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The microscopic double-folding approach to the calculation of the nucleus-nucleus interaction
has been discussed in detail. The nucleus-nucleus interaction potentials for the 16O+ 208Pb sys-
tem with and without the contribution of the kinetic energy of nucleons in the nuclei are con-
structed, and the cross-sections of elastic scattering and subbarrier fusion are calculated. The
experimental values of those cross-sections are shown to be described well, if the contribution
of nucleons’ kinetic energy is taken into account.
K e yw o r d s: nucleus, interaction potential, nucleon density distribution, fusion cross-section,
kinetic energy, elastic scattering.

1. Introduction

In order to calculate the cross-sections of nuclear re-
actions, one has to know the potential energy of inter-
action between nuclei. Therefore, both the magnitude
and the radial dependence of the interaction potential
between nuclei are very important [1–4]. The energy
of interaction between spherical nuclei is associated
with the Coulomb interaction of protons and the nu-
clear interaction of all nucleons composing those nu-
clei. Therefore, the interaction potential between nu-
clei can be presented as the sum of the Coulomb, nu-
clear, and centrifugal interactions. The Coulomb and
centrifugal interactions between nuclei are known well
enough, whereas the interaction between nuclei as-
sociated with nuclear forces has been studied much
less. Therefore, a considerable number of various ap-
proximations have been proposed at present to calcu-
late this interaction [1–28].

Note that the nuclear part of the interaction po-
tential, which is described either by the Woods–
Saxon potential [1–4, 18] or with the use of the
double-folding potential [1, 2, 4–12], is attractive at
any distance between nuclei. On the contrary, the
“proximity” potential [15] or the potentials obtained
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in the framework of the energy density approach
with the help of a modified Thomas–Fermi method
[13, 14, 17, 19–28] are attractive at large and medium
distances between the interacting nuclei, but demon-
strate the repulsion at short distances, when the nu-
clei are strongly overlapped. This repulsion is due to
a large value of the coefficient of incompressibility of
the nuclear matter, a contribution of the kinetic en-
ergy to the potential, and the account for the Pauli
principle [19].

While determining the magnitude of nucleus-
nucleus interaction, one should apply the most exact
methods developed for the description of the inter-
action energy between nuclei and the properties of
nuclei and the nuclear matter. Therefore, we use the
double-folding method [1, 2, 4–12], which is widely
applied to the description of nuclear reactions. The
double-folding potential has the constant 𝑁 related
to the force of nucleus-nucleus interaction, which is
usually fitted to better describe the elastic scatter-
ing data [4–7, 9–11]. Note also that, when describ-
ing the cross-sections of subbarrier fusion of nuclei,
the double-folding potential is summed up with a
phenomenological repulsive potential [21] used to de-
scribe experimental data.

At short distances between nuclei, the nuclear den-
sities substantially overlap each other, and, due to

ISSN 2071-0186. Ukr. J. Phys. 2017. Vol. 62, No. 6 473



O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov

the Pauli principle, the internal kinetic energy of nu-
cleons in nuclei is considerably changed. This work
is aimed at a detailed consideration of the influence
of the contributions made by the kinetic energy to
the potential of nucleus-nucleus interaction. With the
help of a potential that takes those contributions
into account, the cross-sections of subbarrier fusion
are calculated, as well as the angular distribution of
the elastic scattering in the framework of the optical
model. The next section is devoted to the description
of the nucleus-nucleus interaction in the framework
of this approach. Sections 3 and 4 include the dis-
cussion of the results obtained and the conclusions,
respectively.

2. Effective Potential
of Nucleus-Nucleus Interaction

The potential of nucleus-nucleus interaction 𝑉 (𝑅)
can be presented as the sum of the nuclear, 𝑉𝑁 (𝑅),
Coulomb, 𝑉COUL(𝑅), and centrifugal, 𝑉𝐿(𝑅), compo-
nents depending only on the distance 𝑅 between the
nuclei:

𝑉 (𝑅) = 𝑉𝑁 (𝑅) + 𝑉COUL(𝑅) + 𝑉𝐿(𝑅). (1)

Here,

𝑉COUL(𝑅) =

⎧⎪⎪⎨⎪⎪⎩
𝑍1𝑍2𝑒
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, 𝑅 < 𝑅C,

(2)

𝑉𝐿(𝑅) =
~2𝑙(𝑙 + 1)

2𝑀 [𝐴1𝐴2/(𝐴1 +𝐴2)]𝑅2
, (3)

where 𝑍1 and 𝑍2 are the numbers of protons in the
nuclei, 𝑒 is the proton charge, 𝐴1 and 𝐴2 are the
numbers of nucleons in the nuclei, 𝑅C = 𝑟C(𝐴

1/3
1 +

+𝐴
1/3
2 ) is the radius of the Coulomb interaction, and

𝑙 is the value of the orbital moment.
In the energy density approximation [13, 14, 16, 17,

19], the potential of nucleus-nucleus interaction is
equal to the difference between the energies of the
system of two nuclei located at the finite, 𝐸12(𝑅),
and infinite, 𝐸1 + 𝐸2, distances from each other:

𝑉𝑁 (𝑅) = 𝐸12(𝑅)− 𝐸1 − 𝐸2. (4)

The corresponding binding energies can be deter-
mined, if we know the nucleon density distribution in

the nuclei and the functional of nuclear energy den-
sity,

𝐸12(𝑅) =

=

∫︁
𝑑r 𝜀 [𝜌1𝑝(r) + 𝜌2𝑝(r, 𝑅), 𝜌1𝑛(r) + 𝜌2𝑛(r, 𝑅)], (5)

𝐸1(2) =

∫︁
𝑑r 𝜀

[︀
𝜌1(2)𝑝(r), 𝜌1(2)𝑛(r)

]︀
, (6)

where

𝜀[𝜌𝑝(r), 𝜌𝑛(r)] = 𝜏 [𝜌𝑝(r)] + 𝜏 [𝜌𝑛(r)] +

+𝒱Sk[𝜌𝑝(r), 𝜌𝑛(r)] (7)

is the energy density [13,14,16,17,19,29–31]; 𝜌1𝑛 and
𝜌1𝑝 are the neutron and proton densities, respectively,
in the first nucleus; 𝜌2𝑛 and 𝜌2𝑝 are the nucleon den-
sities in the second nucleus; and 𝑅 is the distance be-
tween the centers of nuclear masses. Note that the en-
ergy density functional contains terms that are associ-
ated with both the kinetic (𝜏 [𝜌𝑝(r)] + 𝜏 [𝜌𝑛(r))]) and
potential (𝒱Sk[𝜌𝑝(r), 𝜌𝑛(r)]) energies of nucleons. In
this work, we use the Skyrme forces [32], which en-
ables us to obtain the well-known explicit expres-
sion for the energy density [16, 17, 19, 29–31]. The ki-
netic energy density has the following form to within
the second-order terms in ~: 𝜏 = 𝜏TF + 𝜏2, where
𝜏 = 𝜏𝑛 + 𝜏𝑝 is the sum of the kinetic energy densities
for the protons and neutrons [29, 30],

𝜏TF𝑛(𝑝) = 𝑘 𝜌
5/3
𝑛(𝑝) (8)

is the kinetic energy density for the neutrons in the
Thomas–Fermi approximation, 𝑘 = 5

3 (3𝜋
2)2/3, 𝜏2 is

the total expression for the gradient correction of the
second order in ~:

𝜏2𝑛(𝑝) = 𝑏1
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2
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𝜌𝑛(𝑝)

)︂2
, (9)

𝑏1 = 1/36, 𝑏2 = 1/3, 𝑏3 = 1/6, 𝑏4 = 1/6, 𝑏5 = −1/12,
and 𝑏6 = 1/2 are numerical coefficients; and ℎ𝑚 =
= ~2/2𝑚. The last term in formula (9) describes
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the spin-orbit interaction. The following notations are
also introduced:

W𝑛(𝑝) =
𝛿𝜀(𝑟)

𝛿J𝑛(𝑝)(𝑟)
=
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2
∇(𝜌+ 𝜌𝑛(𝑝)), (10)
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]︂]︂
, (11)

where 𝑥1, 𝑥2, 𝑡1, 𝑡2, and 𝑊0 are the constants of
Skyrme forces, which depend on the parametrization
choice. The contribution of the Thomas–Fermi term
dominates, especially in the nucleus bulk. However,
gradient corrections start to play a substantial role
at the nucleus surface. The term proportional to 𝑏1 is
the so-called Weizsäcker correction. The coefficient 𝑏1
is often used as a fitting parameter in order to com-
pensate the neglect of some terms in the series ex-
pansion of the kinetic energy to an accuracy of ~2 or
~4. However, in this case, the simultaneous descrip-
tion of the binding energies and the nucleon distribu-
tion densities becomes impossible.

Note that, in the energy density approximation
(4)–(7), the potential has two terms, which are associ-
ated with the kinetic energy of nucleons, 𝑉𝑇 (𝑅), and
the energy of nucleon-nucleon interaction, 𝑉𝑛𝑛(𝑅):

𝑉𝑁 (𝑅) = 𝑉𝑇 (𝑅) + 𝑉𝑛𝑛(𝑅), (12)

where

𝑉𝑇 (𝑅) =

=

∫︁
𝑑r 𝜏 [𝜌1𝑝(r) + 𝜌2𝑝(r, 𝑅), 𝜌1𝑛(r) + 𝜌2𝑛(r, 𝑅)]−

−
∫︁

𝑑r 𝜏 [𝜌1𝑝(r), 𝜌1𝑛(r)]−
∫︁

𝑑r 𝜏 [𝜌2𝑝(r), 𝜌2𝑛(r)], (13)

𝑉𝑛𝑛(𝑅) =

=

∫︁
𝑑r𝑉Sk[𝜌1𝑝(r) + 𝜌2𝑝(r, 𝑅), 𝜌1𝑛(r) + 𝜌2𝑛(r, 𝑅)]−

−
∫︁

𝑑r𝑉Sk[𝜌1𝑝(r), 𝜌1𝑛(r)]−
∫︁

𝑑r𝑉Sk[𝜌2𝑝(r), 𝜌2𝑛(r)].

(14)

The contribution of the kinetic energy of nucleons to
the potential is very important at short distances be-
tween the nuclei, since it takes into account that nu-
cleons are fermions and obey the Pauli principle. Note

that the contribution of the kinetic energy of nucle-
ons to the nucleus-nucleus potential is analogous by
its origin to the contribution of the kinetic energy
of electrons to the potential of intermolecular inter-
action, which has been taken into account since the
1950s [33,34], while calculating various parameters of
collisions between atoms and molecules.

Double-folding potentials have been widely used
recently [2–12]. In order to calculate the potential
of nucleus-nucleus interaction in the framework of
the double-folding method, the potential of nucleus-
nucleus interaction 𝜈 and the nucleon density distri-
butions 𝜌1(2) in the ground states of colliding nuclei
have to be given:

𝑉DF(𝑅) = 𝑁 𝐺(𝐸)

∫︁
𝑑r1𝑑r2𝜌1(r1)𝐹 (𝜌1(r1)+

+ 𝜌2(r2))𝑣(𝑅+ r2 − r1)𝜌2(r2). (15)

Here, r1 and r2 are radius vectors describing the po-
sitions of interacting nucleons in the coordinate sys-
tems coupled with the centers of mass of the nuclei,
and 𝑅 is the distance between those centers. The
functions 𝐹 (𝜌) and 𝐺(𝐸) [5, 7, 12] describe the de-
pendence of the nucleon-nucleon interaction on the
nucleon densities and the collision energy, and the
multiplier 𝑁 is usually selected to better describe the
scattering data [4–7, 9–11].

Note that the nucleon distribution densities in nu-
clei can be obtained in the framework of different ap-
proaches, and the forces acting between nucleons can
also be different. In this work, we use modern modifi-
cations of the double-folding method and modern in-
teraction parameterizations. In particular, these are
nucleon-nucleon forces 𝐷𝐷𝑀3𝑌 [5, 7, 12] depending
on the nucleon density distribution in nuclei and the
collision energy. According to Refs. [5, 7, 12],

𝐺(𝐸) = 1− 0.002𝐸, (16)

𝐹 (𝜌) = 𝐶 [1 + 𝛼 exp (−𝛽 𝜌)], (17)

where 𝐸 is the collision energy in MeV, 𝜌 the nucleon
distribution density, and 𝐶, 𝛼, and 𝛽 are parameters
determined by fitting the scattering data.

The contribution of the internal kinetic energy of
nucleons 𝑉𝑇 (𝑅), which was directly taken into ac-
count, when considering the nucleus-nucleus poten-
tial in the energy density approximation (5)–(11), is
ignored in the standard double-folding method [see
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Fig. 1. Nucleon distribution densities in 16O (the shell model)
and 208Pb (experimental data) nuclei

Eq. (15)]. Therefore, the potentials obtained in the
framework of standard double-folding method for the
description of reactions between heavy nuclei are very
deep [5–12]. For this reason, for a better description
of scattering data for heavy nuclei, the multiplier 𝑁
in modern parametrizations of the nucleon-nucleon
interaction is chosen, as a rule, from the interval
0.7 ≤ 𝑁 ≤ 1 [5, 9–11].

The double-folding potential uses the “frozen” den-
sities of nuclei in the ground state. At small distances
between the nuclei, the nuclear densities substantially
overlap each other, and, owing to the Pauli principle,
the internal kinetic energy of nucleons in the nuclei is
considerably changed. The contribution of the inter-
nal kinetic energy of nucleons to the double-folding
potential for a certain nucleon distribution in the co-
ordinate space can be calculated in the framework of
the standard or modified Thomas–Fermi approxima-
tion. As a result, the double-folding potential with
the account for the contribution from the internal ki-
netic energy can be determined as follows [4, 25, 26]:

𝑉DF−kin(𝑅) = 𝑉𝑇 (𝑅) + 𝑉DF(𝑅). (18)

Here, 𝑉𝑇 (𝑅) is the contribution of the internal kinetic
energy of nucleons to the potential determined in the
framework of the energy density approach (4)–(11),
and 𝑉DF(𝑅) is the ordinary double-folding potential
described by Eq. (15) and associated only with the
nucleon-nucleon interaction. The double-folding po-
tential (15) is associated with the “frozen” densities
in the nuclear ground states [2, 3, 13, 14]. Therefore,
when calculating the contribution of the internal ki-
netic energy of nucleons in Eq. (18), the correspond-
ing “frozen” densities must also be used.

Nucleon-nucleon forces that are usually selected to
calculate the potential in the double-folding approx-
imation do not depend on the velocity. Therefore,
in order to calculate the internal kinetic energy of
nucleons, the effective mass 𝑚* [29, 30] is usually
put to be equal to the ordinary mass 𝑚. However,
if the nucleon-nucleon forces depending on the den-
sity are used in calculations, the corresponding proce-
dure used to determine the contribution of the kinetic
energy of nucleons to the potential has to take into
account that 𝑚* and 𝑚 can be different.

In this work, we use local potentials for the nucleus-
nucleus interaction. Since we deal with energies in a
vicinity of the Coulomb barrier and a little above it,
the application of the local approximation looks quite
justified, because the nucleon velocities are much
higher than those of nuclei. The non-local character
of the interaction mainly appears owing to the Pauli
principle, the effect of which is known to diminish, as
the collision energy increases.

As nucleon densities, both experimental nucleon
densities [35] and the densities calculated in the fra-
mework of various theoretical approaches (the modi-
fied Thomas–Fermi method [29–31], shell model, and
Hartree–Fock method [36]) can be used.

3. Discussion of the Results

Figure 1 illustrates the nucleon density distributions
in 16O and 208Pb nuclei, which were chosen by us to
calculate the nucleus-nucleus interaction potential, as
well as the cross-sections of subbarrier fusion and elas-
tic scattering of those nuclei. The best results for 16O
nucleus were obtained with the use of the Hartree–
Fock model with the Skyrme forces 𝑆𝑘𝑀* for the
nucleon density distribution and the BCS approxi-
mation for the nucleon pairing [29, 36]. As the distri-
bution of protons in 208Pb, we took an experimen-
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tal charge density from Ref. [35]. Since the double-
folding method uses the total nucleon density mak-
ing no distinction between protons and neutrons, the
corresponding neutron density was constructed in a
proportional way, by using the isotopic symmetry. In
this case, the root-mean-square proton radii of 16O
and 208Pb nuclei are close to their experimental val-
ues [37].

In Fig. 2, the nucleus-nucleus interaction potentials
𝑉 (𝑅) = 𝑉𝑁 (𝑅) + 𝑉COUL(𝑅) for the 16O + 208Pb
system in a vicinity of the barrier, which were ob-
tained either in the framework of the conventional
double-folding method or with the contribution of
the internal kinetic energy, are compared. The nuc-
leus-nucleus potential was calculated for the nucleon-
nucleon interaction 𝐷𝐷𝑀3𝑌 1 with the Reid poten-
tial [5, 7, 12] and 𝑁 = 1; i.e. we did not fit the value
of multiplier 𝑁 , but used non-modified potential val-
ues. At distances close to the summed up radii of nu-
clei, the double-folding potential calculated with the
internal kinetic energy is less attractive than the or-
dinary one.

As a rule, the calculation of the cross-sections of
nuclear reactions with the help of various programs
demands a parametrization of the obtained poten-
tials of nuclear interaction in the form of the Woods–
Saxon potential. Therefore, we approximated the ob-
tained double-folding interaction potentials 𝑉DF(𝑅)
and 𝑉𝑇 (𝑅) + 𝑉DF(𝑅) by the corresponding Woods–
Saxon potentials

𝑉WS(𝑅) =
−𝑉0

1 + exp[(𝑅− 𝑟0(𝐴
1/3
1 +𝐴

1/3
2 ))/𝑑0]

(19)

at distances close to the sum of nuclear radii. The
following parameters were determined for the poten-
tials both taking and not taking the contribution
of the kinetic energy into account (see Table). The
Woods–Saxon potential describes well the nuclear
part of interaction at distances where the nuclei are
in contact (see Fig. 3). This interval is important for
the calculation of cross-sections of fusion and elastic
scattering reactions at energies close to the barrier
height.

On the basis of the obtained potentials and with the
help of the software code CCFULL [38], we calculated
the cross-sections of subbarrier nuclear fusion 16O+
+ 208Pb. The parameters of quadrupole and octupole
deformations of low-energy vibrational states in those

Fig. 2. Nucleus-nucleus interaction potentials for the 16O +
208Pb system obtained in the framework of the double-folding
method with the 𝐷𝐷𝑀3𝑌 1 forces with (𝑉kin) and without
(𝑉nokin) the kinetic energy contribution

Fig. 3. Approximation of the nuclear part of the nucleus-
nucleus interaction potential obtained making no allowance for
the contribution of the kinetic energy of nucleons and with the
help of the Woods–Saxon potential in a vicinity of about 10 fm
near the contact point

Parameters of Woods–Saxon potentials

𝑉0, MeV 𝑟0, fm 𝑑0, fm

kin 588.12 0.8786 0.8361

nokin 280.03 1.042 0.7465
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Fig. 4. Cross-sections of sub-barrier fusion 16O + 208Pb cal-
culated taking (kin) and not taking (nokin) the kinetic energy
contribution into account, and experimental data (Exp) [41]

Fig. 5. Experimental data for the 16O + 208Pb elastic scat-
tering at a beam energy of 95 MeV (Exp) [42] and the results of
calculations in the framework of the optical model with the use
of the nucleus-nucleus potential obtained both taking (kin) and
not taking (nokin) the kinetic energy contribution into account

nuclei were taken from tables in Refs. [39, 40]. Those
parameters involve the connection with the channels
characterized by low-energy vibrational states in the
colliding nuclei, when calculating the fusion cross-
sections. The cross-sections obtained for the potential
that was found with the contribution of the kinetic
energy of nucleons agree well with experimental data
(see Fig. 4). The potential barrier obtained making
no allowance for the contribution of the kinetic en-
ergy of nucleons is lower than the barrier obtained

with this contribution (see Fig. 2). Therefore, the fu-
sion cross-section calculated without the contribution
of the kinetic energy of nucleons turned out consider-
ably overestimated in comparison with experimental
values (Fig. 4). Note that, in all our calculations, we
used the value of the Coulomb radius 𝑟C = 1.2 fm.

We also calculated the cross-sections for the elas-
tic scattering of nuclei 16O+ 208Pb at an energy of
95 MeV in the framework of the optical model for
the calculated potentials. When calculating the elas-
tic scattering cross-sections, the imaginary part of the
nuclear potential was presented as the sum of volume
and surface terms:

𝑊 (𝑅) = − 𝑊𝑊

1 + exp
[︁
𝑅− 𝑟𝑊 (𝐴

1/3
1 +𝐴

1/3
2 )/𝑑𝑊

]︁ −

−
𝑊𝑆 exp

[︁
𝑅− 𝑟𝑆(𝐴

1/3
1 +𝐴

1/3
2 )/𝑑𝑆

]︁
𝑑𝑆

{︁
1 + exp

[︁
𝑅− 𝑟𝑆(𝐴

1/3
1 +𝐴

1/3
2 )/𝑑𝑆

]︁}︁2 . (20)

Here, the parameters 𝑊𝑊 , 𝑟𝑊 , 𝑑𝑊 , 𝑊𝑆 , 𝑟𝑆 , and 𝑑𝑆
are the force, radius, and diffuseness, respectively, of
the volume and surface parts of the imaginary nuclear
potential. Such a representation of the imaginary part
is general in the theory of nucleus-nucleus collisions [1,
4,10,11]. The parameters of the imaginary part of the
nuclear potential were found for the double-folding
potential, by taking the contribution of the internal
kinetic energy into account. The following values were
obtained: 𝑊𝑊 = 60.594 MeV, 𝑟𝑊 = 1.194 fm, 𝑑𝑊 =
= 0.3885 fm, 𝑊𝑆 = 6.035 MeV, 𝑟𝑆 = 1.315 fm, and
𝑑𝑆 = 0.67 fm.

The results of calculations are illustrated in Fig. 5.
Here, the magnitudes of the elastic scattering cross-
section are exhibited in the form normalized to the
Rutherford cross-section. The kinetic energy was and
was not taken into account. For comparison, experi-
mental data [42] are also included. From the figure,
one can see that the account for the internal kinetic
energy of nucleons made it possible to considerably
improve the description of experimental data in this
case as well.

4. Conclusions

In Figs. 4 and 5, the results of our calculations for the
cross-sections of 16O+ 208Pb sub-barrier fusion and
elastic scattering, respectively, are compared with ex-
perimental data. The results of calculations obtained
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with the contribution of the internal kinetic energy
to the double-folding potential describe experimental
data quite well. The results of calculation of the fu-
sion cross-section with the use of the ordinary double-
folding potential are considerably overestimated in
the subbarrier region. The elastic scattering cross-
sections obtained without the contribution of the in-
ternal kinetic energy to the double-folding potential
also have a worse agreement with the experimental
data. Note that the experimental data for the elas-
tic scattering and sub-barrier fusion cross-sections
are described without fitting the multiplier 𝑁 , whose
value is usually selected to provide a better descrip-
tion of scattering data.

The authors express their sincere gratitude to Prof.
M.Dasgupta for experimental data on 16O + 208Pb
subbarrier fusion cross-sections [41].
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ЕФЕКТИВНИЙ ЯДЕРНО-ЯДЕРНИЙ ПОТЕНЦIАЛ
З УРАХУВАННЯМ ВНЕСКУ КIНЕТИЧНОЇ ЕНЕРГIЇ
НУКЛОНIВ ТА ПЕРЕРIЗИ ПРУЖНОГО
РОЗСIЯННЯ I ПIДБАР’ЄРНОГО ЗЛИТТЯ

Р е з ю м е

Детально обговорюється мiкроскопiчнiй пiдхiд подвiйної
згортки для розрахунку ядерно-ядерної взаємодiї. Побу-
довано потенцiали ядерно-ядерної взаємодiї для системи
16O+ 208Pb з урахуванням та без урахування внеску кiне-
тичної енергiї нуклонiв у ядрах, розраховано перерiзи пру-
жного розсiяння та пiдбар’єрного злиття. Показано, що екс-
периментальнi значення перерiзiв пружного розсiяння та
пiдбар’єрного злиття добре описуються з урахуванням вне-
ску кiнетичної енергiї нуклонiв.
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