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The metabolic process in a cell is modeled with the use of the Fourier transformation. The
histograms of the invariant measures of chaotic attractors are constructed. In particular, a
scenario of adaptation of the metabolic process under a change in the dissipation of a kinetic
membrane potential and the sequence of the modes of self-organization and deterministic chaos
are determined. Respectively, the spectral mapping of the attractors of these modes is consid-
ered. The structural-functional connections of the metabolic process in a cell as an integral
dissipative system are analyzed.
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1. Introduction

In what follows, we will study the earlier constructed
mathematical model of the metabolic process in a
cell [1–19]. The model is based on the experimental
data concerning bacteria Arthrobacter globiformis at
a transformation of steroids [20]. This microorgan-
ism is referred to oxygen-breathing bacteria arising
2.48 bln years ago. Due to the evolution of metabolic
processes in protobionts, the transition from the oxy-
genless life of microorganisms to oxygen-breathing
bacteria and their subsequent evolution to eukaryotes
happened. The relative simplicity of the metabolic
process running in given bacteria (the absence of the
Krebs cycle, e.g.) allows us to model the metabolic
process in a cell on the whole as an open dissipative
structure, in which two following basic systems nec-
essary for the life are self-organized: the system of a
transformation of the substrate and the respiratory
chain. We will consider the specific biochemical pro-
cess of transformation of steroids by the given type of
cells [2, 3]. This enables us to use the experimentally
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determined parameters in the construction of a model
and to make conclusion about structural-functional
connections under the self-organization of the given
biosystem. If some other substrate is used as a nutri-
ent medium, the mechanism of self-organization of a
cell will be analogous.

2. Mathematical Model

The mathematical model of the metabolic process in
a cell is constructed according to the general scheme
of the process of transformation of steroids by given
cells (see Fig. 1) and takes the form (1)–(10):

𝑑𝐺

𝑑𝑡
=

𝐺0

𝑁3 +𝐺+ 𝛾2𝜓
− 𝑙1𝑉 (𝐸1)𝑉 (𝐺)− 𝛼3𝐺, (1)

𝑑𝑃

𝑑𝑡
= 𝑙1𝑉 (𝐸1)𝑉 (𝐺)− 𝑙2𝑉 (𝐸2)𝑉 (𝑁)𝑉 (𝑃 )−𝛼4𝑃, (2)

𝑑𝐵

𝑑𝑡
= 𝑙2𝑉 (𝐸2)𝑉 (𝑁)𝑉 (𝑃 )− 𝑘1𝑉 (𝜓)𝑉 (𝐵)−𝛼5𝐵, (3)

𝑑𝐸1

𝑑𝑡
= 𝐸10

𝐺2

𝛽1 +𝐺2

(︂
1− 𝑃 +𝑚𝑁

𝑁1 + 𝑃 +𝑚𝑁

)︂
−

− 𝑙1𝑉 (𝐸1)𝑉 (𝐺) + 𝑙4𝑉 (𝑒1)𝑉 (𝑄)− 𝑎1𝐸1, (4)
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𝑑𝑒1
𝑑𝑡

= −𝑙4𝑉 (𝑒1)𝑉 (𝑄) + 𝑙1𝑉 (𝐸1)𝑉 (𝐺)− 𝛼1𝑒1, (5)

𝑑𝑄

𝑑𝑡
= 6𝑙𝑉 (2−𝑄)𝑉 (𝑂2)𝑉

(1)(𝜓)− 𝑙6𝑉 (𝑒1)𝑉 (𝑄)−

− 𝑙7𝑉 (𝑄)𝑉 (𝑁), (6)

𝑑𝑂2

𝑑𝑡
=

𝑂20

𝑁5 +𝑂2
− 𝑙𝑉 (2−𝑄)𝑉 (𝑂2)𝑉

(1)(𝜓)− 𝛼7𝑂2,

(7)
𝑑𝐸2

𝑑𝑡
= 𝐸20

𝑃 2

𝛽2 + 𝑃 2

𝑁

𝛽 +𝑁

(︂
1− 𝐵

𝑁2 +𝐵

)︂
−

− 𝑙10𝑉 (𝐸2)𝑉 (𝑁)𝑉 (𝑃 )− 𝛼2𝐸2, (8)

𝑑𝑁

𝑑𝑡
= −𝑙2𝑉 (𝐸2)𝑉 (𝑁)𝑉 (𝑃 )− 𝑙7𝑉 (𝑄)𝑉 (𝑁)+

+ 𝑘2𝑉 (𝐵)
𝜓

𝐾10 + 𝜓
+

𝑁0

𝑁4 +𝑁
− 𝛼6𝑁, (9)

𝑑𝜓

𝑑𝑡
= 𝑙5𝑉 (𝐸1)𝑉 (𝐺) + 𝑙8𝑉 (𝑁)𝑉 (𝑄)− 𝛼𝜓, (10)

where 𝑉 (𝑋) = 𝑋/(1 + 𝑋), 𝑉 (1)(𝜓) = 1/(1 + 𝜓2),
𝑉 (𝑋) is a function describing the adsorption of the
enzyme in the region of a local coupling, and 𝑉 (1)(𝜓)
is a function characterizing the influence of the kinetic
membrane potential on the respiratory chain.

In the modeling, it is convenient to use the follow-
ing dimensionless parameters: 𝑙 = 𝑙1 = 𝑘1 = 0.2;
𝑙2 = 𝑙10 = 0.27; 𝑙5 = 0.6; 𝑙4 = 𝑙6 = 0.5; 𝑙7 = 1.2;
𝑙8 = 2.4; 𝑘2 = 1.5; 𝐸10 = 3; 𝛽1 = 2; 𝑁1 = 0.03;
𝑚 = 2.5; 𝛼 = 0.033; 𝑎1 = 0.007; 𝛼1 = 0.0068;
𝐸20 = 1.2; 𝛽 = 0.01; 𝛽2 = 1; 𝑁2 = 0.03; 𝛼2 = 0.02;
𝐺0 = 0.019; 𝑁3 = 2; 𝛾2 = 0.2; 𝛼5 = 0.014;
𝛼3 = 𝛼4 = 𝛼6 = 𝛼7 = 0.001; 𝑂20 = 0.015; 𝑁5 = 0.1;
𝑁0 = 0.003; 𝑁4 = 1; 𝐾10 = 0.7.

Equations (1)–(9) present the changes in the con-
centrations of: (1) hydrocortisone (𝐺); (2) predniso-
lone (𝑃 ); (3) 20𝛽-oxyderivative of prednisolone (𝐵);
(4) oxidized form of 3-ketosteroid-Δ′-dehydrogenase
(𝐸1); (5) reduced form of 3-ketosteroid-Δ′-dehydro-
genase (𝑒1); (6) oxidized form of the respiratory chain
(𝑄); (7) oxygen (𝑂2); (8) 20𝛽-oxysteroid-dehydro-
genase (𝐸2); and (9) NAD·𝐻 (reduced form of nicoti-
namide adenine dinucleotide) (𝑁). Equation (10) de-
scribes the change in a level of the kinetic membrane
potential (𝜓).

The reduction of parameters of the system to the
dimensionless form was performed in [2, 3].

The presented mathematical model (1)–(10) is
studied within the theory of nonlinear differential

Fig. 1. General scheme of the metabolic process in a cell

equations [21, 22] and the methods of simulation of
biochemical systems developed by the author and
other researchers in [23–52].

This autonomous system of nonlinear differential
equations was solved by the Runge–Kutta–Merson
method. The exactness of a solution was set to
be 10−12. To ensure the reliability of calculations,
namely, the passage of the system from the transient
initial phase to the asymptotic solution presented by
an attractor, the duration of calculations was taken
to be 105. In that time, the trajectory “sticks” to the
corresponding attractor.

The spectral analysis of the nonlinear dynamics of a
metabolic process was carried out by the expansion of
the functions describing the kinetics of the system in
a trigonometric Fourier series in one of the variables
(𝐺). Since we consider the autoperiodic trajectories
of regular attractors and strange attractors possess-
ing the fractality, the expansion was performed on the
segment [−𝑙; 𝑙]. This means that the arbitrarily large
period of any autooscillatory mode of the system can
be placed on the taken segment 2𝑙 in length. The for-
mula of such expansion in a Fourier series reads [53]:

𝑎0 +

∞∑︁
𝑛=1

(︁
(𝑎𝑛 cos

𝑛𝜋𝑥

𝑙
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝑙

)︁
,

where

𝑎0 =
1

2𝑙

𝑙∫︁
−𝑙

𝑓(𝑥)𝑑(𝑥), 𝑎𝑛 =
1

𝑙

𝑙∫︁
−𝑙

𝑓(𝑥) cos
𝑛𝜋𝑥

𝑙
𝑑(𝑥),

𝑏𝑛 =
1

𝑙

𝑙∫︁
−𝑙

𝑓(𝑥) sin
𝑛𝜋𝑥

𝑙
𝑑(𝑥), 𝑛 ∈ 𝑁.
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Fig. 2. Summary plot of the kinetics of the variable 𝐺 in the mode with the strange attractor 13*2𝑥 (𝛼 = 0.03217) formed by
the summation of harmonics: 𝑛 = 1000 (1 ) and 𝑛 = 200 (2 )

The spectrum of Lyapunov indices was calculated
with the help of a program written by the author
in Fortran. Benettine’s algorithm with orthogonaliza-
tion of vectors by the Gram–Schmidt method was
used [21].

As a quantitative measure of the fractality of
strange attractors, their Lyapunov dimension was cal-
culated by the Kaplan–Yorke formula [54, 55]:

𝐷𝐹𝑟
= 𝑚+

∑︀𝑚
𝑖=1 𝜆𝑖

|𝜆𝑚+1|
.

3. Results of Studies

While studying the phase-parametric diagram of the
system under study, we have got the scenario of adap-
tation modes of the metabolic process in a cell at a
decrease in the dissipation of the kinetic membrane
potential 𝛼 [17]. The calculated plots of the kinetics
of modes manifest a stationary behavior and autope-
riodic or chaotic oscillations. They reflect the inter-
nal dynamics of the metabolic processes in a cell. The
possibility of the appearance of autooscillatory modes
in the given population of cells was later confirmed
experimentally [56].

In order to restrict the volume of the present work,
we will consider only separate modes, which does not
affect the results. Below, we will consider the sce-
nario of appearance and destroying of autooscillatory
modes.

Stationary state ↦→ 1*20(𝛼 = 0.04131) ↦→ 2*20(𝛼 =
= 0.03753) ↦→ 3*20(𝛼 = 0.03563274) ↦→ 5*20(𝛼 =
= 0.03463) ↦→ 8*20(𝛼 = 0.033) ↦→ 8*2𝑥(𝛼 =

= 0.0328709) ↦→ 11*20(𝛼 = 0.032516) ↦→ 11*2𝑥(𝛼 =
= 0.03239) ↦→ 13*20(𝛼 = 0.03225) ↦→ 13*2𝑥(𝛼 =
= 0.03217) ↦→ 7*2𝑥 ↦→ 1*222(𝛼 = 0.032161) ↦→
↦→ 1*20(𝛼 = 0.0321148) ↦→ Stationary state.

In order to construct and compare the Fourier spec-
tra on a single scale, the value of 𝑙 was chosen with
regard for the maximally possible reasonable time
of representation of the kinetics of the most compli-
cated mode, namely the strange attractor 13*2𝑥. In
this case, the number of harmonics of the expansion
was taken to be 𝑛 = 1000. The kinetics of the given
mode after the summation of all harmonics is shown
in Fig. 2, curve 1. It coincides completely with the
initial plot (before the expansion) of the kinetics of
the given variable. For 𝑛 = 200, the summary plot 2
of harmonics does not coincide with the initial one,
which means the smallness of the taken number of
harmonics. In what follows, the number of harmonics
in expansions in a Fourier series for any mode will be
𝑛 = 1000.

In Figs. 3, a–f and 4, a–g, we show the spectra
of expansion in a Fourier series of the variable 𝐺 for
some modes by the above-presented scenario for the
variable coefficient 𝛼. In Fig. 4, h, we give the spec-
trum of some mode of a strange attractor for the in-
put parameters 𝐺0 = 0.009; 𝑂20 = 0.00209. In the
plots, we present the ratio of the amplitudes of har-
monics �̂�𝑛 bounded by a level of 0.03 for the sake of
clearness for regular attractors and by a level of 0.014
for strange attractors. Though the calculation of each
mode was made for 𝑛 = 1000, the plots present only
400 harmonics. All harmonics for 𝑛 > 400 are in-
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Fig. 3. Distribution of harmonics of the Fourier spectrum in modes of the metabolic process: regular attractor 1*20(𝛼 =

= 0.04131) – 𝑎; regular attractor 2*20(𝛼 = 0.03753) – 𝑏; regular attractor 3*20(𝛼 = 0.03563274) – 𝑐; regular attractor 5*20(𝛼 =

= 0.03463) – 𝑑; regular attractor 8*20(𝛼 = 0.033) – 𝑒; strange attractor 8*2𝑥(𝛼 = 0.0328709) – 𝑓

significant and omitted. In the right upper corner of
each plot, we give the kinetic curve of the given vari-
able in this mode.

The plots given correspond to the distribution
of spectra of a representation of the corresponding
modes. As is seen, a decrease in the dissipation of the
kinetic membrane potential in the cyclic metabolic
process implies that some harmonics grow and be-
come maximal, whereas other ones decay to a min-
imum, on the contrary. This complicates the non-
linear dynamics of the process. The decrease in 𝛼
from 0.04131 to 0.03753 causes a bifurcation and
the appearance of the 1-fold (Fig. 3, a) and two-
fold (Fig. 3, b) periodic modes of a regular attrac-
tor. Respectively, this is revealed in the distribution
of harmonics. The peaks of the basic harmonics of the
expansion vary, and one more peak has arisen. The

further decrease in the dissipation of the kinetic mem-
brane potential leads to the appearance of subsequent
bifurcations. At 𝛼 = 0.03563274, the 3-fold periodic
mode (Fig. 3, c) is formed, the distribution of har-
monics is changed, and one more peak appears. As 𝛼
decreases further, the 4-fold periodic mode arises ac-
cording to the scenario presented in [17]. Then the 5-
fold cycle is formed (Fig. 3, d). Further, as a result of
bifurcations, the 6-, 7-, and 8-fold periodic cycles ap-
pear successively. The spectral distribution for the 8-
fold cycle is shown in Fig. 3, e. We should like to indi-
cate a change in the spectral pattern at the given time
moment. The further decrease in the coefficient of dis-
sipation of the kinetic membrane potential does not
lead to the appearance of a bifurcation and the birth
of a new cycle, but to the creation of the chaotic mode
of the strange attractor (Fig. 3, f ). The Fourier distri-
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Fig. 4. Distribution of harmonics of the Fourier spectrum in modes of the metabolic process: regular attractor 11*20(𝛼 =

= 0.032516) – 𝑎; strange attractor 11*2𝑥(𝛼 = 0.03239 – 𝑏; regular attractor 13*20(𝛼 = 0.03225) – 𝑐; strange attractor 13*2𝑥(𝛼 =

= 0.03217) – 𝑑; strange attractor 7*2𝑥(𝛼 = 0.0321646) – 𝑒; regular attractor 1*222(𝛼 = 0.032161) – 𝑓 ; regular attractor 1*20(𝛼 =

= 0.0321148) – 𝑔; strange attractor 3*2𝑥(𝛼 = 0.033 – ℎ; 𝐺0 = 0.009; 𝑂20 = 0.00209)

bution spectrum becomes more continuous. However,
this continuous spectrum includes clearly the har-
monics of disappeared limiting cycles. The transition
between modes has arisen as a result of the inter-
mittence at the fracture of the laminar part of a
trajectory of the 8-fold limiting cycle by the turbu-
lence. The laminar part of the trajectory is formed

at the expense of harmonics of the regular attractor
8*20, whereas the turbulence is formed due to the cre-
ation of new harmonics. The domain of attraction of
the limiting set of the regular attractor is eroded by
these harmonics. The further decrease in the coeffi-
cient 𝛼 causes the successive formation of the attrac-
tors 9*20, 9*2𝑥, 10*20, 10*2𝑥, and 11*20.
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The spectral analysis of the last regular attrac-
tor is shown in Fig. 4, a. It is seen how the self-
organization results in a change in the main har-
monics of the expansion and in their magnitudes
and frequencies. As 𝛼 decreases to 0.03239, the self-
organization of the given mode is violated, and the
chaotic mode of the strange attractor 11*2𝑥 is estab-
lished (see Fig. 4, b). As in the previous case, the
positions of the maximal peaks of the basic harmon-
ics of the previous mode 11*20 are conserved. In this
case, their magnitudes vary, which testifies to the con-
servation of the attracting set of the given regular at-
tractor, whereas the appeared additional harmonics
violate it slightly. Due to the conservation of maxi-
mal harmonics, the trajectory is kept in the domain
of attraction of the attractor. The further decrease
in 𝛼 causes the successive formation of the follow-
ing attractors: 12*20, 12*2𝑥, and 13*20(𝛼 = 0.03225)
(Fig. 4, c). The change in the coefficient of dissipa-
tion down to 0.03217 causes the destroying of this cy-
cle and the formation of the strange attractor 13*2𝑥

(Fig. 4, d). It is the most complicated attractor, for
which we searched firstly for the necessary number of
harmonics reliably representing the nonlinear dynam-
ics of the process (Fig. 2). As above, the intermittence
causes the destroying of the stable 13-fold periodic
cycle. The laminar trajectories of peak harmonics of
the attractor 13*20 are mixed with the trajectories of
new arisen harmonics creating the turbulence.

The subsequent decrease in 𝛼 leads, strangely
enough, to the appearance of the unstable strange
attractor 7*2𝑥 (𝛼 = 0.0321646) (Fig. 4, e). As a re-
sult of the self-organization, the basic bearing fre-
quencies of harmonics vary, and the different type of
a 7-fold limiting cycle, which is the attracting set for
chaotic trajectories, is created. The further decrease
in 𝛼 causes the subsequent self-organization and the
formation of a 22-fold autoperiodic cycle 1*222(𝛼 =
0.032161) (Fig. 4, f ). Its expansion spectrum contains
a clearly expressed peak of the basic harmonic at a
medium frequency. The further decrease in the dis-
sipation of the kinetic membrane potential leads to
the establishment of one dominant frequency forming
again a 1-fold periodic mode 1*20(𝛼 = 0.0321148)
(Fig. 4, g). It passes to a stationary mode, as 𝛼 de-
creases. For the comparison of modes, we show the
distribution of harmonics of the Fourier spectrum in
Fig. 4, h for the strange attractor 3*2𝑥 formed at
𝛼 = 0.033; 𝐺0 = 0.009; 𝑂20 = 0.00209. The spectrum

of its basic bearing frequencies is essentially different
from that in the mode of the regular attractor 3*20

(Fig. 3, c).
The study of the Fourier spectra of modes in

Figs. 3, a–f and 4, a–g testifies to a geometric sim-
ilarity of the phase portraits of attractors of the os-
cillatory dynamics of the system. The redistribution
of the amplitudes of harmonics is related to the do-
mains of attraction of that or other attractor. The
bearing frequencies characterize the laminar trajecto-
ries depending on the multiplicity and the geometric
type of an attractor. Their significant change means
a change in the domain of attraction of the attractor
and, respectively, the geometric type of the attractor
(Fig. 4, h).

In Fig. 5, a, b, we show a projection of the phase
portrait of the strange attractor 13*2𝑥(𝛼 = 0.03217)
in the three-dimensional phase space (𝐸1, 𝐺,𝐵) and
the histogram of the projection of its invariant mea-
sure on the plane (𝐺,𝐸1).

This strange attractor is formed due to the funnel
effect. As is seen from Fig. 5, a, there exists a domain
in the phase space, where the mixing of trajectories
occurs. An arbitrarily small deviation affects the evo-
lution of the trajectory, and the deterministic chaos is
formed. Analogous funnels are formed also for the fol-
lowing strange attractors: 8*2𝑥, 9*2𝑥, 10*2𝑥, 11*2𝑥,
and 12*2𝑥.

In Fig. 6, a–b, we present the strange attractor
7*2𝑥(𝛼 = 0.0321646). In this case, as distinct from
the previous phase portrait, the funnel of mixing of
trajectories is the domain of instability increased to
the size of the whole strange attractor. It is a very un-
stable mode. As 𝛼 increases insignificantly, the fun-
nel decreases, and the more stable strange attractor
13*2𝑥 is established. But then the self-organization
results in the appearance of a stabler regular attrac-
tor 1*222.

As distinct from the above-shown attractors,
Fig. 7, a, b presents a strange attractor that is formed
not by a change in the coefficient 𝛼, but by a variation
of the input parameters 𝐺0 and 𝑂20 . The obtained
strange attractor in Fig. 7, a is created as a result
of the intermittence of two unstable cycles 3*2𝑥 and
2*2𝑥 (see the kinetics of 𝐺 in Fig. 4, h). As a result
of the composition of two unstable trajectories, the
uncertainty in the evolution of the system arises.

The above-considered phase portraits of the non-
linear dynamics are typical of all studied modes of
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Fig. 5. Strange attractor 13*2𝑥(𝛼 = 0.03217): projection of its phase portrait in the three-dimensional space
(𝐸1, 𝐺,𝐵) – a; histogram of the projection of the invariant measure on the plane (𝐺,𝐸1) – b, 𝑡 ∈ (106–106+5×105)

Fig. 6. Strange attractor 7*2𝑥(𝛼 = 0.0321646): projection of its phase portrait in the three-dimensional space
(𝐸1, 𝐺,𝐵) – a; histogram of the projection of the invariant measure on the plane (𝐺,𝐸1) – b, 𝑡 ∈ (106–106+5×105)

strange attractors of our system. In Figs. 5, b, 6, b,
and 7, b, we constructed the histograms of projec-
tions of their invariant measures. To make it, the
phase spaces of the given strange attractors were par-
titioned into the number of boxes, which is maximally
possible for the computer program, and the proba-
bilities of the attendance of each box by the trajec-
tory were calculated. The numbers of points of the
mapping for the whole phase portrait were taken to
be 500,000 in Figs. 5, b and 6, b and 2,000,000 in
Fig. 7, b. The numerical experiment showed that a
change in the numbers of points of the mapping has

no influence on the probability of the attendance of
each box by the trajectory. The time shift along a
trajectory (𝑥(𝑡) → 𝑥(𝑡+ 𝜏)) has no influence as well,
which means the invariance of the measures of the
given strange attractors.

The peak of the invariant measure in Fig. 5, b
characterizes visually the attracting set of the given
attractor in the funnel, and the ability to mix its
trajectories in this compressed domain of the phase
space. Figure 6, b contains no such domain. The
mixing occurs over the whole domain of the phase
space.
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Fig. 7. Strange attractor 3*2𝑥(𝛼 = 0.033; 𝐺0 = 0.009; 𝑂20 = 0.00209): projection of its phase portrait in the
three-dimensional space (𝐸1, 𝜓,𝐺) – a; histogram of the projection of the invariant measure on the plane (𝐸1, 𝜓) –
b, 𝑡 ∈ (106–106 + 2× 106)

Lyapunov’s exponents of strange attractors of the system

𝛼 Attractor 𝜆1 𝜆2 𝜆3 𝜆10 Λ 𝐷𝐹𝑟

0.032872 8*2𝑥 0.00013 0.00000 –0.00506 –0.52172 –0.93352 –2.02569
0.03268 9*2𝑥 0.00049 0.00000 –0.00500 –0.51658 –0.92495 –2.0980
0.03254 10*2𝑥 0.00026 0.00000 –0.00459 –0.50965 –0.91713 –2.05664
0.03242 11*2𝑥 0.00035 0.00000 –0.00449 –0.50683 –0.91260 –2.07795
0.032278 12*2𝑥 0.00060 0.00000 –0.00402 –0.50460 –0.90649 –2.14925
0.03217 13*2𝑥 0.00083 0.00000 –0.00361 –0.50326 –0.90210 –2.23075
0.0321646 7*2𝑥 0.00031 0.00000 –0.00111 –0.51650 –0.90393 –2.27928

For the above-considered scenario of formation and
destroying of strange attractors, we calculated the
complete spectra of Lyapunov’s exponents and the
Lyapunov dimensions of their fractality (Table) (in-
dices 𝜆4−𝜆9 are omitted, since they do not influence
the meaning of the presented results).

According to the data presented in Table, the
KS-entropy (Kolmogorov–Sinai entropy) [57] of the
strange attractor 13*2𝑥 is maximal and equals
0.00083. For the attractor 7*2𝑥, it is equal to
0.00031. This means that the exponential divergence
of phase trajectories along the vector of perturba-
tions corresponding to 𝜆1 for the strange attrac-
tor 13*2𝑥 is larger than for the attractor 7*2𝑥. For
the rest vectors corresponding to negative values
of 𝜆3 − 𝜆10, the phase trajectories approach expo-
nentially their attractor. Respectively, the nonpre-
dictability and chaoticity of the deterministic chaos
for the first strange attractor are higher than for the
second one. The larger the value of KS-entropy, the

more complicated is the structure of a chaos. At the
same time, the ratio of the Lyapunov dimensions of
the fractality of these modes is opposite. We have
𝐷𝐹𝑟

= −2.23075 for the strange attractor 13*2𝑥 and
𝐷𝐹𝑟

= −2.27928 for 7*2𝑥. This can be explained by
that the Lyapunov dimensions for these modes are de-
fined not only by the values of 𝜆1 and 𝜆2, but also by
|𝜆3|. This characterizes a deformation of an element
of the phase volume along the corresponding vectors
of perturbations. The larger 𝜆1 and the less |𝜆3|, the
larger is the deformation of its volume.

The studies showed that the domain of instability
of autooscillatory modes is located between two sta-
tionary modes of the metabolic process. It appears
due to the breaking of a synchronization between the
system of consumption of a substrate and the respi-
ratory chain. This breaking occurs due to the expen-
diture of the proton membrane potential of a cell for
other metabolic processes. A decrease in the poten-
tial causes the desynchronization of the processes of
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consumption of a substrate and the processes of trans-
port and accumulation of a charge on the outer side of
the membrane. The blocking of the respiratory chain
by an increased level of the potential is decreased, the
desynchronization arises, and autoperiodic or chaotic
oscillations in the metabolic process appear.

The executed expansions in a Fourier series of the
determined autooscillatory modes allow us to sub-
stantiate this method for the seeking and the iden-
tification of autoperiodic and chaotic modes in the
metabolic process in a cell. The calculated histograms
of the invariant measures of strange attractors give a
more complete visual representation of the domains,
where the trajectories are mixed, as compared with
the phase portraits.

4. Conclusions

In the frame of the mathematical model, the au-
tooscillatory modes of the metabolic process in a cell
are studied with the help of the expansion of the
kinetics of the process in a Fourier series and the
construction of histograms of the invariant measures
of chaotic attractors of the model. We determined
the necessary number of harmonics, which represent
uniquely the most complicated mode of a strange at-
tractor. The dependence of the type of an attractor
on the distributions and the amplitudes of harmonics
in the Fourier spectrum is investigated. The harmon-
ics forming the laminar and turbulent parts of a tra-
jectory of the attractor are identified. The histograms
of projections of the invariant measures of the main
types of strange attractors of the system are con-
structed, and their dependence on the phase portrait
is determined. The complete spectra of Lyapunov’s
exponents, KS-entropy, and Lyapunov dimensions of
the fractality for the strange attractors under study
are calculated. The mechanisms and the causes for
the appearance of autoperiodic and chaotic oscilla-
tions in the metabolic process in a cell are found.
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СПЕКТРАЛЬНИЙ АНАЛIЗ ТА IНВАРIАНТНА
МIРА ПРИ ДОСЛIДЖЕННI НЕЛIНIЙНОЇ ДИНАМIКИ
МЕТАБОЛIЧНОГО ПРОЦЕСУ В КЛIТИНI

Р е з ю м е

Проведено моделювання метаболiчного процесу в клiтинi з
використанням перетворення Фур’є та побудови гiстограм
iнварiантних мiр хаотичних атракторiв. Зокрема, знайдено
сценарiй адаптацiї метаболiчного процесу при змiнi дисипа-
цiї кiнетичного мембранного потенцiалу, послiдовнiсть ре-
жимiв самоорганiзацiї та детермiнованого хаосу i, вiдповiд-
но, розглянуто спектральне вiдображення з атракторами
цих режимiв. Проаналiзовано структурно-функцiональнi
зв’язки метаболiчного процесу в клiтинi як єдиної дисипа-
тивної системи.


