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The Josephson current through a two-barrier SISIS tunnel junction has been calculated ana-
lytically in the quasiclassical approximation for the microscopic theory of superconductivity.
Green’s functions for a SISIS tunnel junction and an expression for the Josephson current
through a point contact are obtained. The dependence of the tunnel current on the order pa-
rameter phase is determined, and the current dependence on the distance between the barriers
is analyzed. The presence of resonance peaks in the Josephson current is demonstrated.
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1. Introduction

Among a lot of important and interesting phenomena
that were discovered in the last century, supercon-
ductivity occupies a special place. Superconductors
attract considerable interest of scientists. There are
plenty of reasons for that. One of them consists in
the unordinary, from the classical standpoint, char-
acter of effects that arise in such systems. These are
the dissipativeless behavior of the electric current, the
expulsion of the magnetic field from the superconduc-
tor bulk, the magnetic flux quantization, and so forth
[1, 2]. Another important circumstance that makes
the researches of superconductors challenging is con-
nected with the fact that such systems are a “window
to the quantum world”, because quantum-mechanical
effects manifest themselves on the macroscopic level
in this case.

Two Josephson effects are inherent in the physics
of superconductivity. They are observed in a system
composed of two superconductors (S) separated by
the thin layer of an insulator (I) (the so-called SIS
junction). One of those effects (stationary) consists in
that if a current, whose magnitude is lower than a cer-
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tain critical value, is passed through the junction, the
voltage drop across the junction equals zero despite
the presence of the insulator layer. The Josephson ef-
fects (stationary and non-stationary ones) are classed
to the so-called weak-superconductivity ones [3].

In the recent years, there emerged technologies for
the creation of multilayered tunnel junctions with
an arbitrary geometry and a set of components: SI-
NIS, SISIS, SIS′IS, and others [4]. The theoretical
calculation of the effects of phase-coherent charge
transfer in layered systems of the SISIS and SIS′IS
types, whose research is challenging because of the
creation of superconducting quantum interference de-
vices (SQUIDs) [5] and superconducting qubits for
a quantum computer [6, 7], has a large field of
applications.

Multilayered superconductor junctions were stud-
ied in a number of works. The experimental regu-
larities of a Josephson current in such structures are
described in works [4, 8]. In the works by Brinkman
and Kupriyanov et al. [9,10], a theoretical analysis of
the Josephson effect in the SISIS junction was carried
out. Using the method of Green’s temperature func-
tions, the cited authors obtained an expression for the
Josephson current in an integral form and analyzed
it by numerical methods.
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In this work, we propose a microscopic theory for
the Josephson current in a two-barrier tunnel junc-
tion with the SISIS structure. Unlike work [10], where
Green’s functions for the Gor’kov equation were ap-
plied, we deal with the equations of superconductivity
theory that have a lower order as differential equa-
tions, i.e. quasiclassical ones. This circumstance al-
lows us to obtain an expression for the Josephson cur-
rent through a junction in the analytical form. Note
that, with the use of the method of quasiclassi-
cal equations, one of the authors (A.V.S.) theoreti-
cally described the Josephson effect in superconduc-
tor junctions with various structures: SIS, SNS, and
SINS [1].

The researches performed in this work revealed
some features in the tunnel current through a two-
barrier junction, which are absent for the current
through a SIS junction. First of all, this is a non-
monotonic dependence of the critical current on the
distance between the barriers and the presence of res-
onance maxima. A possibility of the resonance tun-
neling in a two-barrier structure was considered in
work [11].

Another peculiarity of the Josephson effect in the
SISIS tunnel junction is a non-sinusoidal dependence
of the current on the phase difference. A similar de-
pendence was obtained in works [12, 13] on the basis
of the classical Ohta model [14]. The experimental ob-
servation of a non-sinusoidal dependence of the cur-
rent through a two-barrier superconductor junction
was described in works [15, 16].

2. Quasiclassical Equations
of Superconductivity Theory
for the Description of Current States

It is known that the theoretical description of super-
conductors in the mean-field approximation is based
on the Bogolyubov equations. The latter are equa-
tions for the eigenvalues and eigenvectors of the coef-
ficients in the canonical Bogolyubov transformations
from particles to quasiparticles, 𝑢p(r) and 𝑣p(r):{︃
𝜉𝑢p(r)−Δ(r)𝑣p(r) = 𝜀p𝑢p(r),

𝜉𝑣p(r) + Δ*(r)𝑢p(r) = −𝜀p𝑣p(r).
(1)

Here, Δ(r) is the order parameter (mean field), 𝜉 =

= p̂2

2𝑚 + 𝑈(r) − 𝜇, 𝑈(r) is an external field, 𝜇 the

chemical potential, and 𝜀p =
√︁
𝜉2p + |Δ|2.

The Bogolyubov equations (1) have to be solved
under the self-consistency condition

Δ(r) = 𝑔
∑︁
p

𝑢p(r)𝑣
*
p(r)tanh

𝜀p
2𝑇

.

From the system of Bogolyubov equations (1), we
can change to a system of equations for Matsubara
Green’s functions, which are called the Gor’kov equa-
tions:{︃
(𝑖𝜔𝑛 − 𝜉)𝐺𝜔𝑛(r, r

′) + Δ(r)𝐹𝜔𝑛(r, r
′) = 𝛿(r− r′),

(𝑖𝜔𝑛 + 𝜉)𝐹𝜔𝑛(r, r
′) + Δ*(r)𝐺𝜔𝑛(r, r

′) = 0.

The latter have to be solved provided the condition

Δ*(r) = |𝑔|𝑇
∑︁
𝜔𝑛

𝐹𝜔𝑛
(r, r).

In the Nambu matrix formalism, this system of equa-
tions is written as follows:(︁
𝑖𝜔𝑛 − 𝜎𝑧𝜉 − Δ̂(r)

)︁
�̂�𝜔𝑛

(r, r′) = 𝛿(r, r′), (2)

where

𝜎𝑧 =
(︁
1 0
0 −1

)︁
, Δ̂(r) =

(︂
0 Δ(r)

Δ*(r) 0

)︂
.

From the mathematical viewpoint, the system of
equations of superconductivity theory in the form of
Bogolyubov’s equations – or, equivalently, Gor’kov’s
equations – is rather difficult, because the sought
quantities – these are the coefficients 𝑢p(r) and 𝑣p(r)
or the functions 𝐺𝜔𝑛(r, r

′) and 𝐹𝜔𝑛(r, r
′) – are non-

linear functionals of the function |Δ(r)|, which is
spatially inhomogeneous in the general case. The re-
sults of researches [1] testify that the velocity of the
Cooper pair motion as an ensemble, v𝑠, is much lower
than the characteristic velocity of the electrons that
form this pair, i.e. the Fermi velocity vF. This fact
means that, although electrons in a superconductor
are strongly degenerate, the motion of Cooper pairs
is quasiclassical. The account for this circumstance
allows the equations of superconductivity theory to
be substantially simplified. Namely, the quasiclassi-
cal equations have a lower order than the initial dif-
ferential equations of superconductivity theory (writ-
ten in spatial coordinates). Note that a similar sim-
plification takes place, when changing from the Dirac
equation for a relativistic electron to the Pauli equa-
tions in the nonrelativistic limit. The simplification
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Fig. 1. Model of a symmetric SISIS tunnel junction and the
corresponding potential

of the equations associated with the quasiclassical
character of the Cooper pair motion has a spatial
aspect, because (v𝑠)crit/vF ∼ 𝑇c/𝑇F ∼ 𝑎/𝜉0 ≪ 1,
where 𝑇c is the critical temperature, 𝑇F the Fermi
temperature, 𝑎 the interatomic distance, and 𝜉0 the
coherence length. Hence, in a ceratin sense, the quasi-
classical equations are smoothed out over the atomic
lengths and contain only large-scale spatial variations
of the order parameter. The principles used, while
constructing the quasiclassical equations of supercon-
ductivity theory for tunnel junctions, are described
in [1].

In this work, we will construct quasiclassical equa-
tions for a tunnel junction of the SISIS type. The
junction geometry is shown in Fig. 1. Each insulator
is simulated by a 𝛿-like potential barrier

𝑈(𝑧) = 𝛼

[︂
𝛿

(︂
𝑧 − 𝑑

2

)︂
+ 𝛿

(︂
𝑧 +

𝑑

2

)︂]︂
. (3)

Let us expand the Matsubara Green’s function (2)
in a series of eigenstates of the one-particle Hamilto-
nian with potential (3):

�̂�𝜔𝑛
(r, r′)=

∑︁
𝑖,𝑘

∫︁
𝑑p
∫︁
𝑑p′�̂�𝑖𝑘

𝜔𝑛
(p,p′)𝜒(𝑖)

p (r)𝜒(𝑘)
p′ (r′), (4)

where
𝜒(1)
p (r)=

1

2𝜋
𝑒𝑖p⊥rΨ(1)

𝑝𝑧
, 𝜒(2)

p (r)=
1

2𝜋
𝑒𝑖p⊥rΨ(2)

𝑝𝑧
.

Here, 𝑝⊥ and 𝑝𝑧 are the perpendicular and longi-
tudinal, respectively, momentum components; and
the functions Ψ

(1)
𝑝𝑧 and Ψ

(2)
𝑝𝑧 are solutions of the one-

dimensional Schrödinger equation with potential (3).

We have

Ψ(1)
𝑝𝑧

(𝑧) =
1√
2𝜋

[︂{︀
𝑒𝑖𝑝𝑧𝑧 + 𝐶1𝑒

−𝑖𝑝𝑧𝑧
}︀
𝜃

(︂
−𝑧 − 𝑑

2

)︂
+

+
{︀
𝐶2𝑒

𝑖𝑝𝑧𝑧 + 𝐶3𝑒
−𝑖𝑝𝑧𝑧

}︀
𝜃

(︂
𝑧 +

𝑑

2

)︂
𝜃

(︂
−𝑧 +

𝑑

2

)︂
+

+ 𝐶4𝑒
𝑖𝑝𝑧𝑧𝜃

(︂
𝑧 − 𝑑

2

)︂]︂
(5)

for the wave incident from the left side and

Ψ(2)
𝑝𝑧

(𝑧) =
1√
2𝜋

[︂
𝐶4𝑒

−𝑖𝑝𝑧𝑧𝜃

(︂
−𝑧 − 𝑑

2

)︂
+

+
{︀
𝐶2𝑒

−𝑖𝑝𝑧𝑧 + 𝐶3𝑒
𝑖𝑝𝑧𝑧

}︀
𝜃

(︂
−𝑧 +

𝑑

2

)︂
𝜃

(︂
𝑧 +

𝑑

2

)︂
+

+
{︀
𝐶1𝑒

𝑖𝑝𝑧𝑧 + 𝑒−𝑖𝑝𝑧𝑧
}︀
𝜃

(︂
𝑧 − 𝑑

2

)︂]︂
(6)

for the wave incident from the right-hand side. The
constants 𝐶1, 𝐶2, 𝐶3, and 𝐶4 are determined from
the conditions of the wave function continuity across
the barriers and the given jumps of its first derivative.

The coefficient of electron transmission through the
barrier is determined by the relation

𝐷=
8𝜅4

(8𝜅4+4𝜅2+1)+(4𝜅2−1) cos(2𝑝𝑧𝑑)+4𝜅 sin(2𝑝𝑧𝑑)
,

where

𝜅 =
𝑝𝑧

2𝑚𝛼
=

√
𝐸√

2𝑚𝛼
.

On the basis of the Gor’kov equation (2), we obtain
the following integral equation for the coefficients of
Green’s function expansion (4):

(𝑖𝜔𝑛 − 𝜎𝑧𝜉)�̂�
𝑖𝑘
𝜔𝑛

(p,p′)−
∑︁
𝑗

∫︁
𝑑p′′⟨𝑖,p|Δ̂(𝑧)|𝑗,p′′⟩×

× �̂�𝑗𝑘
𝜔𝑛

(p′′,p′) = 𝛿𝑖𝑘𝛿(p − p′).

Let us take into consideration that the spatial homo-
geneity is broken only in the 𝑧 axis direction, and the
order parameter Δ depends only on the coordinate
𝑧. Therefore, the matrix elements ⟨𝑖,p|Δ̂(𝑧)|𝑖′p′′⟩ are
diagonal in the transverse momenta, i.e. they con-
tain the 𝛿-function 𝛿(p⊥ − p′

⊥). This is also valid for
Green’s function, which looks like

�̂�𝑖𝑘
𝜔𝑛

(p,p′) = �̂�𝑖𝑘
𝜔𝑛

(p⊥, 𝑝𝑧, 𝑝
′
𝑧)𝛿(p⊥ − p′

⊥).

The indicated symmetry of the problem makes it
possible to transform the equations for the coefficients
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of the Green’s function expansion to the following
form:

(𝑖𝜔𝑛−𝜎𝑧𝜉)�̂�
𝑖𝑘
𝜔𝑛

(p⊥, 𝑝𝑧, 𝑝′𝑧)−
∑︁
𝑗

∫︁
𝑑𝑝′′𝑧 ⟨𝑖, 𝑝𝑧|Δ̂(𝑧)|𝑗, 𝑝′′𝑧 ⟩×

× �̂�𝑗𝑘
𝜔𝑛

(p⊥, 𝑝′′𝑧 , 𝑝
′
𝑧) = 𝛿𝑖𝑘𝛿(𝑝− 𝑝′𝑧). (7)

The obtained form (7) of the equation for the Gor’-
kov Green’s functions is convenient, when construct-
ing the quasiclassical approximation. Let us take into
account that the characteristic momenta that give a
contribution to the values of physical quantities are
close to the Fermi momentum 𝑝F. Therefore, we may
put 𝑝 = 𝑝F + 𝜉/vF, where 𝜉 has the order of 𝑇c. For
the difference between the momentum projections, we
obtain

𝑝𝑧 − 𝑝′𝑧
∼=

𝜉 − 𝜉′

vF𝑥
, 𝑥 ≡ cos 𝜃,

where 𝜃 is the electron incidence angle at the barrier.
Hence, we have the following approximate rela-

tions:

𝛿(𝑝𝑧 − 𝑝′𝑧)
∼= vF𝑥𝛿(𝜉 − 𝜉′),

∞∫︁
0

𝑑𝑝𝑧... ∼=
1

vF𝑥

∞∫︁
−∞

𝑑𝜉.

Taking them into account and changing from the vari-
able 𝜉 to the Fourier-conjugate variable 𝑡 (whose di-
mensionality is the inverse temperature) with the use
of the formulas

⟨𝜉|𝑡⟩ = 1√
2𝜋vF𝑥

𝑒−𝑖𝜉𝑡, ⟨𝑡|𝜉⟩ = 1√
2𝜋vF𝑥

𝑒𝑖𝜉𝑡,

we arrive at a differential equation of a lower order
for Green’s functions (7):(︂
𝑖𝜔𝑛 + 𝑖𝜎𝑧

𝑑

𝑑𝑡

)︂
⟨𝑡, 𝑖|�̂�𝜔𝑛

|𝑘, 𝑡′⟩−

−
∑︁
𝑗

∫︁
𝑑𝑡′′⟨𝑡, 𝑖|Δ̂(𝑧)|𝑗, 𝑡′′⟩⟨𝑡′′, 𝑗|�̂�𝜔𝑛

|𝑘, 𝑡′⟩ =

= 𝛿𝑖𝑘𝛿(𝑡− 𝑡′). (8)

The calculations show that the matrix elements of the
order parameter are diagonal in the variables 𝑡 and
𝑡′, i.e. the following relation is obeyed:

⟨𝑡, 𝑖|Δ̂(𝑧)|𝑗, 𝑡′⟩ = 𝛿(𝑡− 𝑡′)⟨𝑡, 𝑖|Δ̂(𝑧)|𝑗, 𝑡⟩.

The final form of the Gor’kov equations for a tunnel
junction in the quasiclassical approximation looks like(︂
𝑖𝜔𝑛 + 𝑖𝜎𝑧

𝑑

𝑑𝑡
− Δ̂𝑖𝑘

)︂
�̂�𝑖𝑘

𝜔𝑛
(𝑡, 𝑡′)− Δ̂12�̂�21

𝜔𝑛
(𝑡, 𝑡′) =

= 𝛿(𝑡− 𝑡′),(︂
𝑖𝜔𝑛 + 𝑖𝜎𝑧

𝑑

𝑑𝑡
− Δ̂22

)︂
�̂�21

𝜔𝑛
(𝑡, 𝑡′)− Δ̂21�̂�11

𝜔𝑛
(𝑡, 𝑡′) = 0,(︂

𝑖𝜔𝑛 + 𝑖𝜎𝑧
𝑑

𝑑𝑡
− Δ̂22

)︂
�̂�22

𝜔𝑛
(𝑡, 𝑡′)− Δ̂21�̂�12

𝜔𝑛
(𝑡, 𝑡′) =

= 𝛿(𝑡− 𝑡′),(︂
𝑖𝜔𝑛 + 𝑖𝜎𝑧

𝑑

𝑑𝑡
− Δ̂11

)︂
�̂�12

𝜔𝑛
(𝑡, 𝑡′)− Δ̂12�̂�22

𝜔𝑛
(𝑡, 𝑡′) = 0.

(9)

This system of equations has to be completed by the
expression for the current density through the junc-
tion,

j(r) =
𝑖𝑒

𝑚
𝑇
∑︁
𝜔𝑛

lim
r′→r

(∇r′ −∇r)𝐺𝜔𝑛
(r, r′).

After changing to the 𝑡-representation, we obtain

𝑗(𝑧) =
1

2

𝑒

𝑚
𝑁(0)𝑇

∑︁
𝜔𝑛

∑︁
𝑖,𝑘

1∫︁
0

𝑑𝑥

∫︁
𝑑𝑡𝑑𝑡′ ×

×⟨𝑡, 𝑖|�̂�𝜔𝑛 |𝑘, 𝑡′⟩𝐽𝑘𝑖(𝑥, 𝑡, 𝑡′, 𝑧), (10)

Here, in the expression

𝐽𝑘𝑖(𝑥, 𝑡, 𝑡′, 𝑧) =

∫︁
𝑑𝜉𝑑𝜉′𝑒−𝑖𝜉𝑡+𝑖𝜉′𝑡′×

×
(︁
Ψ

*(𝑘)
𝑝′
𝑧

(𝑧)𝑝𝑧Ψ
(𝑖)
𝑝𝑧
(𝑧)−Ψ(𝑖)

𝑝𝑧
(𝑧)𝑝𝑧Ψ

*(𝑘)
𝑝′
𝑧

(𝑧),
)︁

the values of slowly varying multipliers (the trans-
mission and reflection coefficients) are taken at the
Fermi surface. Furthermore, the products of exponen-
tial functions containing the sum 𝑝𝑧 + 𝑝′𝑧

∼= 2𝑝F𝑥
and oscillating at atomic lengths are rejected, leav-
ing only those products that contain the difference
𝑝𝑧 − 𝑝′𝑧 = 𝜉−𝜉′

vF𝑥
and oscillate at lengths of an order

of the coherence length 𝜉0 ≫ 𝑎. In such a way we
smooth out the current over atomic lengths and de-
scribe only its large-scale spatial variations. The de-
scribed procedure of smoothing out at atomic lengths
is also used, when calculating the matrix elements of
the order parameter ⟨𝑡, 𝑖|Δ̂(𝑧)|𝑗, 𝑡⟩.
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3. Calculation of the Josephson
Current Through a SISIS Tunnel Junction

Let us apply the quasiclassical equations (9) ob-
tained in the previous section in order to describe
the Josephson effect in a SISIS tunnel junction. In
the theory of superconducting junctions, a model is
widely used, in which a variation of the order param-
eter under the influence of the finite barrier trans-
parency or the current is neglected, so that the abso-
lute value of order parameter Δ(𝑧) is assumed to be
constant within each superconductor. If the parame-
ter Δ(𝑧) changes over the coherence length 𝜉0, the ap-
plication of this model does not result in a qualitative
error, because the neglect of a Δ(𝑧) variation gives
rise to an uncertainty of order of 1 for the numerical
multipliers in the expression for the current. Since the
system may contain current states, the phase of the
order parameter depends on the coordinate, and its
gradient determines the superfluid velocity v𝑠, which
is the velocity of condensate motion. In the dielectric
interlayer (I), the density of the superfluid component
sharply decreases, and the superfluid velocity has to
drastically grow in order to provide the current con-
tinuity. As a consequence, the order parameter phase
can change very rapidly, when crossing the barrier,
over the lengths of an order of the barrier thickness.

Let Φ(𝑧) be the order parameter phase, so that
Δ(𝑧) = |Δ(𝑧)|𝑒𝑖Φ(𝑧). Let us put Φ(𝑧) = Φ̃(𝑧) + Λ(𝑧),
where Φ̃(𝑧) is the continuous phase component asso-
ciated with the superfluid velocity vs = grad Φ̃(𝑧),
and Λ(𝑧) is the phase component describing jumps at
the barriers.

In this work, we confine the calculation to the cur-
rent through the barriers. Therefore, in what follows,
only the jump-like component of the order parameter
phase will be taken into consideration:

Λ(𝑧) =
𝜙

2

{︂
𝜃

(︂
𝑧 − 𝑑

2

)︂
− 𝜃

(︂
−𝑧 − 𝑑

2

)︂}︂
, 𝜙 = const.

Hence, the following order parameter model will be
dealt with:

Δ(𝑧) = Δ

⎧⎨⎩
𝑒−𝑖𝜙/2, 𝑧 < −𝑑/2,

1, |𝑧| < 𝑑/2,

𝑒𝑖𝜙/2, 𝑧 > 𝑑/2,

Δ = const. (11)

On the basis of formulas (5), (6), and (11), taking
the procedure of smoothing out over atomic lengths
into account, we obtain the matrix elements for the

order parameter,

Δ̂11 =

⎧⎪⎨⎪⎩
Δ̂𝜙/2 − 2𝑖Δ𝑅𝜎𝑥 sin𝜙/2, 𝑧 > 𝑑/2,

𝑖Δ
(︀
|𝐶2|2 + |𝐶3|2

)︀
𝜎𝑦, |𝑧| < 𝑑/2,

Δ̂−𝜙/2, 𝑧 < −𝑑/2,

Δ̂12 =

⎧⎨⎩2Δ
√
𝐷𝑅 sin𝜙/2𝜎𝑥, 𝑧 > 𝑑/2,

𝑖Δ(𝐶2𝐶
*
3 + 𝐶*

2𝐶3)𝜎𝑦, |𝑧| < 𝑑/2,

0, 𝑧 < −𝑑/2,

Δ̂21 =

⎧⎨⎩2Δ
√
𝐷𝑅 sin𝜙/2𝜎𝑥, 𝑧 > 𝑑/2,

𝑖Δ(𝐶2𝐶
*
3 + 𝐶*

2𝐶3)𝜎𝑦, |𝑧| < 𝑑/2,

0, 𝑧 < −𝑑/2,

Δ̂2,2 =

⎧⎪⎨⎪⎩
Δ̂−𝜙/2 + 2𝑖Δ𝑅𝜎𝑥 sin𝜙/2, 𝑧 > 𝑑/2,

𝑖Δ
(︀
|𝐶2|2 + |𝐶3|2

)︀
𝜎𝑦, |𝑧| < 𝑑/2,

Δ̂𝜙/2, 𝑧 < −𝑑/2.

Here, 𝐷 and 𝑅 are the coefficients of electron trans-
mission and reflection, respectively, for the model of
double 𝛿-like barrier, and

Δ̂𝜙 = Δ

(︂
0 𝑒𝑖𝜙

−𝑒−𝑖𝜙 0

)︂
.

The substitution of the obtained matrix elements
into the quasiclassical equations (9) makes it possi-
ble to calculate the Gor’kov Green’s functions for a
SISIS tunnel junction. In this work, we have analyti-
cally calculated the complete system of Green’s func-
tions for the indicated junction. The corresponding
expressions are cumbersome. Therefore, for illustra-
tion, we present here only the formula for �̂�11

𝜔𝑛
(𝑡, 𝑡′)

in the interval 𝑧 ≥ 𝑑/2:

�̂�11
𝜔𝑛

(𝑡, 𝑡′) =
1

2𝑖�̃�𝑛
𝑒−�̃�𝑛|𝑡−𝑡′| ×

×

⎛⎝ �̃�𝑛sign(𝑡− 𝑡′) + 𝜔𝑛 𝑖Δ𝑒𝑖
𝜙
2 + 2Δ𝑅 sin

𝜙

2
−𝑖Δ𝑒−𝑖𝜙

2 + 2Δ𝑅 sin
𝜙

2
�̃�𝑛sign(𝑡− 𝑡′)− 𝜔𝑛

⎞⎠+

+𝛼1

⎛⎜⎝ 1
�̃�𝑛 + 𝜔𝑛

𝑖Δ
𝑒𝑖

𝜙
2

�̃�𝑛 − 𝜔𝑛

𝑖Δ
𝑒−𝑖𝜙

2 −1

⎞⎟⎠ 𝑒−�̃�𝑛(𝑡+𝑡′) +

+𝛼2

⎛⎜⎝ 1
�̃�𝑛 + 𝜔𝑛

𝑖Δ
𝑒−𝑖𝜙

2

�̃�𝑛 − 𝜔𝑛

𝑖Δ
𝑒𝑖

𝜙
2 −1

⎞⎟⎠ 𝑒−�̃�𝑛(𝑡+𝑡′),

where �̃�𝑛 =
√︀
𝜔2
𝑛 +Δ2, and 𝛼1 and 𝛼2 are integra-

tion constants that are determined from the condi-
tions of Green’s function matching across the barriers.
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On the basis of the expressions obtained for Green’s
functions and formula (10), the current through
the junction can be calculated. The calculation gives
the following expression for the Josephson current
through the SISIS tunnel junction at 𝑧 = ±𝑑/2:

𝑗 =
𝜋

4
𝑒vF𝑁F

Δ𝐷 sin𝜙√︂
1−𝐷 sin2

𝜙

2

tanh
Δ

√︂
1−𝐷 sin2

𝜙

2

2𝑇
.

(12)

Here, 𝑁F = 3
4

𝑛
𝐸F

is the density of states at the Fermi
surface.

Formula (12) describes the dependence of the
Josephson current density at the SISIS tunnel junc-
tion edges on the coherent phase difference 𝜙 and the
barrier parameters, as well as the temperature. In the
case 𝐷 = 1, formula (12) reads

𝑗 =
𝜋

2
𝑒vF𝑁FΔsin𝜙/2 tanh

Δcos𝜙/2

2𝑇
.

This relation agrees with the known formula for the
SIS junction obtained in the work by Kulik and
Omelyanchuk [17].

The critical current, 𝑗max, is determined from the
extremum condition for expression (12) as a func-
tion of the phase difference. The phase difference, at
which the current is maximum, depends on the bar-
rier transparency, as well as on the junction param-
eters and the temperature. The corresponding value
is determined from the relation

𝜙max = arccos

[︂
1− 2

𝐷

(︀
1− 𝑥2

)︀]︂
,

where the parameter 𝑥 is a solution of the transcen-
dental equation

sinh
(︂
Δ

𝑇
𝑥

)︂
=

Δ

𝑇

𝑥2
(︀
1− 𝑥2

)︀ (︀
1−𝐷 − 𝑥2

)︀
1−𝐷 − 𝑥4

.

Let us calculate the critical current at the tem-
perature 𝑇 = 2.5 K for a tunnel junction on the
basis of niobium (Nb), for which the superconduct-
ing gap Δ ≃ 3 meV, and the critical temperature
𝑇c ≃ 9.5 K. In this case, Δ/𝑇 ≃ 14.2. At 𝐷 = 1, we
have 𝑥 ≃ 0.23, so that 𝜙max = 2.67, and the corre-
sponding critical current

𝑗max ≃ 1.94
𝜋

2
𝑒vF𝑁FΔ.
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0 2
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Fig. 2. Dependences of the tunnel current density on the
phase difference for various transmission coefficients
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Fig. 3. Dependence of the current density on the distance
between the barriers at 𝜅 = 0.01

At 𝐷 = 0.5, the value of parameter 𝑥 equals 𝑥 ≃
0.84. Then 𝜙max = 1.75, and the corresponding criti-
cal current amounts to

𝑗max ≃ 0.59
𝜋

2
𝑒vF𝑁FΔ.

Let us plot the dependences of the current den-
sity (12) on the characteristic junction parameters
(all dependences are plotted for dimensionless quanti-
ties). In Fig. 2, the dependence of the tunnel current
density on the order parameter phase difference be-
tween the junction egdes is shown. This dependence
has a sawtooth behavior, when the value of trans-
mission coefficient is close to 1. As the parameter 𝐷
decreases, the analyzed dependence for the current
density acquires a sinusoidal form [13]. Note also that
the current density decreases with a reduction of the
tunneling coefficient.

In Fig. 3, the dependence of the current density on
the inner interlayer thickness is depicted. The depen-

ISSN 2071-0186. Ukr. J. Phys. 2017. Vol. 62, No. 6 523



P.P. Shygorin, A.V. Svidzynskyi, I.O. Materian

dence has a sharp resonance peak, which coincides
with the maximum of the electron transmission coef-
ficient through the double 𝛿-like barrier. The current
reaches a maximum, if the barrier thickness satisfies
the equation

𝑝F𝑑max =
1

2

(︂
− arctan

4𝜅

4𝜅2 − 1
+ 2𝜋𝑛

)︂
, 𝑛 ∈ 𝑁,

and a minimum, if

𝑝F𝑑min =
1

2

(︂
𝜋 − arctan

4𝜅

4𝜅2 − 1
+ 2𝜋𝑛

)︂
, 𝑛 ∈ 𝑁.

Typical insulators used in tunnel junctions, e.g.,
Al2O3, have a thickness of about 10–20 nm. The po-
tential barrier height in such insulators varies from 1
to 5 eV. Therefore, the coefficient 𝛼 in potential (3)
is of an order of (1÷10)×10−8 eV m. Since the Fermi
energy for metals is about 2–10 eV, the parameter 𝜅
acquires values within an interval of (5÷30)×10−3. If
the parameter 𝜅 = 0.01, the maximum values of cur-
rent take place provided that 𝑝F𝑑 ≃ 0.01999, 3.16158,
6.30318, 9.44477, and so forth.

4. Conclusions

In this work, a microscopic theory of the station-
ary Josephson effect in an SISIS tunnel junction has
been developed. The theory is based on the quasiclas-
sical equations of superconductivity theory. Those
equations are the Gor’kov equations for Matsubara
Green’s functions of a superconductor, but smoothed
out over atomic lengths.

On the basis of the quasiclassical equations with
the use of analytical methods, a formula for the
Josephson current density through the junction is de-
rived. The current density is shown to depend on the
coherent phase difference between the superconduc-
tors, barrier parameters, and temperature. When the
coefficient of barrier transmission 𝐷 is close to 1, the
current reveals a sawtooth dependence on the phase
difference. This dependence gradually acquires a si-
nusoidal form, as the electron transmission coefficient
decreases.

A formula for the critical current depending on the
transmission coefficient is also derived. The critical
current maximum is found to take place at 𝐷 = 1.

While studying the dependence of the current
on the inner interlayer thickness in a junction,

resonance peaks in the current density are re-
vealed. Those peaks coincide with the maxima of
the electron transmission coefficient through the dou-
ble 𝛿-like barrier. An analytical relation is obtained
for the interlayer thickness, at which the current is
maximum.

Note that the developed theory can easily be mod-
ified for junctions with different geometries, e.g.,
S1IS2IS3, SINIS, and so on.
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H. Lübbig (De Gruyter, 1977).

524 ISSN 2071-0186. Ukr. J. Phys. 2017. Vol. 62, No. 6



Calculation of Josephson Current in a Two-Barrier Tunnel Junction

15. I.P. Nevirkovets, J.E. Evetts, M.G. Blamire, Z.H. Bar-
ber, E. Goldobin. Investigation of the coupling between
the outer electrodes in the superconducting double-barrier
devices. Phys. Lett. A 232, 299 (1997).

16. G. de Lange, B. van Heck, A. Brunol, D. van Woerkom,
A. Geresdil, S.R. Plissard, E. Bakkers, A.R. Akhmerov,
L. DiCarlo. Realization of microwave quantum circuits
using hybrid superconducting-semiconducting nanowire
Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).

17. I.O. Kulik, A.N. Omelyanchuk. Josephson effect in su-
perconductor bridges: a microscopic theory. Sov. J. Low
Temp. Phys. 4, 142 (1978).

Received 15.09.16.
Translated from Ukrainian by O.I. Voitenko

П.П.Шигорiн, А.В.Свiдзинський, I.О.Матер’ян

РОЗРАХУНОК СТРУМУ ДЖОЗЕФСОНА
У ДВОБАР’ЄРНОМУ ТУНЕЛЬНОМУ КОНТАКТI
Р е з ю м е
У роботi аналiтично розраховано струм Джозефсона у дво-
бар’єрному тунельному контактi зi структурою SISIS. Об-
числення виконано на основi квазiкласичного наближення
рiвнянь мiкроскопiчної теорiї надпровiдностi. Нами було
розраховано функцiї Грiна для тунельного SISIS-контакту
та одержано вираз для струму Джозефсона в моделi точко-
вого контакту. Встановлена залежнiсть тунельного стру-
му вiд фази параметра впорядкування. Ми також про-
аналiзували залежнiсть величини струму вiд вiдстанi мiж
бар’єрами та показали наявнiсть резонансних пiкiв джозе-
фсонiвського струму.
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