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INVERSE SQUARE POTENTIAL IN A SPACE
WITH SPIN NONCOMMUTATIVITY OF COORDINATESPACS 02.40.Gh, 03.65.-w

An attractive inverse square potential has been considered in a space with the spin noncom-
mutativity of coordinates. The corresponding effective potential energy, as well as the total
energy, is shown to be bounded from below. Using the variational method, the upper limit of
the ground-state energy, which turns out to be negative for a sufficiently large coupling con-
stant, is found. As a result, it is proved that the inverse square potential creates stationary
levels in the space concerned, unlike the case of commutative space, where a particle falls to
the center.
K e yw o r d s: inverse square potential, noncommutativity.

1. Introduction

The concept of noncommutative coordinates has
been actively developing since the corresponding re-
searches in the string theory, where it was shown that
the coordinates on a D-brane in a magnetic field do
not commute [1]. Furthermore, the coordinate non-
commutativity also appears at the compactifaction
of some variants of the M-theory [2]. In those prob-
lems, there emerges a coordinate commutator that
looks like

[𝑋𝑖, 𝑋𝑗 ] = 𝑖𝜃𝑖𝑗 , (1)

where 𝜃𝑖𝑗 is an antisymmetric constant matrix.
It is of interest that a concept of minimum length,

which arises at the quantum consideration of a grav-
itational field [3], can be included into commutative
theories with the help of noncommutativity. One of
the largest problems with relation (1) is its non-
invariant character with respect to rotations. Some
ways to construct noncommutative rotation-invariant
algebras are known [3–6]. Another approach includes
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the algebras with spin noncommutativity of coordi-
nates, where spatial coordinates are mixed up with
spin operators.

For instance, in work [7], noncommutative coordi-
nates were proposed that are formed by adding the
spin operators 𝑋𝑖 = 𝑥𝑖 + 𝜃𝑠𝑖 to commutative coordi-
nates. The corresponding algebra reads

[𝑋𝑖, 𝑋𝑗 ] = 𝑖𝜃2𝜀𝑖𝑗𝑘𝑠
𝑘, [𝑋𝑖, 𝑃𝑗 ] = 𝑖~𝛿𝑖𝑗 ,

[𝑋𝑖, 𝑠𝑗 ] = 𝑖𝜃𝜀𝑖𝑗𝑘𝑠
𝑘, [𝑠𝑖, 𝑠𝑗 ] = 𝑖~𝜀𝑖𝑗𝑘𝑠𝑘,

[𝑃𝑖, 𝑃𝑗 ] = 0, [𝑃𝑖, 𝑠𝑗 ] = 0.

(2)

It can be generalized onto the relativistic case by
shifting the coordinates by the Dirac matrices: 𝑋𝜇 =
= 𝑥𝜇 + 𝑖𝜃𝛾𝜇 [8]. It is easy to see that the coordinates
introduced in such a way are Lorentz-invariant.

Another type of spin noncommutativity can be
obtained by adding the Pauli–Lubanski vector to
the coordinates: 𝑋𝜇 = 𝑥𝜇 + 𝜃𝑊𝜇, where 𝑊𝜇 =
= 1

2𝜀
𝜇𝜈𝜌𝜎𝑆𝜈𝜌𝑝𝜎 and 𝑆𝜈𝜌 = 𝑖

4 [𝛾𝜈 , 𝛾𝜌] [9, 10]. This alge-
bra is also invariant (Lorentz-invariant) with respect
to rotations and possesses the minimum length.

The inverse square potential was studied in the lit-
erature from various viewpoints. The corresponding
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interest is caused, on the one hand, by the realiza-
tion of this potential in various systems, in particular,
the Efimov effect [11], neutral atoms in the field of a
charged wire [12–14], a magnetic moment in the field
of a thin solenoid [15], a substance near the black
hole horizon [16–19], an electron in the field of a
molecule-dipole [20–23], and so forth. On the other
hand, the inverse square potential allows a particle
to fall to the attraction center [24]. In the quantum-
mechanical case, it can be demonstrated that the
mean ⟨𝑟2⟩ evolves following the law

⟨𝑟2⟩ = ⟨𝑟2⟩0 +
⟨rp+ pr⟩

𝑚
𝑡+

2⟨𝐻⟩
𝑚

𝑡2, (3)

so that if ⟨𝐻⟩ < 0 , the particle will fall to the center,
i.e. ⟨𝑟2⟩𝑡𝑓 = 0, after a certain finite time interval [25].

In a space with the generalized uncertainty prin-
ciple and noncommutative coordinates, the potential
−𝛾/𝑅2 is regularized, and there arise stationary lev-
els instead of the falling [26]. Bound states also arise
in the space with the minimum length [27].

In this work, we consider the influence of non-
commutativity (2) on the behavior of a particle lo-
cated in an inverse square potential. This noncommu-
tativity effectively appears in systems with a strong
dipole-dipole interaction, e.g., the Bose condensate
of 52Cr [7]. In addition, algebra (2) makes it pos-
sible to explain the triplet Cooper pairing mecha-
nism [28]. Noncommutativity (2) is responsible for
the anisotropy of the Aharonov–Bohm effect [29] and
eliminates the degeneration of hydrogen atom levels
in the orbital quantum number [30].

The structure of the present work is as follows. In
Section 2, the examined algebra is shown to really
possess the minimum length, and an expression for
the Hamiltonian of a particle in an inverse square
potential in a space with spin noncommutativity is
found. In Section 3, the effective potential energy and
the particle total energy in this potential are demon-
strated to be bounded from below. In Section 4, the
variational method is used to determine the upper
limit for the ground state 4. Conclusions can be found
at the end of the paper.

2. Inverse Square Potential
in Noncommutative Space

Let us consider an inverse square potential in a non-
commutative space with algebra (2). We intend to

demonstrate that there is a minimum length in this
space. Really, let us determine the eigenvalues of the
operator̂︀𝑅2 = 𝑟2 + ~𝜃(r,𝜎) +

3

4
(~𝜃)2. (4)

Depending on the spin direction, they equal

𝑅2
± =

(︂
𝑟 ± ~𝜃

2

)︂2
+

(~𝜃)2

2
. (5)

The minimum eigenvalue is obtained at 𝑟 = ~𝜃/2 and
the sign “−”, so that 𝜆2min = (~𝜃)2/2. Since the mean
value of any operator in any state cannot be less than
its minimum eigenvalue, in particular,

⟨𝑅2⟩ ≥ 𝜆2min =
(~𝜃)2

2
, (6)

we obtain that it is impossible to create a state with
the localization in a region with linear sizes smaller
than 𝜆min = ~𝜃/

√
2; therefore, the quantity 𝜆min is a

minimum length in the space with algebra (2).
It is intuitively clear that a fall to a point-like center

in a space with a nonzero minimum length is impos-
sible. Let us prove this rigorously. Let us postulate
that the problem is formulated in a noncommutative
space by substituting noncommutative coordinates 𝑋
instead of commutative ones 𝑥 in the commutative-
problem Hamiltonian 𝐻(𝑥, 𝑝). For instance, for the
inverse square potential in a space with algebra (2),
we have

𝐻 =
p2

2𝑚
− 𝛾

𝑅2
=

𝑝2𝑟
2𝑚

+
̂︀𝐿2

2𝑚𝑟2
−

− 𝛾

𝑟2 + 𝜃𝑟(n,𝜎) + 3𝜃2/4
, (7)

where 𝑝𝑟 = − 𝑖~
𝑟 𝜕𝑟𝑟 is the radial part of the mo-

mentum operator, ̂︀𝐿 the angular momentum, and
n = r/𝑟.

For further calculations, it is convenient to intro-
duce the dimensionless coordinates, 𝑟 = 𝜃𝑥/2, and
Hamiltonian,

ℎ =
𝐻

𝐻0
= − 1

𝑥

𝜕2

𝜕𝑥2
𝑥+

̂︀𝑙2
𝑥2

− ̃︀𝛾
𝑥2 + 2𝑥(n,𝜎) + 3

, (8)

where ̂︀𝑙2 = ̂︀𝐿2/~2, ̃︀𝛾 = 𝛾/ ~2

2𝑚 , and 𝐻0 = 2~2

𝑚𝜃2 .
Hence, the noncommutativity regularizes the poten-
tial. Therefore, the energy should be bounded from
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below. Really, since algebra (2) possesses the min-
imum length (6) and the kinetic energy is positive
define, we obtain

⟨ℎ⟩ ≥ −
⟨ ̃︀𝛾
𝑋2

⟩
≥ − ̃︀𝛾

𝜆2min

= − ̃︀𝛾
2𝜃2

. (9)

In the next section, we will improve the lower en-
ergy estimation by making allowance for the centrifu-
gal term in the kinetic energy. In addition, we will
demonstrate that Hamiltonian (7) really possesses
bound states. For this purpose, it is enough to show
that the ground state of this Hamiltonian has a finite
negative energy.

3. Lower Estimate
of the Ground-State Energy

Let us improve the lower estimate (9) of the ground-
state energy by considering the centrifugal term in
the kinetic energy. For this purpose, it is convenient
to multiply the potential energy operator by the con-
jugate denominator and rewrite Hamiltonian (8) in
the form

ℎ = − 1

𝑥

𝜕2

𝜕𝑥2
𝑥+

̂︀𝑙2
𝑥2

− ̃︀𝛾 𝑥2 + 3− 2𝑥(n,𝜎)

𝑥4 + 2𝑥2 + 9
. (10)

In this Hamiltonian, the spin and angular variables
are separated, and the spin-angular equation is solved
exactly in the form of a linear combination of spher-
ical spinors Ω𝑗,𝑙,𝑚(𝜃, 𝜙) [31]:

𝜓 = 𝑅+Ω𝑗,𝑗+1/2,𝑚 +𝑅−Ω𝑗,𝑗+1/2,𝑚 =

(︂
𝑅+

𝑅−

)︂
. (11)

Taking into consideration that spherical spinors are
eigenfunctions of the squared angular momentum op-
erator, we have

̂︀𝑙2Ω𝑗,𝑙,𝑚 = 𝑙(𝑙 + 1)Ω𝑗,𝑙,𝑚, (12)

and the action of the operator (n,𝜎) on spherical
spinors looks like

(n,𝜎)Ω𝑗,𝑗±1/2,𝑚 = ∓𝑖Ω𝑗,𝑗∓1/2,𝑚. (13)

Let us seek the effective potential energy ̃︀𝑈(𝑥) for the
radial Schrödinger equation in the spherical spinor
representation in the matrix form:

̃︀𝑈(𝑥) =

(︂
𝐼𝑗+1/2 − 𝑉1 −𝑖𝑉2

𝑖𝑉2 𝐼𝑗−1/2 − 𝑉1

)︂
, (14)

where 𝑉1 = −̃︀𝛾 𝑥2+3
𝑥4+2𝑥2+9 , 𝑉2 = −̃︀𝛾 2𝑥

𝑥4+2𝑥2+9 , and 𝐼𝑙 =
= 𝑙(𝑙 + 1)/𝑥2.

Since the kinetic energy operator is positively de-
fined, it is evident that

𝜀 ≥ ⟨𝜓|̃︀𝑈 |𝜓⟩ ≥ 𝑈0, (15)

where 𝑈0 is the minimum eigenvalue of the effective
potential energy operator (14). Let us find the min-
imum eigenvalue 𝑈(𝑥) for matrix (14). It is reached
at 𝑗 = 1/2 and is equal to

𝑈(𝑥) = 𝑉1 +
1

𝑥2
−
√︂

1

𝑥4
+ 𝑉 2

2 . (16)

Minimizing expression (16) as a function of 𝑥, we ob-
tain 𝑈0 = min𝑈(𝑥), which, according to Eq. (15), is
the lower estimate of the particle energy:

𝜀low(̃︀𝛾) = 𝑈0. (17)

The corresponding calculations give the following
values for this quantity: 𝜀low(̃︀𝛾 = 1) ≈ −0.3482,
𝜀low(̃︀𝛾 = 10) ≈ −4.3475, and 𝜀low(̃︀𝛾 = 100) ≈
≈ −49.0618. The dependence 𝜀low(̃︀𝛾) is plotted in
Figure. Note that, for real experiments with the po-
tential −𝛾/𝑟2, the value of ̃︀𝛾 has an order of 100 [14].

4. Upper Estimate
of the Ground-State Energy

The boundedness of the potential energy from below
does not yet guarantee the presence of bound states,
because the potential well may turn out too shallow
or narrow for the bound levels to be formed. In or-
der to demonstrate that they do exist, let us apply
the variational method to show that the ground-state
energy is really negative.

Let us choose the trial wave function in the form

𝜓(𝑥, 𝜃, 𝜙) = 𝐶𝑒−𝛼𝑥/2

(︂
𝑥Ω1/2,1,0 + 𝑖

𝛽

𝛼
Ω1/2,0,0

)︂
, (18)

where 𝛼 and 𝛽 are dimensionless variational param-
eters, and 𝐶 the normalization constant. The linear
combination of spherical spinors in Eq. (18) is selected
as in the exact solution of the angular Schrödinger
equation with Hamiltonian (10). The exponential fac-
tor in Eq. (18) provides a correct asymptotics for the
radial wave function at infinity, and the correspond-
ing power exponent 𝑥 provides a correct asymptotics
at the center.
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Dependences of the lower (𝜀low, dashed curve) and upper (𝜀up,
dotted curve) estimates for the ground-state energy on the cou-
pling constant ̃︀𝛾. The vertical line at ̃︀𝛾0 ≈ 0.6084 corresponds
to the threshold value of the coupling constant: the upper es-
timate of the ground-state energy is positive at ̃︀𝛾 < ̃︀𝛾0 and
negative at ̃︀𝛾 > ̃︀𝛾0. A true value of the ground-state energy is
located between the upper and lower curves

From the normalization condition
∞∫︁
0

𝑑𝑥

𝜋∫︁
0

𝑑𝜃

2𝜋∫︁
0

𝑑𝜙𝑥2 sin 𝜃|𝜓|2 = 1

with regard for the orthogonality of spherical spinors,

𝜋∫︁
0

𝑑𝜃

2𝜋∫︁
0

𝑑𝜙 sin 𝜃Ω†
𝑗𝑙𝑚Ω𝑗′𝑙′𝑚′ = 𝛿𝑗𝑗′𝛿𝑙𝑙′𝛿𝑚𝑚′ ,

we obtain the normalization constant |𝐶|2 = 𝛼5/
/(24 + 2𝛽2).

Taking Eq. (12) into consideration, the mean ki-
netic energy for the wave function (18) can be easily
calculated:⟨
− 1

𝑥

𝜕2

𝜕𝑥2
𝑥+

̂︀𝑙2
𝑥2

⟩
=
𝛼2

4
. (19)

At the same time, it is difficult to calculate the mean
potential energy analytically. Therefore, let us make
some transformations in the potential. For this pur-
pose, let us multiply both the numerator and denom-
inator of the fraction by the conjugate denominator:

− ̃︀𝛾
𝑥2 + 2𝑥(n,𝜎) + 3

= −̃︀𝛾 𝑥2 + 3− 2𝑥(n,𝜎)

(𝑥2 + 3)2 − 4𝑥2
. (20)

Since we are interested in the upper estimate for the
ground-state energy, the potential of the system can
be substituted by a potential that is larger at every
point 𝑥:

−̃︀𝛾 𝑥2 + 3− 2𝑥(n,𝜎)

(𝑥2 + 3)2 − 4𝑥2
≤ −̃︀𝛾 𝑥2 + 3− 2𝑥(n,𝜎)

(𝑥2 + 3)2
. (21)

The integrals that arise when calculating ⟨𝑈⟩ can be
found analytically:
∞∫︁
0

𝑑𝑥
𝑥𝑛𝑒−𝛼𝑥

(𝑥2 + 𝑏)𝑚+1
=

(−1)𝑚+𝑛

𝑚!

𝑑𝑛

𝑑𝛼𝑛

𝑑𝑚

𝑑𝑏𝑚

∞∫︁
0

𝑑𝑥
𝑒−𝛼𝑥

𝑥2 + 𝑏
.

The integral on the right-hand side equals [32]
∞∫︁
0

𝑑𝑥
𝑒−𝛼𝑥

𝑥2 + 𝑏
=

1√
𝑏
𝑓(
√
𝑏𝛼), (22)

where 𝑓(𝑥) = ci𝑥 sin 𝑥 − si𝑥 cos 𝑥, and ci𝑥 and si𝑥
are the integral cosine and sine, respectively.

Hence, in view of Eq. (13) and the equality

𝑑2

𝑑𝛼2
𝑓(
√
𝑏𝛼) =

√
𝑏

𝛼
− 𝑏𝑓(

√
𝑏𝛼), (23)

we obtain the upper estimate for the mean potential
energy,

⟨𝑈⟩ ≤ −̃︀𝛾
2

𝑎𝛽2 + 𝑏𝛽 + 𝑐

12 + 𝛽2
, (24)

where 𝑎 = 1 −
√
3𝛼𝑓 , 𝑏 = 4𝑎 − 4

√
3𝛼2𝑓 − 6𝑎3𝑓 ′,

𝑐 = 2 − 3𝛼 + 3
√
3𝛼3𝑓 , 𝑓 = 𝑓(

√
3𝛼), and 𝑓 ′ =

= 𝑑/𝑑𝛼𝑓(
√
3𝛼). For the mean value for Hamiltonian

(8), we obtain

⟨ℎ⟩ ≤ 𝐸(𝛼, 𝛽) =
𝛼2

4
− ̃︀𝛾

2

𝑎𝛽2 + 𝑏𝛽 + 𝑐

12 + 𝛽2
. (25)

Its minimization with respect to the parameter 𝛽
gives

𝛽 =
12𝑎− 𝑐

𝑏
±

√︃(︂
12𝑎− 𝑐

𝑏

)︂2
+ 12. (26)
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In order to minimize Eq. (25) with respect to the
parameter 𝛼, we have to solve a complicated tran-
scendental equation, which cannot be done analyt-
ically. Numerical calculations give the following es-
timates for the ground-state energy: 𝜀up(̃︀𝛾 = 1) ≈
≈ −0.0037, 𝜀up(̃︀𝛾 = 10) ≈ −1.0753, and 𝜀up(̃︀𝛾 =
= 100) ≈ −13.0336. The dependence 𝜀up(̃︀𝛾) is ex-
hibited in Figure. A true value of the ground-state
energy is located between the upper and lower plots.

There is a threshold value, ̃︀𝛾0 ≈ 0.6084, below
which the variational method gives positive values for
the ground-state energy, so one cannot talk about the
presence of bound states. However, if ̃︀𝛾 > ̃︀𝛾0, the up-
per estimate of the ground-state energy is negative,
which proves the existence of bound states for the
inverse square potential in the space with spin non-
commutativity.

5. Conclusions

In this work, the attractive inverse square poten-
tial −𝛾/𝑅2 in a space with the spin noncommuta-
tivity of coordinates [Eq. (2)] is considered. The min-
imum length for this algebra is calculated: 𝜆min =
= ~𝜃/

√
2. The effective potential energy (14) for the

radial motion of a particle in the ground state in
the inverse square potential is determined. The cor-
responding value is found to be bounded from below,
which testifies that the ground-state energy is also
bounded from below. Using the variational method,
it is shown that, if the coupling constant 𝛾/ ~2

2𝑚 '
' 0.6084, the corresponding estimated value for the
energy is negative. Hence, it is proved that if the cou-
pling constant in a noncommutative space is large
enough, the minimum energy of a particle in the in-
verse square potential has a finite negative value. As
a result, bound states can be formed, unlike the com-
mutative case, when the particle falls to the center.
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ОБЕРНЕНО КВАДРАТИЧНИЙ
ПОТЕНЦIАЛ У ПРОСТОРI ЗI СПIНОВОЮ
НЕКОМУТАТИВНIСТЮ КООРДИНАТ

Р е з ю м е

Розглянуто притягальний обернено квадратичний потенцi-
ал у просторi зi спiновою некомутативнiстю координат. По-
казано, що для такого потенцiалу ефективна потенцiальна,
а отже i повна, енергiя обмежена знизу. За допомогою ва-
рiацiйного методу знайдено верхню границю енергiї основ-
ного стану, яка для достатньо великих констант зв’язку є
вiд’ємною. Таким чином доведено, що замiсть падiння на
притягальний центр в комутативному просторi, в обернено
квадратичному потенцiалi в просторi зi спiновою некомута-
тивнiстю утворюються стацiонарнi рiвнi.
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