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FINITE LARMOR RADIUS
EFFECTS ON A TEST-PARTICLE DIFFUSIONPACS 71.20.Nr, 72.20.Pa

Particle diffusion in a static random electric field across a uniform magnetic field is consid-
ered. Earlier, we have proposed the closure for the statistical equation that describes particle
diffusion in the drift approximation with account for the effect of particle trapping. Here, a gen-
eralization of our approach for a finite Larmor radius is given. It is shown that the statistical
characteristics of a particle ensemble found as solutions of the analytical model are consistent
with the results of direct numerical simulations within a wide range of Larmor radii.
K e yw o r d s: finite Larmor radius, diffusion of particles, random field, numerical simulation.

1. Introduction

Nowadays, for understanding a plasma behavior in
laboratory devices and space, numerical experiments
are widely used. Along with this to interpret exper-
imental observations and results of numerical simu-
lation, as well to describe basic mechanisms under-
lying complex processes, analytical models might be
helpful.

An important role in the evolution of plasma sys-
tems is played by transport processes. In nonequilib-
rium plasma with developed collective motion, a par-
ticle transport is anomalous in the sense that it is
caused not by pair particle collisions, but their in-
teraction with intense waves. Thus, one of the ob-
jectives of an analytical description of transport pro-
cesses is to find the statistical characteristics of a par-
ticle ensemble from the known statistical characteris-
tics of random electric fields that can be measured in
experiments.

Most plasma systems are penetrated by a mag-
netic field, which can be taken as constant and uni-
form on the temporal and spatial scales of considera-
tion. Whether the correlation time of random electric
fields is not small in comparison with the time of a
particle guiding center drift at the distances of char-
acteristic spatial inhomogeneities of the electric field,
a significant role in the particle transport across a
magnetic field will be played by the effect of parti-
cle trapping by the electric field. This effect appears
most strongly in a frozen electric field with an in-
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finite correlation time. Accounting for the trapping
effect presents difficulties for the statistical descrip-
tion. Thus, a random field constant in time is a good
test for the statistical theory.

Consequently, a model of particle diffusion in
steady fields might serve as a basis for the transition
to more general situations, i.e., to fields varying in
time. Moreover, a method of calculation of the parti-
cle transport in given random fields, if is found, might
be incorporated in a self-consistent description.

The evolution of particle ensembles in external
fields is described by the nonlinear integro-differential
equation for distribution function [1] derived from
the first principles. Unfortunately, there is no regular
methods of its solution. For this reason, as in most
statistical theories, a certain assumption about a sta-
tistical equation closure should be used. The example
of closure in a kinetic theory of plasma is an expres-
sion of correlation functions of higher order through
lower ones. A closure in hydrodynamics gives higher
moments of a distribution function in terms of lower
ones, for example, a pressure through a density and
a temperature.

The widely known closure that is used for the cal-
culation of a Lagrangian correlation function from the
Eulerian one was proposed by Corrsin [2,3]. However,
it can be applied only to fields with a small corre-
lation time and is not valid otherwise [4] and, even
more, for the particle trapping. To account for the
trapping effect the percolation approach [5], method
of continuous time random walks (CTRW) [6], diffu-
sion equations with fractal derivatives [7], and decor-
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relation trajectory method [8, 9] were used. The per-
colation approach gives asymptotic diffusion coeffi-
cients, but does not consider the temporal evolution
of the statistical characteristics of a particle ensem-
ble. CTRW and the diffusion equation with fractal
derivatives have a phenomenological component as-
sociated with free parameters such as the probabil-
ity of particle jump and fractional derivative expo-
nents. The approach nearest to our one is the decor-
relation trajectory method, where a particular closure
along with the concept of subensembles were used.

Earlier, we have proposed the analytical model of
2d particle diffusion in frozen random electric and
uniform magnetic fields in the drift approximation
[14, 15]. Its solutions were shown to be consistent
with the results of numerical simulation. The compar-
ison of our approach and the decorrelation trajectory
method [9] showed [16] that the former is technically
simpler and has no unphysical dependence on a num-
ber of subensembles.

The diffusion coefficient calculated in the drift ap-
proximation tends asymptotically to zero. A small
but finite radius of gyration changes a qualitative be-
havior of the diffusion coefficient so that it remains
finite all the time. However, the effect of a finite Lar-
mor radius is more pronounced for fast particles,
when it becomes of an order of the size of spatial
inhomogeneities of a random field.

In this paper, our approach is generalized to ac-
count for the effects of a finite Larmor radius. The
main condition is a small displacement of the guiding
center in comparison with the size of a spatial field
inhomogeneity during a particle gyration period. We
do not assume that the Larmor radius is small on the
same spatial scale. Obviously, this requires to con-
sider the effect in all orders in the Larmor radius. The
method of calculation was formulated with a help of
the analysis [18] of various approaches used in the
decorrelation trajectory method to account for the
effects of a finite Larmor radius [10, 11] and [12, 13].

The paper is organized as follows. The equations of
particle motion are given in Sec. 2, and the statistical
approach is presented in Sec. 3. The results of the
analytical model and direct numerical simulations are
compared in Sec. 4 with conclusions in Sec. 5.

2. Equations of Particle Motion

We consider the 2d motion of test particles in a frozen
random electrostatic field E(r) perpendicular to a

constant magnetic field B oriented along 0𝑧. The par-
ticle coordinates r = {𝑥, 𝑦} and velocities v are gov-
erned by the equations

𝑑r

𝑑𝑡
= v, (1)

𝑑v

𝑑𝑡
=

𝑒

𝑚

(︂
E(r) +

1

𝑐
[v ×B]

)︂
. (2)

The random electric field is taken as a superposition
of 𝑁 harmonics distributed according to the Gaus-
sian with a width Δ𝑘 and the amplitude of the po-
tential 𝜑0:

E(r) = − 𝜕

𝜕r
𝜑(r) = 𝐴𝜑0 ×

×
𝑁∑︁
𝑠=1

k𝑠 exp

(︃
−1

2

(︂
k𝑠

Δ𝑘

)︂2)︃
sin(k𝑠r− 𝛼𝑠). (3)

The set of 𝑁 = 𝑁𝜅 × 𝑁𝜃 wave vectors is given by
𝑁𝜅 absolute values in the interval (0, 𝑘max) and 𝑁𝜃

directions

k𝑠 = 𝑘𝑙e𝑚, 𝑘𝑙 = 𝑙 𝛿𝑘 = 𝑙
𝑘max

𝑁𝜅
, 𝑙 = 1, ..., 𝑁𝜅;

e𝑚 = (cos(𝜃𝑚), sin(𝜃𝑚)), 𝜃𝑚 = 𝑚
2𝜋

𝑁𝜃
, 𝑚 = 1, ..., 𝑁𝜃.

A particular realization of the random electric field
E(r) is determined by a set of random phases {𝛼𝑖},
𝑖 = 1, ..., 𝑁 . The normalization coefficient

𝐴 =

√︃
4𝑘max

𝜋1/2Δ𝑘 𝑁𝜅𝑁𝜃

is chosen to meet the condition ⟨E(r)E(r)⟩ = 1.
The equations of motion (1), (2) can be rewritten

in terms of the Larmor radius rL = −[v × e𝐵 ]/Ω𝐵 ,
and the guiding center coordinate r𝑑 = r− rL:

𝑑r𝑑
𝑑𝑡

=
1

Ω𝐵

𝑒

𝑚
[E(r𝑑 + rL)× e𝐵 ], (4)

𝑑rL
𝑑𝑡

= − 1

Ω𝐵

𝑒

𝑚
[E(r𝑑 + rL)× e𝐵 ]+Ω𝐵 [rL × e𝐵 ], (5)

where e𝐵 = B/𝐵 is a unit vector along the mag-
netic field, and Ω𝐵 = 𝑒𝐵/𝑚𝑐 is the Larmor fre-
quency. For convenience, we introduce the dimension-
less spatial {𝜒,𝜒𝑑,𝜌} = {r, r𝑑, rL} × Δ𝑘/(2𝜋) and
time 𝜏 = 𝑡𝜎0Ω𝐵/(2𝜋) variables. The normalization
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of time with 𝜎0 = 𝑒𝜑0Δ𝑘2/(𝑚Ω2
𝐵) makes particle or-

bits in the drift approximation independent of a field
amplitude.

According to Eq. (3), the dimensionless potential (a
stream function) 𝜎(𝜒) takes the form

𝜎(𝜒) =

√︂
𝜅max

𝜋3/2𝑁𝜅𝑁𝜃
×

×
𝑁∑︁
𝑖=1

exp

(︂
−1

2
𝜅2
𝑖

)︂
cos (2𝜋𝜅𝑖𝜒− 𝛼𝑖), (6)

where 𝜅 = 𝑘/Δ𝑘 are normalized wave vectors.
Then the dimensionless coordinate of the particle

guiding center 𝜒𝑑 and the Larmor radius 𝜌 are gov-
erned by the equations

𝑑𝜒𝑑𝑖

𝑑𝜏
= −𝜖𝑖𝑘

𝜕

𝜕𝜒𝑑𝑘
𝜎(𝜒𝑑 + 𝜌), (7)

𝑑𝜌𝑖
𝑑𝜏

= 𝜖𝑖𝑘

(︂
𝜕

𝜕𝜒𝑑𝑘
𝜎(𝜒𝑑 + 𝜌) +

2𝜋

𝜎0
𝜌𝑘

)︂
, (8)

where 𝜖𝑖𝑘 denotes the antisymmetric second-order
tensor 𝜖𝑥𝑦 = −𝜖𝑦𝑥 = 1.

The numerical simulation is performed by the inte-
gration of Eqs. (7), (8) with Eq. (6) and gives us exact
particle trajectories 𝜒(𝜏) = 𝜒𝑑(𝜏) + 𝜌(𝜏). Statistical
characteristics of an ensemble of particles is obtained
from these data by averaging over 𝑁𝑟 realizations of
random fields. Thus, the particle mean displacement
is obtained from the simulation as follows:

⟨𝜒𝑖⟩(NS)(𝜏) =
1

𝑁

𝑁𝑟∑︁
𝑟=0

𝜒𝑖,𝑟(𝜏), 𝑖 = 𝑥, 𝑦.

The dispersion measure is a variance

⟨Δ𝜒2
𝑖 ⟩

(NS)
(𝜏) =

1

𝑁

𝑁𝑟∑︁
𝑟=0

(𝜒𝑖,𝑟(𝜏)− ⟨𝜒𝑖⟩(𝜏))2.

For an isotropic random field, the mean displacement
is zero, and the dispersion is measured by the mean-
square displacement ⟨Δ𝜒2

𝑖 ⟩
(NS)

(𝜏) = ⟨𝜒2
𝑖 ⟩(NS)(𝜏).

The mean displacement of guiding centers and their
dispersion are calculated similarly. Thus, the disper-
sion of guiding center coordinates for the isotropic
random field Δ

(NS)
𝑖 is found as

Δ
(NS)
𝑖 (𝜏) =

1

𝑁

𝑁𝑟∑︁
𝑟=0

(𝜒𝑑 𝑖,𝑟(𝜏))
2
. (9)

The Lagrangian correlation functions can be found in
a direct numerical simulation as well. For example,

the Lagrangian correlation function of drift velocities
is calculated as follows:

𝐶L
𝜐𝑖𝜐𝑗

(NS)
(𝜏) =

1

𝑁

𝑁𝑟∑︁
𝑟=0

(𝜐𝑖,𝑟(𝜒(𝜏)) 𝜐𝑗,𝑟(0)), (10)

where the drift velocity 𝜐 in an exact particle posi-
tion, according to Eq. (7), is given as

𝜐𝑖 = 𝜖𝑖𝑘
𝜕

𝜕𝜒𝑘
𝜎(𝜒). (11)

Dispersion (9) and the Lagrangian correlation func-
tion (10) calculated from the simulation data inde-
pendently satisfy the equations

1

2
Δ

(NS)
𝑖 (𝜏) =

𝜏∫︁
0

𝑑𝜏 ′𝐷
(NS)
𝑖 (𝜏 ′) =

=

𝜏∫︁
0

𝜏 ′
𝜏 ′∫︁
0

𝜏 ′′𝐶L
𝜐𝑖𝜐𝑖

(NS)
(𝜏 ′′), (12)

where 𝐷
(NS)
𝑖 (𝜏) is a time-dependent diffusion coef-

ficient. Statistical characteristics found in the direct
numerical simulation will be compared with calcula-
tions made on a basis of the analytical model consid-
ered in the next section.

3. Analytical Approach

The aim of our analytical approach is to find a tem-
poral evolution of the statistical characteristics of an
ensemble of particles in a random field. The complete
information is given by the particle distribution func-
tion (or a transition probability), which is a solution
of the nonlocal nonlinear equation. As far as there are
no regular methods to find an exact solution, when
the effect of particle trapping is not negligible, we
limit ourselves to the finding of the particle disper-
sion that is the second moment of the distribution
function.

The particle dispersion Δ𝑖(𝜏) is given in terms of
the diffusion coefficient 𝐷𝑖(𝜏) as follows:

Δ𝑖(𝜏) = 2

𝜏∫︁
0

𝑑𝜏𝐷𝑖(𝜏), 𝑖 = 𝑥, 𝑦, (13)

and the Taylor relation gives the diffusion coefficient
in terms of the Lagrangian correlation function of ve-
locity components

𝐷𝑖(𝜏) =

𝜏∫︁
0

𝑑𝜏𝐶L
𝜐𝑖𝜐𝑖

(𝜏). (14)
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These two equations are equivalent to Eqs. (12) that
were verified in numerical simulations.

The Lagrangian velocity correlation function

𝐶L
𝜐𝑖𝜐𝑖

(𝜏) = ⟨𝜐𝑖(𝜒(𝜏)) 𝜐𝑖(𝜒(0))⟩ (15)

is calculated along partial trajectories by averaging
over an ensemble of realizations of the random field
denoted by angular brackets ⟨...⟩. It is unknown, and
the key problem is to deduce it from the Eulerian cor-
relation function. The Eulerian velocity correlation
function is defined in a laboratory frame as

𝐶E
𝜐𝑖𝜐𝑖

(𝜒) = ⟨𝜐𝑖(𝜒) 𝜐𝑖(0)⟩ (16)

and is supposed to be given. It is measured either
in experiments or can be calculated for given fields,
i.e. ones defined by Eq. (6). The Eulerian potential
correlation function

𝐶E
𝜎𝜎(𝜒) = ⟨𝜎(𝜒) 𝜎(0)⟩ (17)

is related to the Eulerian velocity correlation function
as follows:

𝐶E
𝜐𝑖𝜐𝑖

(𝜒) = − 𝜕2

𝜕𝜒2
𝑖

𝐶E
𝜎𝜎(𝜒). (18)

For statistically isotropic random fields, the Eulerian
correlation function of potentials depends on a dis-
tance between two points

𝐶E
𝜎𝜎(𝜒) = ⟨𝜎(𝜒) 𝜎(0)⟩. (19)

If we introduce 𝐶E
𝜐𝜐 as the sum of components

𝐶E
𝜐𝜐(𝜒) = 𝐶E

𝜐𝑥𝜐𝑥
(𝜒) + 𝐶E

𝜐𝑦𝜐𝑦
(𝜒), (20)

it will be dependent on the absolute value of |𝜒|
as well.

The exact relation between Eulerian and Lagran-
gian velocity correlation functions could be estab-
lished with a help of the transition probability. Howe-
ver, as was noted, it is unknown. So, we should make
assumption about such relation, which is equivalent
to a particular closure of statistical equations. This is
the main assumption in the formulation of our ana-
lytical model. Further, we shall avoid to use free pa-
rameters as well.

For zero Larmor radius, when particle motion is
considered in the drift approximation, the following
closure was proposed [14]:

𝐶L
𝜐𝜐(𝜏) = 𝐶E

𝜐𝜐(Δ
1/2(𝜏)), (21)

where Δ = Δ𝑥 +Δ𝑦. The development of this model
with account for subensembles was given in [15], and

the better agreement with a numerical simulation
was achieved. In work [16], our approach was com-
pared with the decorrelation trajectory method [9],
and some advantages of the former were shown.

Here, a generalization of our analytical model to
account for the finite Larmor radius effects is pro-
posed. We assume that the displacement of the parti-
cle guiding center during the cyclotron period in com-
parison with the size of spatial field inhomogeneities
is small and average the random potential (6) over
the particle gyration angles 𝜙𝑐:

𝜎(𝜒𝑑, 𝜌) =
1

2𝜋

2𝜋∫︁
0

𝑑𝜙𝑐 𝜎(𝜒𝑑 + 𝜌(𝜙𝑐)) =

=

∫︁
𝑑𝜅 𝜎(𝜅) exp(𝑖𝜅𝜒𝑑)𝐽0 (𝜅𝜌). (22)

The corresponding gyroaveraged Eulerian potential
correlation function is of the form
𝐶E

𝜎𝜎(𝜒𝑑, 𝜌) = ⟨𝜎(𝜒𝑑 + 𝜒𝑑1, 𝜌) 𝜎(𝜒𝑑1, 𝜌)⟩ =

=

∫︁
𝑑𝜅 𝐶E

𝜎𝜎(𝜅) exp(𝑖𝜅𝜒𝑑)𝐽
2
0 (𝜅𝜌). (23)

Such gyroaveraging of the correlation function in the
application to the method of decorrelated trajecto-
ries was considered in [12]. The averagings of fields
over the ensemble and over the angles of gyration
do not commute. A similar expression, but with the
Bessel function in the first degree 𝐽0(𝜅𝜌), is obtained
when the averaging over an ensemble is performed
before the gyroaveraging. This method was used ear-
lier in the paper [11] for the decorrelation trajectory
method. Both orders of averaging in the application
to our closure were compared in the work [16], and it
was found that the former gives a better agreement
with numerical simulations. Our choice is consistent
with conclusions in [12]. Thus we will use Eq. (23) for
the gyroaveraged Eulerian correlation function.

The generalization of closure (21) for a finite Lar-
mor radius is the following:

𝐶L
𝜐𝜐(𝜏) = 𝐶E

𝜐𝜐

(︁
Δ1/2(𝜏), 𝜌

)︁
. (24)

Then Eqs. (13), (14), and (24) yield the final equation
for a mean square displacement:
𝑑2

𝑑𝜏2
Δ(𝜏) = 𝐶E

𝜐𝜐

(︁
Δ1/2(𝜏), 𝜌

)︁
, (25)

where 𝐶E
𝜐𝜐(𝜒) is a known function.

The solution of this equation gives the temporal
evolution of the mean-square displacement, the run-
ning diffusion coefficient, and the Lagrangian corre-
lation function for a given finite Larmor radius. The
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solution of the equation averaged over the angles of
gyration will be compared in the next section with
the results of numerical simulation performed on a
basis of the exact nonaveraged equations of motion
(7), (8).

4. Comparison with Results
of Numerical Simulation

Equations (7) and (8) have been solved numeri-
cally using the Runge–Kutta method of the fifth or-
der. The random potential (6) was taken as a super-
position of 𝑁 = 1440 harmonics (𝑁𝜅 = 20, 𝑁𝜃 = 72)
with a unique set of random phases for each real-
ization. The maximal absolute value of the dimen-
sionless wave vector in the numerical simulation was
taken as 𝜅max = 2 because of the decay of partial in-
tensities distributed according to Gaussian (6). These
parameters were chosen to give a smooth curve for the
Eulerian correlation function of the potential (stream
function) 𝐶E

𝜎𝜎. The number of realizations was taken
as 𝑁𝑟 = 104.

For the considered random potential (6), the Eule-
rian correlation function in the continuous limit takes
the form
𝐶E

𝜎𝜎(𝜒) =
1

4𝜋2
exp

(︂
−𝜋2𝜒2

2

)︂
𝐼0

(︂
𝜋2𝜒2

2

)︂
. (26)

The Fourier transform of this correlation function is

𝐶E
𝜎𝜎(𝜅) =

1

4𝜋7/2𝜅
exp

(︂
− 𝜅2

8𝜋2

)︂
. (27)

For the correlation function of drift velocity compo-
nents, we obtain

𝐶E
𝜐𝑖𝜐𝑖

(𝜅) =
𝜅2
𝑖

4𝜋7/2𝜅
exp

(︂
− 𝜅2

8𝜋2

)︂
. (28)

The substitution of the Fourier transform (28) into
Eq. (25) gives the equation for the mean-square dis-
placement with account for a finite Larmor radius in
the gyroaveraged random potential (22)

𝑑2

𝑑𝜏2
Δ(𝜏) =

∫︁
𝑑𝜅

𝜅2

4𝜋7/2
exp

(︂
− 𝜅2

4𝜋2

)︂
×

× 𝐽0(𝜅Δ
1/2)𝐽2

0 (𝜅𝜌). (29)

The integral on the right-hand side of Eq. (29) was
calculated numerically and is valid in a wide range of
Larmor radii. The numerical solutions of this equa-
tion gives the temporal evolution of the mean-square
displacement of particle guiding centers for fixed val-
ues of the Larmor radii that correspond to the initial
values in the numerical simulation.

Fig. 1. Lagrangian correlation function for 𝜌 = 0, 0.1, 0.5, 1.

obtained in the numerical simulation (NS, 𝑁𝑟 = 104) and by
the moment approximation (MA)

Fig. 2. Diffusion coefficient for Larmor radii 𝜌 = 0, 0.1, 1, 10

obtained in the numerical simulation (NS) and as a solution of
the analytical model (MA)

Fig. 3. The same as in Fig. 2, but for longer times
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Fig. 4. Mean-square displacement for Larmor radii 𝜌 = 0,
0.1, 1, 10 obtained in the numerical simulation (NS) and as a
solution of the analytical model (MA)

Fig. 5. The same as in Fig. 4, but for longer times

Fig. 6. Intersection of dispersion curves. Numerical simu-
lation

Fig. 7. Intersection of dispersion curves. Analytical model

These solutions are compared with the results of di-
rect numerical simulations of the exact particle mo-
tion governed by Eqs. (7) and (8). In simulations,
the fields were not gyroaveraged, and the Larmor ra-
dius was not fixed. In work [18], we observed that the
Larmor radius dispersion is saturated, and this gives
a reason to assume it as a constant in the analyti-
cal model. Other statistical characteristics of particle
ensembles such as the diffusion coefficient 𝐷(𝜏) and
the Lagrangian correlation function 𝐶L

𝜐𝑖𝜐𝑖
(𝜏) are re-

lated to the mean-square displacement by Eqs. (13)
and (14) and are compared with the results of simu-
lations as well.

In Fig. 1, the Lagrangian correlation functions
found from the analytical model and in simulations
are shown. In the drift approximation, 𝜌 = 0, as well
as for a small Larmor radius 𝜌 = 0.1, the particle
trapping by a field is apparently reflected by nega-
tive values of the correlation function. At larger 𝜌, it
becomes not so strong and evident.

The running diffusion coefficients are shown in
Fig. 2 for 𝜏 = 100 and in Fig. 3 for a longer tem-
poral interval of simulation, 𝜏 = 1000, with higher
fluctuations.

In the drift approximation, particles move along
counter lines of the stream function. In this sense,
their movement for each particular field realization is
regular. Herewith, the diffusion coefficient asymptot-
ically tends to zero. This reflects, together with the
well-defined maximum at the early stage, a strong
particle trapping.

For 𝜌 ̸= 0, the particles do not move on closed or-
bits. This causes a weakening of particle trapping and
leads to asymptotically finite diffusion coefficients.
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The particle mean-square displacement corre-
sponding to these running diffusion coefficients is
shown in Figs. 4 and 5. Figures 1–5 show an agree-
ment between solutions of the proposed analytical
model and results of direct numerical simulations.

It should be noted that, at the early evolution
stage, the particle spread proceeds faster for small
Larmor radii, whereas the asymptotic diffusion coef-
ficient grows with the Larmor radius. This leads to
the intersection of curves of the mean-square dis-
placement shown for the numerical simulation in
Fig. 6 and for a solution of the analytical model in
Fig. 7. The analytical model implies that the inter-
section of curves for the initial gyroradii 𝜌(0) = 0
and 𝜌(0) = 0.1 occurs at the instant 𝜏𝑖0 ≈ 100; for
𝜌(0) = 0 and 𝜌(0) = 0.5 at 𝜏𝑖1 ≈ 450; for 𝜌(0) = 0 and
𝜌(0) = 1.0 at 𝜏𝑖2 ≈ 2200. Earlier, this effect was found
in [10] by the decorrelation trajectory method. In ran-
dom fields with finite correlation times, it may cause
a nonmonotonous dependence of the diffusion coeffi-
cient on the Larmor radius.

5. Conclusions

The diffusion of a test particle in a random electric
field across a constant magnetic field has been con-
sidered analytically and numerically. The attention is
paid to the particle trapping effect, and, for this rea-
son, a frozen field is considered. Our analytical ap-
proach that was earlier developed for the drift mo-
tion is generalized to account for finite Larmor radius
effects. This effect was calculated in all orders of the
Larmor radius, so the model can be used in a wide
range of its variation. The consistency of solutions of
the analytical model with the results of a direct nu-
merical simulation is shown.
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О.М.Черняк, В.I. Засенко
ВПЛИВ СКIНЧЕНОГО РАДIУСА
ЛАРМОРА НА ДИФУЗIЮ ПРОБНИХ ЧАСТИНОК
Р е з ю м е
Розглянуто дифузiю частинок у статичному випадковому
електричному полi поперек однорiдного магнiтного поля.
Ранiше ми запропонували спосiб замикання для статисти-
чного рiвняння, яке описує дифузiю частинок у дрейфово-
му наближеннi з урахуванням ефекту захоплення частинок.
В цiй роботi дано узагальнення нашого пiдходу з урахува-
нням скiнченого ларморового радiуса. Показано, що стати-
стичнi характеристики, знайденi як розв’язки аналiтичної
моделi, узгоджуються з результатами прямого числового
моделювання в широкому дiапазонi ларморових радiусiв.
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