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HEURISTIC SOLUTION
OF LANGMUIR PROBLEM IN ARBITRARY DOMAINPACS 52.25.Fi, 52.27.Aj

The Langmuir problem for a collisionless plasma was formulated and solved for some simple
domains at 1921. But, for more complicated cases, no robust method is known till now ex-
cept for the macro particle simulation. We propose a new method applicable to domains with
arbitrary boundary shape. The method is based on the solution of the well-known eigenvalue
problem for diffusion-type equations. The comparison of test solutions obtained by this tech-
nique with the Particle-In-Cell method demonstrates an acceptable accuracy despite the lack
of theoretical validation of this method.
K e yw o r d s: collisionless plasma, Langmuir problem, free fall regime.

1. Statement of the Problem
There are a great variety of low temperature gas dis-
charge technological devices operated under low pres-
sures. If we have a steady-state plasma with Maxwel-
lian electrons and ions with mean free path greater
than the plasma size, then the problem can be con-
sidered as the Langmuir one [1]. It is known that
the solution of the Langmuir problem meets consid-
erable difficulties, if the chamber shape differs from
a flat layer, cylinder, or sphere. So, we were able
to indicate the only work [2] devoted to the ana-
lytical treatment of the free-fall motion of ions in
an arbitrary 3D domain. Another approach to the
problem is to use fluid equations to model the col-
lisionless ion motion. In [3–5], the one-dimensional
fluid equation was used to study a sheath-plasma
region. In [6] a 2D fluid equations in the magne-
tized plasma was spatially averaged along magnetic
field lines. However, these papers are devoted to the
plasma sheath problem, and their results do not al-
low one to solve the problem in a 3D geometry. In this
paper, we are focused on the plasma volume rather
than a sheath.
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For a low-pressure plasma, the macro particle
methods (for example, the Particle-In-Cell or PIC
one) [7, 8] are widely used. The corresponding soft-
ware is freely distributed in many cases. However,
these methods demand a lot of computational re-
sources, especially with decrease in the Debye ra-
dius. Therefore, it would be helpful to find some less
resource-consuming method for calculations of the
collisionless plasma density.

There are quite simple codes based on the diffu-
sion model of transport of particles in a gas discharge
plasma (see, e.g., [10]). However, they are invalid in
the range of low gas pressures. The diffusion coeffi-
cient tends to infinity as the frequency of ion-neutral
collisions tends to zero, and the solution with con-
stant ion density can be obtained in this case. This is
all the more regrettable, because the solvers of elliptic
equations are fast, precise, and easy for coding.

The main idea of the approach proposed in this
paper is to apply the diffusion equations with specifi-
cally tailored diffusion coefficient. We demonstrate a
variant of such tailoring that allows us to construct a
boundary-value problem for elliptic partial differen-
tial equations (PDE) with a solution rather close to
the exact collisionless solution. The results obtained
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Fig. 1. Cylinder configuration in the Langmuir problem

within this approach are compared with those ob-
tained by the PIC method described in [8,9]. It should
be mentioned that the proposed approach gives a non-
strict but rather heuristic solution of the problem.

The plan of our speculative considerations is the
following:

∙ calculation of the diffusion coefficients in the dif-
fusion equations so that the solutions coincide with
Langmuir ones for three 1D geometries;

∙ development of a method suitable for the exten-
sion of these 1D results to an arbitrary 3D domain.

∙ verification of the method by a PIC simulation.

2. Langmuir Solutions

In [1], L. Tonks and I. Langmuir had obtained the
analytical solution for the plasma density in colli-
sionless plasma layer, cylinder, and sphere. It would
be useful to make a brief review of the solution. In
Fig. 1, the cylinder of radius 𝑎 filled with an ion-
electron plasma is shown. Let the electron tempera-
ture 𝑇 and the ionization frequency 𝜈𝑖(𝑇 ) be constant
in the plasma, and let the quasineutrality condition
be satisfied (𝑛𝑒 ≈ 𝑛𝑖 ≈ 𝑛) at any point of the plasma
volume. Here, 𝑛𝑒, 𝑛𝑖, and 𝑛 are the densities of elec-
trons, ions and plasma, respectively. Electrons obey
the Boltzmann distribution, so

𝑛(𝑟) = 𝑛0 exp (𝑒𝜙(𝑟)/𝑇 ), (1)

where 𝑛0 is the plasma density on the discharge axis,
𝜙(𝑟) ≤ 0 is the ambipolar potential, and 𝑒 is the
elementary charge. Ions are accelerated by the am-
bipolar field along radial trajectories from the bear-
ing points. From the ion liquid continuity equation,
we can state that the ion source in the volume 𝑑𝑉 ′

contributes to the ion density at some point 𝑟 > 𝑟′:

𝑑𝑛(𝑟) =
𝜈𝑖𝑛(𝑟

′) 𝑑𝑉 ′

𝑆(𝑟)
√︀

2𝑒(𝜙(𝑟′)− 𝜙(𝑟))/𝑀
. (2)

Here, 𝑀 is the ion mass, and 𝑆(𝑟) = 2𝜋𝑟2. The total
ion density 𝑛(𝑟) can be found by the 𝑑𝑛 integration
over all sources in the interval 0 < 𝑟′ < 𝑟. With the
use of (1), we obtain the integral equation for the ion
density in the bulk plasma:

𝑟 exp (𝑒𝜙(𝑟)/𝑇 ) =

𝑟∫︁
0

𝜈𝑖 exp (𝑒𝜙(𝑟
′)/𝑇 )√︀

2𝑒(𝜙(𝑟′)− 𝜙(𝑟))/𝑀
𝑟′𝑑𝑟′. (3)

Let us introduce the normalized coordinate 𝜉 and the
normalized potential 𝜂 by

𝜉 = 𝑟
𝜈𝑖
𝑢B

, (4)

𝜂 = − 𝜙

𝑇𝑒
, (5)

where 𝑢B =
√︀
2𝑇𝑒/𝑀 is the Bohm velocity. In these

variables, the solution of (3) is expressed as follows:

𝑛 = 𝑛0𝑒
−𝜂, (6)

𝜉 =
√
𝜂

∞∑︁
𝑚=0

𝑎𝑚𝜂𝑚. (7)

One can obtain the same expansions for a sphere or
flat layer, so the coefficients 𝑎𝑚 depend on the bound-
ary shape. It appears that the gradients of the poten-
tial 𝜂 and density 𝑛 tend to infinity, when 𝜉 tends to a
certain value 𝜉0. This coordinate value is interpreted
as the plasma-wall boundary (if the sheath region is
negligibly small). We have

𝑑𝜉

𝑑𝜂

⃒⃒⃒⃒
𝜂0

= 0, 𝜉0 = 𝜉(𝜂0). (8)

The electron temperature can be found from

𝜉0 = 𝑟0
𝜈𝑖(𝑇 )

𝑢B(𝑇 )
(9)

with the chamber radius 𝑟0, value 𝜉0, and dependence
𝜈𝑖(𝑇 ) being given.

3. Construction of the Diffusion Coefficient �̄�

We start from the 1D Langmuir problem and intro-
duce a function �̄�(𝜉) satisfying the equation

− 1

𝜉𝛼
𝑑

𝑑𝜉
𝜉𝛼�̄�

𝑑𝑛

𝑑𝜉
+ 𝑛 = 0, (10)
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where 𝜉 ∈ (0, 𝜉0). Here, 𝛼 = 0, 1, 2 for the flat, cylin-
drical, and spherical cases, respectively, and 𝑛(𝜉) is
determined by (6)–(7). Then the normalized ion flux
density

𝑗(𝜉) = −�̄�
𝑑𝑛

𝑑𝜉
=

1

𝜉𝛼

𝜉∫︁
0

𝑛(𝜉′) 𝜉′𝛼𝑑𝜉′, (11)

and
�̄�(𝜉) = −𝑗

𝑑𝜉

𝑑𝑛
. (12)

Figure 2 illustrates the calculated dependences of
the density, flux, and diffusion coefficient on 𝜉 and
shows that

−𝑗(𝜉0) ≈ 𝑛(𝜉0) (13)

at the boundary 𝜉0.
We consider the approximate equality (13) as the

exact one and impose the boundary condition

�̄�
𝑑𝑛

𝑑𝜉
+ 𝑛

⃒⃒
𝜉0

= 0 (14)

on Eq. (10) to obtain the boundary-value prob-
lem. At least one solution of (10), (14) would coin-
cide with the exact Langmuir solution, if equality (13)
is strict. But (10), (14) has a nonzero solutions only
for a certain value 𝜉0. It is therefore natural to refor-
mulate (10), (14) as the eigenvalue problem. Let the
segment 𝜉 ∈ (0, 𝜉0) can be obtained from an arbitrary
segment 𝑟 ∈ (0, 𝑟0) by

𝜉 =
√
𝜇 𝑟, (15)

where 𝜇 is an unknown constant. Expressions (10)–
(14) pass to

1

𝑟𝛼
𝑑

𝑑𝑟
𝑟𝛼�̄�(

√
𝜇 𝑟)

𝑑𝑛

𝑑𝑟
+ 𝜇𝑛 = 0, (16)

�̄�(
√
𝜇 𝑟)

𝑑𝑛

𝑑𝑟
+
√
𝜇𝑛

⃒⃒
𝑟0

= 0. (17)

One of the harmonics of the spectrum of this non-
linear eigenvalue problem “nearly” coincides with the
exact Langmuir solution (the deviation is caused only
by (13)). It is reasonable to consider the fundamen-
tal harmonic as this one, because the plasma density
does not tend to zero.

Relations (9) and (15) yield the following expres-
sion to determine the temperature:

√
𝜇 =

𝜈𝑖(𝑇 )

𝑢B(𝑇 )
. (18)

Fig. 2. Dependences 𝑛𝛼(𝜉), |𝑗𝛼(𝜉)|, and 𝐷𝛼(𝜉) for 𝛼 = 0, 1, 2

Relations (16)–(17) cover all the domains Ω𝑚 with
the same shape, but with different sizes 𝑟0,𝑚. The
corresponding eigenvalues √

𝜇𝑚 are the such that
√
𝜇1𝑟0,1 =

√
𝜇2𝑟0,2 = ... = 𝜉0. (19)

So, since the diffusion coefficients depend on the coor-
dinate 𝑟𝑚 as �̄�(

√
𝜇𝑚𝑟𝑚), all the distributions of the

�̄� over the corresponding domains Ω𝑚 are the same:

�̄�(𝑟1) = �̄�(𝑟2) = ... . (20)

The diffusion coefficient �̄� still depends on 𝛼. Now,
we will try to make this dependence implicit by ex-
pressing �̄� via a certain variable, which must be
determined for arbitrary flat layers, cylinders, and
spheres in some uniform manner.

Due to (14), the equality �̄�(𝑟) = 0 should be satis-
fied on the boundaries, because the density gradient
tends to infinity, whereas the ion flux is fixed. This
suggests that �̄� depends on the solution 𝑓 of the
eigenvalue problem. Let us consider that

1

𝑟𝛼
𝑑

𝑑𝑟
𝑟𝛼

𝑑𝑓

𝑑𝑟
+ 𝜆𝑓 = 0, (21)

𝑓 |𝜕Ω = 0, (22)

where 𝑓 is the main harmonic of the problem, and 𝜆
is the corresponding eigenvalue. We will normalize 𝑓
so that max(𝑓) = 1 in order that �̄�(𝑓) be consistent
with condition (20).

One can see from Fig. 3 that �̄� takes one of three
different values at the certain 𝑓 depending on 𝛼

ISSN 2071-0186. Ukr. J. Phys. 2017. Vol. 62, No. 1 35



N.A. Azarenkov, A.V. Gapon, S.V. Dudin

Fig. 3. �̄� versus the normalized eigenfunctions 𝑓 for a layer,
cylinder, and sphere

Fig. 4. Curves of �̄�(𝑓, 𝑔) for a layer, cylinder, and tailoring
surface built by (25)

and, therefore, cannot depend on 𝑓 only. Let us con-
sider the derivative 𝑔 = |𝑑𝑓/(𝑑𝑟

√
𝜆)| along with 𝑓 ,

which is a linearly independent function. The curves
�̄�(𝑓, 𝑔) for 𝛼 = 1, 2, 3 are presented in Fig. 4. If
we interpolate in between and extrapolate outside of
these curves, we can expect to obtain �̄� for any do-
main. Such approximation must obey the following
conditions:

�̄�(𝑓, 𝑔) −→
𝑔→∞

0, (23)

�̄�(0, 𝑔) = 0. (24)

We approximate �̄�(𝑓, 𝑔) as follows:

�̄�(𝑓, 𝑔) = 𝑎(𝑓) exp (−𝑔 (𝑝(𝑓) 𝑔 + 𝑞(𝑓))). (25)

The coefficients 𝑎(𝑓), 𝑝(𝑓), and 𝑞(𝑓) are chosen so
that �̄�(𝑓, 𝑔) takes correct values for all three 1D prob-
lems (see Fig. 3).

It should be emphasized that the approximation of
the diffusion coefficient could be done in many dif-
ferent ways. In order to choose the optimal form of
the approximation, we tried numerous variants. The
verification has shown that (25) provides the lowest
deviation from PIC simulation results.

4. Algorithm

Let us consider the main idea of obtaining the solu-
tion in an arbitrary 3D domain. The problem is for-
mulated by analogy with (16)–(17):

∇�̄�∇𝑛+ 𝜇𝑛 = 0, (26)

N�̄�∇𝑛+
√
𝜇𝑛|𝜕Ω = 0. (27)

The domain Ω is the volume filled with a plasma,
amd the vector N is the outer boundary normal of
the domain Ω. The eigenvalue 𝜇 is unknown. Due to
the nonlinear boundary condition, we propose the fol-
lowing iteration process:

∇�̄�∇𝑛+ 𝜇𝑗𝑛 = 0, (28)

N�̄�∇𝑛+
√
𝜇𝑗−1𝑛

⃒⃒
𝜕Ω

= 0, (29)

where 𝑗 is the iteration number. In the first iteration
(𝑗 = 1), we assume 𝜇0 = 1 in the boundary condition
and obtain the eigenvalue 𝜇1 by solving of the linear
eigenvalue problem. In the second iteration (𝑗 = 2),
we fix 𝜇1 in the boundary condition and obtain the
next approximation to the eigenvalue, 𝜇2, and so
on. Iterations stop when the deviation |𝜇𝑗 − 𝜇𝑗−1| is
small enough. This scheme converges readily for any
initial 𝜇.

The diffusion coefficient is calculated by (25). The
variables 𝑓, 𝑔 are found only once from the main har-
monic 𝑓 of the boundary-value problem:

△𝑓 + 𝜆𝑓 = 0, (30)

𝑓 |𝜕Ω = 0, (31)

max(𝑓) = 1, (32)

𝑔 = |∇𝑟
√
𝜆𝑓 |. (33)

The discharge temperature can be obtained
from (18).
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5. Results and Discussion

The comparison of the results using the described
method with the PIC method with Monte-Carlo col-
lisions [8, 9] was performed for the verification. The
ICP discharge in argon at a pressure of 0.2 mTorr
sustained in the cylindrical chamber with a radius of
10 cm and a height of 20 cm was simulated. The 2D
simulation in cylindrical coordinates was performed
on a 100×100 uniform rectangular grid. The equilib-
rium electron temperature was 8 eV, the time steps
were 10−10 s for electrons and 10−8 s for ions. The
neutral gas temperature was set to be 0.03 eV. One
macroparticle contained 2 × 106 particles. The total
number of macroparticles was up to 5× 105.

The discrepancy between the solutions was about
1% inside the domain and reach 5% at the bound-
ary. In order to test our method with more compli-
cated boundary shapes a diaphragm or a needle were
placed inside. The diaphragm is perpendicular to the
cylinder axis (Fig. 5), and the needle is placed along
the cylinder axis (Fig. 6). Plasma density distribu-
tions obtained by these methods are shown in Figs. 5,
6. The distributions are normalized to the maximal
value. Generally, the heuristic method gives the den-
sity values less than the PIC method does. The devi-
ation is .5% inside the domain and reaches maximal
value on the domain boundary. The worst deviation
up to ∼70% appears only in a little region near the
needle tip.

Fig. 5. Plasma density distributions in a cylinder with di-
aphragm: obtained by the heuristic method (𝑛dif) and by the
PIC method (𝑛pic)

Fig. 6. The same as in Fig. 5 for a cylinder with needle

Fig. 7. Points (𝑓, 𝑔) where �̄�(𝑓, 𝑔) was calculated; for the
configuration in Fig. 5

The calculation of �̄� is performed at the nodes
of a triangular grid built for a numerical solution
of the diffusion equation and demands the defini-
tion of a pair (𝑓𝑖, 𝑔𝑖) at each node 𝑖. The distri-
bution of the points (𝑓𝑖, 𝑔𝑖) is shown in Figs. (7)–
(8) together with the curves 𝑓(𝑔) for 1D solu-
tions. We conclude that large deviations of the den-
sity are caused by extrapolation errors and arise
near the boundary, where the derivative values are
high enough, and the nonstrict condition (13) is
used.
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Fig. 8. The same as in Fig. 7 for the configuration in Fig. 6

The electron temperature has been found from (18)
and is less than the temperature obtained within the
PIC method by 10–15%, while the ionization fre-
quency 𝜈𝑖(𝑇 ) is the same in both cases.

6. Conclusion

In this paper, we have formulated the task of reducing
the 3D Langmuir problem in an arbitrary domain to
the boundary value problem for diffusion-type equa-
tions. We have proposed a heuristic method of such
transformation based on the diffusion coefficient tai-
loring. The verification of the method by the com-
parison of the results with those of a PIC simulation
shows a satisfactory accuracy for the enough compli-
cated domains. Thus, the method can be used for the
plasma simulation in industrial devices. At the same
time, the mathematical justification of the described
method requires a further research.
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ЕВРИСТИЧНИЙ РОЗВ’ЯЗОК
ЗАДАЧI ЛЕНГМЮРА В ДОВIЛЬНIЙ ОБЛАСТI

Р е з ю м е

Задачу Ленгмюра для плазми без зiткнень було сформульо-
вано та розв’язано для деяких простих областей у 1921 р.,
але для складнiших випадкiв досi немає ефективних мето-
дiв за винятком прямого моделювання. Ми пропонуємо но-
вий метод, що можна застосувати для областей довiльної
форми. Метод оснований на розв’язку добре вiдомих задач
на власнi значення для рiвнянь дифузiйного типу. Порiв-
няння тестових розв’язкiв з отриманими методом частинок
у комiрках показало прийнятну точнiсть, незважаючи на
брак теоретичного обґрунтування методу.
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