tion. Each such component 𝜒𝜅𝑠(r, 𝑡) is scattered in a
crystal independently of one another (see also [8–11]).

Kato’s theory is based on the stationary-phase ap-
proximation, which is valid, if the phase 𝑆𝜄(𝜂) in the
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Fig. 2. Distribution of the intensity 𝐼1(𝑝) of a Mössbauer
beam diffracted in a tin film of various thicknesses over the
Borrmann triangle as −1 < 𝑝 < 1. The symmetric Laue diffrac-
tion is treated here, proceeding at the Bragg angle 𝜃B = 5∘6′,
exact resonance 𝜔0 = 𝜔′

0, and the 100-% abundance by the
Mössbauer isotope 119Sn
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Fig. 3. The same as in Fig. 2, but for the refracted beam
𝐼0(𝑝)
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Fig. 4. Mössbauer spectrum of a diffracted beam at 𝑝 = 0

versus the relative motion velocity of the Mössbauer source
and the target

exponential of integral (32) is a real function, i.e. if
the absorption is practically absent. Instead, we use
the more adequate saddle-point method for the eval-
uation of this integral in thick strongly absorbing
crystals.

We have assumed the nuclear sublevels to be un-
split, which simplifies the consideration of polariza-
tions. In particular, this is realized in nuclei 119Sn
with M1 transitions and the transition energy 𝐸0 =
= 23.8 keV. The Mössbauer diffraction in a tin sin-
gle crystal was observed by Voitovetskii et al. [23–
25], while studying the suppression of inelastic chan-
nels and reactions predicted by Kagan and Afanas’ev
[4]. We performed numerical calculations for the sym-
metric Laue diffraction in a tin crystal film (see
Figs. 2–5), by choosing the same parameters as in one
of the experiments reported in [23]. Namely, we con-
sider the first-order reflection by the (020) planes with
the Bragg angle 𝜃B = 5∘6′. We put the temperature
𝑇 = 110 K, when the ratio of the resonant nuclear am-
plitude |𝑓𝑁

res| to the Rayleigh one 𝑓𝑅 equals 3.2, and
the ratio of the absorption coefficients 𝜇𝑁/𝜇𝑒 = 167
[23]. Taking into account that the Debye temperature
of tin Θ𝐷 = 200 K, we found the Lamb–Mössbauer
factor to be 𝑒−𝑊 = 0.48 at 𝑇 = 110 K, which enabled
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us to get the |𝑓𝑁
res| by Eq.(12). All the curves drawn in

Figs. 2–4 are calculated for the 100-% abundance by
119Sn. The results presented in Figs. 2, 3, and 5 cor-
respond to exact nuclear resonance, when 𝜔0 = 𝜔′

0.
The calculated intensities of the diffracted beam

𝐼1(𝑝) are shown in Fig. 2 as a function of the param-
eter 𝑝, ranging from –1 to +1 for the film thicknesses
𝐷 = 2, 20, and 50 𝜇m. The corresponding curves
for the refracted beam are given in Fig. 3. Here,
we see the same behavior as in the case of x-ray
diffraction. Namely, in a thin weakly absorbing crys-
tal, there is a growth of the diffracted intensity to the
edges of the Borrmann triangle 𝑝 = ±1. As the ab-
sorption grows with the film thickness, there appears
a bump in the middle of the triangle (𝑝 = 0). In this
case, the energy of 𝛾-rays flows mainly along the re-
flecting planes, which explains a relative growth of
the diffracted beam intensity at 𝑝 ≈ 0 in a strongly
absorbing crystal (see also [1]).

The dependence of the diffracted beam intensity
on the velocity of the Mössbauer emitter with re-
spect to the species is analyzed in Fig. 4, where the
thickness 𝐷 = 2, 3, and 5 𝜇m. The intensity curves
apart from the peak manifest also a characteristic fall-
off caused by the interference of the waves scattered
at the atomic electrons and the nucleus. Our results
well correlate with the observations of Voitovetskii
et al. [23].

Moreover, we have analyzed the dependence of the
diffracted wave intensity 𝐼1(𝑝) on the concentration of
the Mössbauer isotope 𝑐0. The results are displayed
in Fig. 5 for the same tin crystal, but with the thick-
ness 𝐷 = 100 𝜇m and concentrations 𝑐0 = 0.5, 0.1,
and 0. We see that, with lowering 𝑐0, there appears a
fringe structure of the curve 𝐼1(𝑝), which becomes
most clear in the case 𝑐0 = 0, corresponding to
the pure Rayleigh scattering of Mössbauer radia-
tion. With growing 𝑐0, the oscillations of 𝐼1(𝑝) arise
only at the edges of the Borrmann triangle, while
their amplitude decreases. For 𝑐0 = 1, oscillations of
the curves 𝐼0,1(𝑝) are absent.

Such behavior has the following explanation result-
ing in a smooth dependence of the curve 𝐼1(𝑝) versus
the parameter 𝑝.

The diffracted wave packet (40) consists of the
partial waves with definite frequencies 𝜔. Every such
wave provides oscillations of the intensity through the
function 𝑓(𝑥) = sin2(𝜁𝑟(𝑥) + 𝜋/4), where 𝜁𝑟(𝑥) is de-
fined by Eq. (50). The distance between neighboring
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Fig. 5. Dependence of the intensity of diffracted radiation
𝐼1(𝑝) on 𝑝 for concentrations of the Mössbauer isotope 𝑐0 =

= 0.5, 0.1, and 0

peaks of 𝐼1(𝑝), depending on the frequency 𝜔, may
be roughly estimated as

Δ𝑝(𝑥) ≈ 𝜋(1− 𝑝2)/𝑝

sin(2𝜁𝑟(𝑥) + 𝜋/2)|𝜁𝑟(𝑥)|
. (55)

We see that it really diminishes at the edges of the
Borrmann triangle, as 𝑝 → ±1. The quantity 𝜁𝑟(𝑥) is
determined by the sum of the Rayleigh scattering am-
plitude and the nuclear one. The latter is character-
ized by a sharp dependence on the frequency 𝜔. Since
the coherent nuclear amplitude is proportional to
𝑐0, the nuclear scattering prevails over the Rayleigh
one at a sufficient abundance by the resonant iso-
tope, and the averaging of the functions 𝑓(𝑥), hav-
ing quite different periods of oscillations and located
in integral (45), provides a smooth curve 𝐼(𝑝). Thus,
in the experiments with the Rayleigh scattering of
Mössbauer radiation, one can observe the intensity
oscillations of the diffracted waves. Similar fringe os-
cillations have been observed by Shull [26, 27] in the
famous neutron-optical experiments, which allowed
him to measure the neutron-Si scattering length with
high accuracy. One may hope that something like this
can be also realized, by observing a fringe structure
in the diffraction spectra of the Mössbauer or syn-
chrotron radiation.

ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 9 833



A.Ya. Dzyublik, V.Yu. Spivak

1. B.W. Batterman and H. Cole, Dynamical diffraction of X
rays by perfect crystals, Rev. Mod. Phys. 36, 681 (1964)
[DOI: 10.1103/RevModPhys.36.681].
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О.Я.Дзюблик, В.Ю.Спiвак

ДИФРАКЦIЯ ЛАУЕ
МЕССБАУЕРIВСЬКИХ СФЕРИЧНИХ ХВИЛЬ

Р е з ю м е

В наближеннi сферичних хвиль аналiзується симетрична
дифракцiя Лауе мессбауерiвських променiв. Для обчисле-
ння хвильової функцiї гамма-фотонiв у межах трикутника
Бормана в товстому кристалi iз сильним ядерним погли-
нанням використовується метод перевалу. Враховується як
релеївське, так i резонансне ядерне розсiяння. Показано,
що у випадку релеївського розсiяння мессбауерiвського ви-
промiнювання виникають iнтерференцiйнi осциляцiї iнтен-
сивностi дифрагованого пучка, якi можна використовувати
для прецизiйних вимiрювань параметрiв кристала.
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