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NULL ONE-WAY FIELDS IN THE KERR SPACETIMEPACS 04.20.Jb, 95.30.Sf

Analytical solutions of the equations for massless fields with arbitrary spins have been obtained
in the Kerr metric in the null one-way form, i.e. in the form of ingoing or outgoing, according
to Chandrasekhar, fields propagating to or from a black hole, respectively. On the basis of the
Newman–Penrose approach in the spinor formulation, the null one-way fields in the Petrov-
type 𝐷 spacetime are considered. A general analytical solution and an analytical solution with
separated variables are found for the generalized equations of those fields in the Kerr metric. In
the partial case of electromagnetic field, the Maxwell tensor and the energy-momentum tensor
for the outgoing and ingoing one-way fields are calculated.
K e yw o r d s: massless field, null one-way field, Maxwell spinor, Kerr spacetime, separation of
variables.

1. Introduction

The research of the gravitational field influence on
classical physical fields (scalar, Dirac–Weyl, Maxwell,
and Rarita–Schwinger ones) and on gravitational per-
turbations is a challenging task of modern mathemat-
ical and theoretical physics, and astrophysics. In or-
der to simplify the problem, the influence of those
fields on the gravitational one is neglected, by consid-
ering them as test fields or perturbations. The study
of the behavior of those fields in the gravitational
fields created by black holes – in the Schwarzschild,
Kerr, and Kerr–Newman metrics – is especially im-
portant and interesting.

The main difficulty in studying the fields with non-
zero spins is the interdependence of the systems of
equations that describe them. Therefore, if no re-
strictions are imposed on the space generality, none of
the gauge (in the case of electromagnetism) or coordi-
nate (in the case of gravitation) conditions can decou-
ple those equations. Teukolsky [1], making use of the
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Newman–Penrose formalism, partially decoupled the
equations for the gravitational, electromagnetic, and
neutrino fields in the Petrov-type 𝐷 spacetime. As
a result, he obtained two separate equations for two
“extreme” field components. When considering the
equations in the Kinnersley tetrad, they were general-
ized to the Teukolsky master equation (TME), which
describes extreme components of the fields with all in-
teger and half-integer spins in the Kerr metric. Using
the ansatz 𝜓 = 𝑒−𝑖𝜔𝑡𝑒𝑖𝑚𝜑𝑅(𝑟)𝑆(𝜃), Teukolsky ob-
tained two ordinary differential equations (ODEs),
which are known as the Teukolsky angular equation
(TAE) and Teukolsky radial equation (TRE).

Further important results in this direction were ob-
tained, in particular, in works [2–6]. However, the
obtaining of solutions for the Maxwell field (as well
as other fields, except for scalar ones) in a curved
spacetime, which would be rather general or suit-
able for an effective analysis, as well as researches
of their properties, remain to be a complicated task
[7]. The difficulty consists in the non-linear charac-
ter of the eigenvalue problem, because the separation
constant 𝜔 enters the equation through the parameter
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𝐸𝑚
𝑙 = 𝐸𝑚

𝑙 (𝑎𝜔) (see p. 653 in work [2]). For simplifica-
tion, special cases of the Maxwell field are considered,
which makes it possible to obtain exact solutions for
corresponding equations.

In our works [8–10], we separately considered the
cases of fields propagating to black holes (according
to Chandrasekar’s terminology, ingoing fields) and
from black hole’s vicinity (outgoing fields), i.e. null
one-way (NOW) fields (NOWFs), which correspond
to two orientations of the electromagnetic principal
null direction with respect to the gravitational prin-
cipal null direction. We obtained a general solution
that is expressed in terms of an arbitrary function of
integrals of a system of partial differential equations
(PDEs) of the first order.

In work [9], we noted that, unlike Teukolsky, we do
not neglect the solutions with a singularity on the ro-
tation axis 𝜃 = 0, 𝜃 = 𝜋 for the following reasons. The
singularity on the semiaxis 𝜃 = 0 – both in the Kerr
solution and in the solutions of field equations against
the Kerr spacetime background – is a consequence
of the application of the Boyer–Lindquist coordinate
system, which generalizes a spherical coordinate sys-
tem with its singularity on the semiaxis 𝜃 = 0 (here,
the determinant of the metric tensor equals zero) onto
the Kerr spacetime. Since the metric in the Kerr so-
lution does not cease to be determined at 𝑟 = 0, the
values 𝑟 < 0 are also allowed. Therefore, an addi-
tional specific semiaxis 𝜃 = 𝜋 arises in the equations
for all fields.

However, the singularities on the rotation axis of
either the metric tensor of the Kerr spacetime or the
solutions of field (e.g., the electromagnetic one) equa-
tions against the Kerr spacetime background are not
invariant. A single invariant in the Kerr geometry
and the invariants of the electromagnetic field have
no singularities on the rotation axis, and the met-
ric quadratic form can be analytically continued to
it (except for points on the horizon). This approach
was proposed in work [9], and it will be applied, when
considering the fields with other spins. Accordingly,
the domain of definition of such physically mean-
ingful solutions will be restricted by the condition
0 < 𝜃 < 𝜋. Such coordinate-singular solutions, ow-
ing to their simple form, can be effectively applied to
describe processes in a vicinity of the Kerr black hole,
which will be dealt with in the next paper. It is ex-
pected that the invariant characteristics of fields and
processes would also have no singularities at 𝜃 = 0

and 𝜃 = 𝜋. In a flat spacetime, in special cases, the
solution in the Kerr field obtained by us describes a
circularly polarized plane wave and an electromag-
netic field, which is similar of a null field in the form
of knots and links, and arises from the Hopf fibration
[11, 12].

The behavior of algebraically special fields was
studied in works [13–16] in detail. In particular, Tor-
res [13] obtained a general solution for an alge-
braically special Maxwell field in a flat spacetime. In
Chandrasekhar’s work [14], a gravitational case of
the algebraically special field in the Kerr metric was
considered, and a solution with separated variables,
which contains terms with the 1/𝑟-, 1/𝑟2-, 1/𝑟3-, and
1/𝑟4-asymptotics, was obtained [see Eqs. (9) and (14)
in the cited work]. This result differs from the ours:
our solution with the separated variables has only the
1/𝑟-asymptotic.

The method developed by us for solving a system of
equations describing NOW Maxwell fields can also be
generalized to the case of NOWFs with arbitrary spin
values. Such a generalization and the solution of the
system of equations that describes fields of all spin
values identically are the aim of this work.

Besides the derivation of the analytical general so-
lution for the generalized system of equations, we will
also obtain a solution, by using the variable sepa-
ration method, which allows one to describe some
properties of physical fields in more details (see,
e.g., work [17]). We also compared our results with
Teukolsky’s ones and indicated their further applica-
tion. In addition, using the Maxwell field as an ex-
ample, we will construct wave-like solutions in the
form of NOWFs. For each solution, we calculate the
Maxwell and energy-momentum tensors. Finally, we
determine conditions in the coordinate form that are
specific to NOWFs.

All equations below are presented in the ge-
ometrized system of units, in which 𝑐 = 𝐺 = 1.
Furthermore, we assume all functions to be smooth
enough, which does not restrict the physical general-
ity of consideration.

2. Test Zero-Rest-Mass One-Way
Free Fields with the Spin 𝑙 in the Vacuum
Type 𝐷 Spacetime

Let us consider test zero-rest-mass free fields with the
spin 𝑙 = |𝑠|, where 𝑠 = ±1/2,±1,±3/2,±2, ... are the

1008 ISSN 2071-0186. Ukr. J. Phys. 2017. Vol. 62, No. 11



Null One-Way Fields in the Kerr Spacetime

spin weight values. The fields are given by a symmet-
ric spinor 𝜙𝐴𝐵𝐶 ...𝐾𝐿 with 2𝑙 indices. The evolution
equation for such fields looks like [18]

∇𝐴𝐴′
𝜙𝐴𝐵𝐶 ...𝐾𝐿 = 0. (1)

Let us extend the approach proposed by us in work
[9], while considering null electromagnetic fields, onto
fields with other spins. For this purpose, let us se-
lect the spin basis so that the principal spinors of
the Weyl spinor, which are multiple in pairs, because
the Kerr spacetime belongs to the type 𝐷 accord-
ing to Petrov, would be proportional to the basis
ones, i.e. Ψ𝐴𝐵𝐶𝐷 = 𝛾(𝐴𝛾𝐵𝛿𝐶𝛿𝐷), where 𝛾𝐴 = 𝛾1𝑜𝐴,
𝛿𝐴 = −𝛿0𝜄𝐴, 𝑜𝐴, and 𝜄𝐴 are basis spinors. As a re-
sult, we obtain Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 and, in
accordance with the Goldberg–Sachs theorem, 𝜅 =
= 𝜎 = 𝜈 = 𝜆 = 0.

Below, we consider algebraically special physi-
cal fields. We assume that all principal spinors 𝛼𝐴,
𝛽𝐵 , ..., 𝜆𝐿 of the spinor 𝜙𝐴𝐵𝐶 ...𝐾𝐿 = 𝛼(𝐴𝛽𝐵 ... 𝜆𝐿)

are multiple of a multiple of the principal spinor 𝛾𝐴
of the Weyl spinor, i.e. 𝛼𝐴 ∼ 𝛾𝐴, 𝛽𝐵 ∼ 𝛾𝐵 , ...,
𝜆𝐿 ∼ 𝛾𝐿. As a result, the expansion of the field spinor
in the spin basis looks like

𝜙𝐴𝐵𝐶 ...𝐾𝐿 = 𝜙2𝑙 𝑜𝐴𝑜𝐵 ... 𝑜𝐿⏟  ⏞  
2l

, (2)

where 𝜙2𝑙 = 𝜙𝐴𝐵𝐶 ...𝐾𝐿𝜄
𝐴𝜄𝐵𝜄𝐶 ... 𝜄𝐾𝜄𝐿. The field

𝜙𝐴𝐵𝐶 ...𝐾𝐿 is null under this choice [18]. Following
Chandrasekhar, we will call it “outgoing”. In the
case of gravitational field, condition (2) distinguishes
wave-type fields according to Lichnerowicz.

Definition 1. A field given by a spinor of form (2)
is called the outgoing null one-way field.

The components of Eq. (1) for the outgoing NOWF
(2) in the vacuum type 𝐷 spacetime look like{︂
𝐷𝜙2𝑙 + (2𝑙𝜖− 𝜌)𝜙2𝑙 = 0,

𝛿𝜙2𝑙 + (2𝑙𝛽 − 𝜏)𝜙2𝑙 = 0,
(3)

where 𝐷 = 𝑙𝑎∇𝑎, 𝛿 = 𝑚𝑎∇𝑎, Δ = 𝑛𝑎∇𝑎, and
𝛿 = �̄�𝑎∇𝑎 are derivatives along the directions of the
Newman–Penrose null tetrad; and 𝛼, 𝛽, 𝛾, 𝜖, 𝜅, 𝜎, 𝜌,
𝜏 , 𝜈, 𝜆, 𝜇, and 𝜋 are Newman–Penrose scalars.

Analogously, the “ingoing” NOWF is obtained by
selecting all principal spinors 𝛼𝐴, 𝛽𝐵 , ..., 𝜆𝐿 of the
spinor 𝜙𝐴𝐵𝐶 ...𝐾𝐿 = 𝛼(𝐴𝛽𝐵 ... 𝜆𝐿) to be multiple of a
multiple of the principal spinor 𝛿𝐴 of the Weyl spinor,

i.e. 𝛼𝐴 ∼ 𝛿𝐴, 𝛽𝐵 ∼ 𝛿𝐵 , ..., 𝜆𝐿 ∼ 𝛿𝐿. In this case, the
expansion of the field spinor in the spin basis looks
like

𝜙𝐴𝐵𝐶 ...𝐾𝐿 = 𝜙0𝜄𝐴𝜄𝐵 ... 𝜄𝐾 , (4)

where 𝜙0 = 𝜙𝐴𝐵𝐶 ...𝐾𝐿𝑜
𝐴𝑜𝐵𝑜𝐶 ... 𝑜𝐿.

Definition 2. A field given by a spinor of form (4)
is called the ingoing null one-way field.

The components of Eq. (1) for the ingoing NOWF
in the vacuum type 𝐷 spacetime look like{︂
Δ𝜙0 + (𝜇− 2𝑙𝛾)𝜙0 = 0,

𝛿𝜙0 + (𝜋 − 2𝑙𝛼)𝜙0 = 0.
(5)

Note that NOWFs (2) and (4) are algebraically spe-
cial fields of the type 𝑁 , i.e. all principal spinors of
such fields are multiple.

3. General Solution of a Generalized
Equation Describing One-Way Fields
with the Spin 𝑙 in the Kerr Metric

Let us consider the systems of equations (3) for an
outgoing NOWF and (5) for an ingoing one in the
Kerr metric in the Boyer–Lindquist coordinates,

𝑑𝑠2 =

(︂
1− 2𝑀𝑟

Σ

)︂
𝑑𝑡2 +

4𝑀𝑟𝑎 sin2 𝜃

Σ
𝑑𝑡𝑑𝜑− Σ

Δ
𝑑𝑟2 −

−Σ𝑑𝜃2 −
(︂
𝑟2 + 𝑎2 +

2𝑀𝑟𝑎2 sin2 𝜃

Σ

)︂
sin2 𝜃𝑑𝜑2, (6)

where 𝑀 > 0 is the black hole mass, 𝑎 the specific
angular momentum (0 < 𝑎 < 𝑀), Σ = 𝑟2 + 𝑎2 cos2 𝜃,
and Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2 1. The roots of the equa-
tion Δ = 0, namely, 𝑟+ = 𝑀 +

√
𝑀2 − 𝑎2 and 𝑟− =

= 𝑀 −
√
𝑀2 − 𝑎2, determine the event and Cauchy

horizons, respectively. The Newman–Penrose null
tetrad is chosen as the Kinnersley tetrad [19]:

𝑙𝑎 =

(︂
𝑟2 + 𝑎2

Δ
, 1, 0,

𝑎

Δ

)︂
,

𝑛𝑎 =
1

2Σ

(︀
𝑟2 + 𝑎2,−Δ, 0, 𝑎

)︀
,

𝑚𝑎 =
1√

2(𝑟 + 𝑖𝑎 cos 𝜃)

(︂
𝑖𝑎 sin 𝜃, 0, 1,

𝑖

sin 𝜃

)︂
,

�̄�𝑎 =
1√

2(𝑟 − 𝑖𝑎 cos 𝜃)

(︂
−𝑖𝑎 sin 𝜃, 0, 1, −𝑖

sin 𝜃

)︂
.

(7)

1 The application of the same notation Δ for different quanti-
ties is traditional for the Newman–Penrose formalism, when
describing the Kerr spacetime, and does not lead to a mis-
understanding.
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The systems of equations for the outgoing and in-
going NOWFs with arbitrary spins 𝑙 have similar
forms in the Boyer–Lindquist coordinates, if the cor-
responding change of functions is performed. There-
fore, let us construct the generalized system of equa-
tions,⎧⎪⎨⎪⎩
𝑟2 + 𝑎2

Δ

𝜕𝜓

𝜕𝑡
− 𝑘

𝜕𝜓

𝜕𝑟
+
𝑎

Δ

𝜕𝜓

𝜕𝜑
= 0,

𝑖𝑎 sin 𝜃
𝜕𝜓

𝜕𝑡
− 𝑘

𝜕𝜓

𝜕𝜃
+

𝑖

sin 𝜃

𝜕𝜓

𝜕𝜑
= 0;

(8)

where 𝑘 = sgn 𝑠, and

𝜓 =

⎧⎨⎩
𝜙2𝑙(𝑟 − 𝑖𝑎 cos 𝜃) sin𝑙 𝜃, 𝑘 = −1;

𝜙0
Δ𝑙 sin𝑙 𝜃

2(𝑟 − 𝑖𝑎 cos 𝜃)2𝑙−1
, 𝑘 = 1.

(9)

The general solution of system (8) can be found, by
sequentially integrating the partial differential equa-
tions of the first order. We obtain

𝜓 = 𝑒𝐹 (𝜁1,𝜁2), (10)

where 𝐹 is an arbitrary function of the complex inte-
grals of system (8):

𝜁1 = 𝑡+ 𝑘

(︃
𝑟 +𝑀 lnΔ+

+
𝑀2

√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
− 𝑖𝑎 cos 𝜃

)︃
, (11)

𝜁2 = 𝜑+𝑘

(︂
𝑎

2
√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
+ 𝑖 ln

⃒⃒⃒⃒
1− cos 𝜃

sin 𝜃

⃒⃒⃒⃒)︂
.

(12)

In the case of electromagnetic field (𝑠 = ±1), the
general solution (10) was obtained in our previous
work [9]. In the partial case of flat spacetime, this so-
lution is reduced to that by Torres [13]. In this work,
the exact solution for a field with an arbitrary spin in
the Kerr field was obtained for the first time.

4. Separation of Variables
in the System of Equations for the NOWF

The application of the variable separation method
for finding regular solutions of the master Teukolsky
equation made it possible to reveal the main proper-
ties of perturbations and predict bright physical ef-
fects in the Kerr field [1, 4]. Bearing all that in mind

and due to a necessity to compare the NOWF ap-
proach with the others, let us apply this method to
the NOWFs.

Let us seek the solution of the system of equations
(8) in the form

𝜓(𝑡, 𝑟, 𝜃, 𝜑) = 𝑇 (𝑡)𝑅(𝑟)𝑆(𝜃)Φ(𝜑). (13)

For the unknown functions, we obtain a system of
four ODEs:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑇 ′(𝑡)− 𝜆𝑇 (𝑡) = 0,

Φ′(𝜑)− 𝜈Φ(𝜑) = 0,

𝑅′(𝑟)− 𝑘

(︂
𝜆(𝑟2 + 𝑎2)

Δ
+
𝜈𝑎

Δ

)︂
𝑅(𝑟) = 0,

𝑆′(𝜃)− 𝑘

(︂
𝑖𝑎𝜆 sin 𝜃 + 𝜈

𝑖

sin 𝜃

)︂
𝑆(𝜃) = 0,

(14)

where 𝜆 ∈ C and 𝜈 ∈ C are separation constants. Ha-
ving solved those equations, we obtain a solution of
system (8),

𝜓 = 𝐶𝑒𝜆𝜉1+𝜈𝜉2−𝑖𝑎𝑘𝜆 cos 𝜃+𝑖𝜈𝑘 ln| 1−cos 𝜃
sin 𝜃 |, (15)

where

𝜉1 = 𝑡+ 𝑘

(︂
𝑟 +𝑀 lnΔ +

𝑀2

√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒)︂
,

(16)

𝜉2 = 𝜑 + 𝑘
𝑎

2
√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
, (17)

and 𝐶 is a complex constant.
Hence, the equations for NOWFs have solutions

with separated variables of form (15), where the func-
tion 𝜓 is defined by relations (9). Solution (15) is par-
tial. It is obtained from the general solution (10) by
choosing 𝐹 (𝜁1, 𝜁2) = 𝜆𝜁1 + 𝜈𝜁2.

Note that the separation of variables for the sys-
tem of first-order equations for NOWFs differs from
the separation of variables in the Teukolsky approach:
the function 𝜓 in this work [see Eq. (9)] is defined dif-
ferently from the function 𝜓 in work [1].

5. Solutions with Separated
Variables in the Cases of Outgoing
and Ingoing NOW Maxwell Fields

As an example, let us consider solutions with sep-
arated variables in the case of zero-rest-mass free
NOW Maxwell fields with 𝑠 = ±1. The case 𝑠 = −1
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describes an outgoing NOW Maxwell field, whereas
𝑠 = 1 an ingoing one [9, 10].

The equation for a free Maxwell field looks like

∇𝐴𝐴′
𝜙𝐴𝐵 = 0, (18)

where

𝜙𝐴𝐵 = 𝜙2𝑜𝐴𝑜𝐵 − 𝜙1(𝑜𝐴𝜄𝐵 + 𝜄𝐴𝑜𝐵) + 𝜙0𝜄𝐴𝜄𝐵 (19)

is the spinor of the electromagnetic field (the Maxwell
spinor); and 𝜙2 : 𝜙2 ↦→ C, 𝜙1 : 𝜙1 ↦→ C, and 𝜙0 :
𝜙0 ↦→ C are the components of the spinor 𝜙𝐴𝐵 in the
spin basis.

In the case of outgoing NOWF, the Maxwell spinor
looks like 𝜙𝐴𝐵 = 𝜙2𝑜𝐴𝑜𝐵 . The solution with sepa-
rated variables, 𝜙2, can be written, by using Eqs. (15)
and (9) taken at 𝑘 = −1 and 𝑙 = 1:

𝜙2 = 𝐶
𝑒𝜆𝜂1+𝜈𝜂2+𝑖𝑎𝜆 cos 𝜃−𝑖𝜈 ln| 1−cos 𝜃

sin 𝜃 |

sin 𝜃 (𝑟 − 𝑖𝑎 cos 𝜃)
, (20)

where

𝜂1 = 𝑡− 𝑟 −𝑀 lnΔ− 𝑀2

√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
, (21)

𝜂2 = 𝜑− 𝑎

2
√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
. (22)

When considering the first and second ODEs in sys-
tem (14), the following requirements are imposed on
their solutions. First, the function 𝑇 (𝑡) must be finite
at 𝑡→ ∞. As a result, we obtain that the separation
constant 𝜆 has to be imaginary: 𝜆 = 𝑖𝜔, 𝜔 ∈ R. In so
doing, we exclude quasinormal solutions from consid-
eration.

The second requirement consists in that the func-
tion Φ(𝜑) has to be 2𝜋-periodic, i.e. Φ(𝜑) = Φ(𝜑+2𝜋)
for any argument value 𝜑. Whence, we obtain that
𝜈 = 𝑖𝑚, 𝑚 ∈ Z. Then a solution with separated vari-
ables, which is finite in time and 2𝜋-periodic in the
azimuthal argument, has the form [10]

𝜙2 = 𝐶
𝑒𝑖𝜔𝜂1+𝑖𝑚𝜂2−𝑎𝜔 cos 𝜃

sin 𝜃 (𝑟 − 𝑖𝑎 cos 𝜃)

(︂
1− cos 𝜃

sin 𝜃

)︂𝑚
. (23)

The solution 𝑆(𝜃) of system (14) at 𝑘 = −1 has
a singularity at the point 𝜃 = 0 or 𝜃 = 𝜋, depend-
ing on the value of separation constant 𝑚. The solu-
tion 𝑅(𝑟) is determined everywhere, except the points
𝑟 = 𝑟+ and 𝑟 = 𝑟−. Below, we will consider solution

(23) in the domain (0 < 𝜃 < 𝜋, 𝑟 > 𝑟+), where, as was
marked above, it is physically meaningful.

The Maxwell tensor 𝐹𝑎𝑏 = 2𝜙2𝑙[𝑎𝑚𝑏] + 2𝜙2𝑙[𝑎�̄�𝑏]

corresponding to solution (23) was calculated with
the help of the software package GRTensor2 [20]. As
a result, we obtained

𝐹𝑎𝑏 =
√
2

⎛⎜⎜⎜⎜⎜⎝
0 − 𝑎

Δ𝑃 − 1
sin 𝜃𝑄 𝑃

𝑎
Δ𝑃 0 Σ

sin 𝜃Δ𝑄 − 𝑟2+𝑎2

Δ 𝑃

1
sin 𝜃𝑄 − Σ

sin 𝜃Δ𝑄 0 −𝑎 sin 𝜃𝑄

−𝑃 𝑟2+𝑎2

Δ 𝑃 𝑎 sin 𝜃 𝑄 0

⎞⎟⎟⎟⎟⎟⎠,
(24)

where 𝑃 = 𝑐1 sin(𝜔𝜂1 +𝑚𝜂2) + 𝑐2 cos(𝜔𝜂1 +𝑚𝜂2)×
× 𝑒−𝑎𝜔 cos 𝜃

(︀
1−cos 𝜃
sin 𝜃

)︀𝑚
, 𝑄 = 𝑐1 cos(𝜔𝜂1 + 𝑚𝜂2)−

− 𝑐2 sin(𝜔𝜂1 +𝑚𝜂2)𝑒
−𝑎𝜔 cos 𝜃

(︀
1−cos 𝜃
sin 𝜃

)︀𝑚
, 𝐶 = 𝑐1 + 𝑖𝑐2.

The NOWF condition (2) in the coordinate form
looks like⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑟2 + 𝑎2)𝐹𝑡𝑟 − 𝑎𝐹𝑟𝜑 = 0,

𝑎 sin2 𝜃𝐹𝑡𝜃 − 𝐹𝜃𝜑 = 0,

Σ𝐹𝑡𝜃 +Δ𝐹𝑟𝜃 = 0,

𝐹𝑡𝑟 +
𝑎
Δ𝐹𝑡𝜑 = 0.

(25)

Now, let us calculate the energy-momentum tensor
𝑇𝑎𝑏 = (1/2𝜋) × |𝜙2|2𝑙𝑎𝑙𝑏 corresponding to solution
(23):

𝑇𝑎𝑏 =
|𝜙2|2
2𝜋

⎛⎜⎜⎜⎜⎝
1 −Σ

Δ 0 −𝑎 sin2 𝜃

−Σ
Δ

Σ2

Δ2 0 𝑎 sin2 𝜃 Σ
Δ

0 0 0 0

−𝑎 sin2 𝜃 𝑎 sin2 𝜃 Σ
Δ 0 𝑎2 sin4 𝜃

⎞⎟⎟⎟⎟⎠,
(26)

|𝜙2|2 =
|𝐶|2𝑒−2𝑎𝜔 cos 𝜃

sin2 𝜃Σ

(︂
1− cos 𝜃

sin 𝜃

)︂2𝑚
. (27)

Let us also consider a solution with separated
variables for the ingoing NOWF, when the Maxwell
spinor equals 𝜙𝐴𝐵 = 𝜙0𝜄𝐴𝜄𝐵 . This solution, 𝜙0, can
be written, by using Eqs. (15) and (9) at 𝑘 = 1 and
𝑙 = 1:

𝜙0 = 𝐶
2𝑒𝜆𝜂3+𝜈𝜂4−𝑖𝑎𝜆 cos 𝜃+𝑖𝜈 ln| 1−cos 𝜃

sin 𝜃 |

sin 𝜃Δ(𝑟 − 𝑖𝑎 cos 𝜃)−1
, (28)

where
𝜂3 = 𝑡+ 𝑟 +𝑀 lnΔ +

𝑀2

√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
, (29)
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𝜂4 = 𝜑+
𝑎

2
√
𝑀2 − 𝑎2

ln

⃒⃒⃒⃒
𝑟 − 𝑟+
𝑟 − 𝑟−

⃒⃒⃒⃒
. (30)

A solution of Eq. (28), which is finite in time and
2𝜋-periodic in the azimuthal angle, reads

𝜙0 = 𝐶
2𝑒𝑖𝜔𝜂3+𝑖𝑚𝜂4+𝑎𝜔 cos 𝜃

sin 𝜃Δ(𝑟 − 𝑖𝑎 cos 𝜃)−1

(︂
1− cos 𝜃

sin 𝜃

)︂−𝑚

, (31)

This solution, like solution (23), also has singularities
at 𝜃 = 0, 𝜃 = 𝜋 and 𝑟 = 𝑟+, 𝑟 = 𝑟−. Beyond the
rotation axis and the horizons, it is also physically
meaningful.

The Maxwell tensor for the ingoing NOWF is cal-
culated by the formula

𝐹𝑎𝑏 =
√
2

⎛⎜⎜⎜⎜⎜⎝
0 𝑎

Δ𝑈
1

sin 𝜃𝑉 𝑈

− 𝑎
Δ𝑈 0 Σ

sin 𝜃Δ𝑉
𝑟2+𝑎2

Δ 𝑈

− 1
sin 𝜃𝑉 − Σ

sin 𝜃Δ𝑉 0 𝑎 sin 𝜃𝑉

−𝑈 − 𝑟2+𝑎2

Δ 𝑈 −𝑎 sin 𝜃𝑉 0

⎞⎟⎟⎟⎟⎟⎠,
(32)

where

𝑈 = 𝑐1 sin(𝜔𝜂3 +𝑚𝜂4) + 𝑐2 cos(𝜔𝜂3 +𝑚𝜂4)×

× 𝑒𝑎𝜔 cos 𝜃

(︂
1− cos 𝜃

sin 𝜃

)︂−𝑚

,

𝑉 = 𝑐1 cos(𝜔𝜂3 +𝑚𝜂4)− 𝑐2 sin(𝜔𝜂3 +𝑚𝜂4)×

×𝑒𝑎𝜔 cos 𝜃

(︂
1− cos 𝜃

sin 𝜃

)︂−𝑚

.

The NOWF condition (4) in the coordinate repre-
sentation has the form⎧⎪⎪⎨⎪⎪⎩
(𝑟2 + 𝑎2)𝐹𝑡𝑟 − 𝑎𝐹𝑟𝜑 = 0,

𝑎 sin2 𝜃𝐹𝑡𝜃 − 𝐹𝜃𝜑 = 0,
Σ𝐹𝑡𝜃 −Δ𝐹𝑟𝜃 = 0,
𝐹𝑡𝑟 − 𝑎

Δ𝐹𝑡𝜑 = 0.

(33)

Finally, the energy-momentum tensor
𝑇𝑎𝑏 = (1/2𝜋)× × |𝜙0|2𝑛𝑎𝑛𝑏 of the ingoing NOWF
for solution (31) looks like

𝑇𝑎𝑏 =
|𝜙0|2Δ2

8𝜋Σ2

⎛⎜⎜⎜⎜⎝
1 Σ

Δ 0 −𝑎 sin2 𝜃
Σ
Δ

Σ2

Δ2 0 −𝑎 sin2 𝜃 Σ
Δ

0 0 0 0

−𝑎 sin2 𝜃 −𝑎 sin2 𝜃Σ
Δ 0 𝑎2 sin4 𝜃

⎞⎟⎟⎟⎟⎠,
(34)

|𝜙0|2 =
4|𝐶|2Σ𝑒2𝑎𝜔 cos 𝜃

sin2 𝜃Δ2

(︂
1− cos 𝜃

sin 𝜃

)︂−2𝑚

. (35)

6. Conclusions
The equations describing one-way gravitational, elec-
tromagnetic, and neutrino fields in the Petrov-type
𝐷 spacetime are reduced to a single form, which is
valid for an arbitrary value of the field spin. When
considering the systems of equations for the outgoing
and ingoing NOWFs in the Kerr metric in the Boyer-
Lindquist coordinates, they can be generalized to the
same system of the first-order PDEs for an unknown
function 𝜓(𝑡, 𝑟, 𝜃, 𝜑), similarly to that done by Teukol-
sky in the case of second-order equations for functions
regular at 𝜃 = 0 and 𝜃 = 𝜋. The change of the func-
tion in our case [see Eqs. (9)] differs from analogous
changes in the Teukolsky and Chandrasekhar ap-
proaches. This circumstance, however, does not pro-
hibit a comparison of our solutions describing NOWFs
with the solutions obtained by Teukolsky and Chan-
drasekhar.

We have obtained a generalized system and found
its general solution, by sequentially integrating the
first-order PDEs. This approach is quite different
from the approaches of other authors. In particular,
it allowed us to obtain an analytical solution, which
is general for a certain class of fields: null one-way
fields. The found solution with separated variables
depends on a linear combination of the integrals of
the system.

In the case of NOW Maxwell fields, the solutions
describe circularly polarized waves, with the outgo-
ing wave propagating from the Kerr black hole to
the spatial infinity and the ingoing one propagating
backward. The solutions describing the NOWFs are
meaningful everywhere, except for the rotation axis
and the horizons, where they have coordinate singu-
larities. They were rejected by Teukolsky on the basis
of their irregularity. The application of the obtained
solutions to the analysis of the field behavior in the
Kerr spacetime will be considered elsewhere.

By comparing the outgoing null solution of
Maxwell’s equations at 𝑟 → ∞ with the radial Teukol-
sky solution that is asymptotically outgoing at infin-
ity [see Eq. (5.4) in work [1]], one can see that the
functions 𝜑2 have the same 𝑒𝑖𝜔𝑟*/𝑟-asymptotics. Fur-
thermore, the limitation of the consideration to only
the outgoing null field does not result in the loss of
information about the only field component that is
meaningful for a remote observer, the “far field”. Vice
versa, the analytical solutions satisfying such require-
ments open possibilities to study the qualitative be-
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havior of fields. This task cannot be done with the
use of the Teukolsky solutions obtained in the form
of series in spheroidal harmonics, because there are
no recurrence relations for the coefficients in those
series.

The authors express their gratitude to the anony-
mous referees for their useful remarks and advices.
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ОДНОНАПРЯМЛЕНI IЗОТРОПНI
ПОЛЯ У ПРОСТОРI КЕРРА

Р е з ю м е

Метою роботи є побудова у аналiтичному виглядi розв’язкiв
рiвнянь безмасового поля довiльного спiну у метрицi Керра
у виглядi iзотропних однонапрямлених – вихiдних та вхi-
дних за Чандрасекаром полiв, тобто полiв, якi поширюю-
ться вiд або до чорної дiри. На основi методу Ньюмена–
Пенроуза у його спiнорнiй формi розглянуто однонапрям-
ленi iзотропнi поля у просторi типу 𝐷 за Петровим та
знайдено у аналiтичному виглядi загальний розв’язок та
розв’язок iз вiдокремленими змiнними узагальнених рiв-
нянь таких полiв у метрицi Керра. У частковому випад-
ку електромагнiтного поля обчислено тензор Максвелла та
тензор енергiї-iмпульсу для вихiдного та вхiдного однона-
прямленого поля.
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