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ASYMMETRIC RANDOM WALK
IN A ONE-DIMENSIONAL MULTIZONE ENVIRONMENTPACS 05.40.Fb, 02.50.Ga

We consider a random walk model in a one-dimensional environment formed by several zones
of finite widths with fixed transition probabilities. It is assumed that the transitions to the left
and right neighboring points have unequal probabilities. In the continuous limit, we derive ana-
lytically the probability distribution function, which is mainly determined by a walker diffusion
and a drift and takes perturbatively the interface effects between zones into account. It is used
for computing the probability to find a walker at a given space-time point and the time de-
pendence of the mean squared displacement of a walker trajectory, which reveals the transient
anomalous diffusion. To justify our approach, the probability function is compared with the
results of numerical simulations for the case of three-zone environment.
K e yw o r d s: random walk, inhomogeneous environment, diffusion, advection.

1. Introduction
The present paper is devoted to a deeper study of a
random walk (RW) in a one-dimensional inhomoge-
neous environment consisting of 𝑁 zones with con-
stant parameters. The base model was formulated in
our previous work [1], where we referred to a number
of problems [2–9] investigated before and influenced
our motivation. In the mentioned work, we applied
the analytical approach to find the probability distri-
bution function (PDF) of a walker in a heterogeneous
environment.

Here, we supply the RW model by placing an at-
tractor/repulsor at the root point, which serves as
a source of the external field (it could be a uniform
electric field for a charged walker). Its presence deter-
mines the preferable directions of a walk and leads,
therefore, to the emergence of an inequality (asym-
metry) between the probabilities of transitions to the
left and to the right.

Our investigations are stimulated by the applica-
tion of RW models in many fields such as polymer
physics, economics, computer sciences, etc. [10]. RW
is often considered as a simple mathematical formu-
lation of the diffusion process. The model of ran-
dom walk is widely used in biophysics and medicine
[11,12]. In particular, it is applied to describe the pro-
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cesses of migration and proliferation of a population
of cells [13–16].

Moreover, the RW in inhomogeneous environments
is of great interest because of its connection with
transport phenomena in fractured and porous rocks,
diffusion of particles in gels, colloidal solutions, and
biological cells (see, e.g., [17] for a review).

Here, we consider the model in a one-dimensional
𝑁 -zone environment located along a coordinate axis
and symmetric under the coordinate sign inver-
sion. The transition probability is assumed to vary
within the different zones and to be unequal for the
left and right steps. Numerous previous studies deal-
ing with the one-dimensional RW in environments
with “inhomogeneities” such as walls [3, 4, 6], stack
of permeable barriers [5, 7, 8], or finite-sized barri-
ers [2, 9] revealed the physically significant effects
and the non-trivial behavior with pronounced devi-
ations away from the Brownian one. In particular,
the time-dependent (transient) diffusion coefficients
are observed in an inhomogeneous system of parallel
walls with arbitrary permeabilities [5].

The model under consideration is engaged to
describe, e.g., the linear chaotic structures passing
through a finite number of zones with viscous proper-
ties in an external field. Imagining a few-dimensional
problem, for a moment, these may be polymer chains
crossing the cellular membranes [18]. The model can
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be also applied to describe the dynamics of particles
in a system with barriers, which are associated with
different sorts of the matter or geometry of space. Our
goal is to derive an analytical expression for the prob-
ability to find a particle as a function of the space-
time with regard for the transitions between zones
due to the diffusion and advection.

We are interested in catching the new effects caused
by a transition probability asymmetry in compar-
ison with the symmetric case [1]. Analytically, we
aim to reduce the problem in the continuous limit
to finding the PDF from a differential equation
with the diffusion coefficient and the drift velocity,
which inherit the established step-like space depen-
dence. Further, the space-time evolution might be
characterized by the averages, which are found by
means of the PDF and allow us to compare the
properties of similar models with different parame-
ters. We would like also to demonstrate a strong de-
pendence of the meaningful quantities on the attrac-
tive or repulsive character of the starting point. In
particular, we will predict the existence of a steady
state, when the diffusion and the advection are equi-
librated.

As was already shown for the symmetric RW [1],
there is a possibility to compare the derived probabil-
ity function to find a walker at a given point of space-
time with the data of numerical simulations. This
comparison is performed also in the present study.

From the technical point of view, the time depen-
dence of the mean squared displacement of the RW
trajectories in the considered heterogeneous environ-
ment is not easily computable. Then we neglect the
interface effects, but account accurately for the bulk
ones. This simplification is justified previously, where
the advection (drift) is absent [1]. There, the time
asymptotics of the variance corresponds to a uniform
model, while the multizone structure of the environ-
ment leads to the emergence of a transient anomalous
diffusion at a finite time. These phenomena are inves-
tigated here in the drift presence.

The layout of the paper is as follows. In the next
section, we fix the random walk rules and obtain the
differential equation for a PDF. An approximate PDF
is found in Section 3. The probability function is cal-
culated analytically in Section 4 and is compared with
the numerical simulations performed. After comput-
ing the mean squared displacement in Section 5, we
end up with giving the discussion and outlook.

2. Asymmetric RW in 𝑁-Zone Environment

We start with a lattice model of RW considered as a
Markov process with either a zeroth or unitary step
in space after a successive unitary step in time. The
walk is determined here by the stationary transition
probability 𝑇 (𝑥𝑡+1, 𝑥𝑡) defined as

𝑇 (𝑥, 𝑦) = 𝑝(𝑦)𝛿𝑥−𝑦,−1 + 𝑞(𝑦)𝛿𝑥−𝑦,1 + 𝑟(𝑦)𝛿𝑥−𝑦,0, (1)

where
∑︀

𝑥∈Z 𝑇 (𝑥, 𝑦) = 𝑝(𝑦)+𝑞(𝑦)+𝑟(𝑦) = 1 is implied
for a fixed 𝑦 ∈ Z; 𝛿𝑥,𝑦 is the Kronecker symbol.

The functions 𝑝(𝑥) and 𝑞(𝑥) determine the prob-
abilities to find a walker at the points 𝑥 − 1 and
𝑥+1, if it was at 𝑥 at a previous moment of time, re-
spectively; 𝑟(𝑥) corresponds to the probability of the
adhesion (adsorption) [4]. In general, 𝑝(𝑥) and 𝑞(𝑥)
are regarded as arbitrary non-negative functions less
than 1/2.

Let the sequence {𝑎𝑛} of 𝑁 positive numbers,

0 = 𝑎0 < 𝑎1 < ... < 𝑎𝑁−1 < 𝑎𝑁 = ∞, (2)

define the separation points of environment zones in
space 𝑥 ∈ Z+.

Reproducing the same configuration for negative 𝑥
by inverting 𝑎𝑛 → −𝑎𝑛, we introduce the characteris-
tic functions 𝜒𝑛 of zones [−𝑎𝑛;−𝑎𝑛−1] ∪ [𝑎𝑛−1; 𝑎𝑛]:
𝜒𝑛(𝑥) = 1 for |𝑥| ∈ (𝑎𝑛−1; 𝑎𝑛), 𝜒𝑛(±𝑎𝑛) =
= 𝜒𝑛(±𝑎𝑛−1) = 1/2 to obtain always the arithmetic
mean of the left- and right-handed functions at the
separation points, and 𝜒𝑛(𝑥) = 0 otherwise. To make
use these in differential calculus, 𝜒𝑛(𝑥) are written as
the distributions:

𝜒1(𝑥) = 𝜃(𝑎1 − |𝑥|),
𝜒𝑛(𝑥) = 𝜃(𝑎𝑛 − |𝑥|)− 𝜃(𝑎𝑛−1 − |𝑥|), 𝑛 > 1, (3)

where 𝜃(𝑥) = [1+sign(𝑥)]/2 is the Heaviside function.
The functions {𝜒𝑛} are orthogonal:

𝑁∑︁
𝑛=1

𝜒𝑛(𝑥) = 1, |𝑥| < 𝑎𝑁 ; (4)

𝜒𝑛(𝑥)𝜒𝑚(𝑥) = 0 for 𝑛 ̸= 𝑚, 𝑥 ̸= {±𝑎𝑛}. (5)

Given the basis, we further introduce 𝑁 + 1 con-
stant parameters {𝑑𝑛;𝑉 }, where 𝑑𝑛 ≤ 1/2 defines the
diffusion coefficient for the 𝑛-th zone; 𝑉 is a measure
of probability asymmetry and plays the role of an ex-
ternal field. Supposing the drift velocity dependence
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on the attractor strength and zone properties, we de-
fine the velocity in the 𝑛-th zone as 𝑣𝑛 = 𝑉

√
𝑑𝑛.

Thus, we consider the asymmetric RW in a hetero-
geneous environment with the following rules:

𝑝(𝑥) =

𝑁∑︁
𝑛=1

(︂
𝑑𝑛 − 1

2
𝑉
√︀
𝑑𝑛𝜀𝑥

)︂
𝜒𝑛(𝑥),

𝑞(𝑥) =

𝑁∑︁
𝑛=1

(︂
𝑑𝑛 +

1

2
𝑉
√︀
𝑑𝑛𝜀𝑥

)︂
𝜒𝑛(𝑥), (6)

𝑟(𝑥) = 1− 2

𝑁∑︁
𝑛=1

𝑑𝑛𝜒𝑛(𝑥),

where 𝜀𝑥 ≡ sign(𝑥).
To preserve the probability meaning of the func-

tions 𝑝(𝑥) and 𝑞(𝑥), we require 0 < 2𝑑𝑛 ±𝑉
√
𝑑𝑛 ≤ 1.

The rules (6) allow us to simulate immediately
the random trajectories for various sets {𝑎𝑛; 𝑑𝑛;𝑉 },
which we analyze here analytically.

Physically, the definition of 𝑣𝑛 leads to a common
and finite time 𝜏 = 1/𝑉 2 of the advection residence
in a whole space. Therefore, the 𝑛-th zone advection
length 𝐿a

𝑛 ≃ |𝑣𝑛|𝑡 and the diffusion length 𝐿d
𝑛 ≃

√
𝑑𝑛𝑡

give us the Peclet number [19] Pe ≡ (𝐿a
𝑛/𝐿

d
𝑛)

2 = 𝑡/𝜏
for all 𝑛. Thus, the both processes are tantamount
at 𝑡 obeying Pe ∼ 1÷10, as usual. At larger 𝑡, the
advection becomes dominant.

Although we give a common analytical description
at 𝑉 > 0 and 𝑉 < 0, these cases physically differ
because of the repulsive or attractive role of the ori-
gin, where velocity sign is inverted due to 𝜀𝑥. The
scenario with 𝑉 < 0 accords with the presence of a
single attractor at 𝑥 = 0, while the case of 𝑉 > 0
admits the existence of two attractors at 𝑥 = ±∞,
which produce two particle flows moving in opposite
directions.

The Markovian evolution of the probability distri-
bution function (PDF) 𝑃 (𝑥, 𝑡) such that 𝑃 (𝑥, 0) =
= 𝛿𝑥,0 can be given by the master equation with ar-
bitrary distances ℓ and times 𝜏 between successive
steps as

𝑃 (𝑥, 𝑡+ 𝜏) = 𝑟(𝑥)𝑃 (𝑥, 𝑡) + 𝑝(𝑥+ ℓ)𝑃 (𝑥+ ℓ, 𝑡)+

+ 𝑞(𝑥− ℓ)𝑃 (𝑥− ℓ, 𝑡). (7)

To obtain a differential equation at large 𝑡, (7)
is expanded into the Taylor series up to the order
𝑂(ℓ2, 𝜏). Omitting the rest terms, the lattice param-
eters are fixed to give constant scales ℓ/𝜏 = 1 and

ℓ2/2𝜏 = 1/2 of the drift velocity and diffusivity, re-
spectively.

Further, defining the functions for all 𝑑𝑛 > 0,

𝐷(𝛼, 𝑥) =

𝑁∑︁
𝑛=1

(𝑑𝑛)
𝛼𝜒𝑛(𝑥), 𝐷(𝑥) ≡ 𝐷(1, 𝑥), (8)

we arrive in the continuous limit at the differential
equation for RW in the diffusion approximation:

𝜕𝑡𝑃 (𝑥, 𝑡) = 𝜕2
𝑥[𝐷(𝑥)𝑃 (𝑥, 𝑡)]−

−𝑉 𝜕𝑥 [𝜀𝑥𝐷(1/2, 𝑥)𝑃 (𝑥, 𝑡)], (9)

𝑃 (𝑥, 0) = 𝛿(𝑥).

Differentiating, we can use 𝐷′(𝛼+𝛽, 𝑥) = 𝐷′(𝛼, 𝑥)×
×𝐷(𝛽, 𝑥) +𝐷(𝛼, 𝑥)𝐷′(𝛽, 𝑥), where the prime means
the derivative with respect to a coordinate [1].

Note also that 𝐷(𝛼, 𝑥)𝐷(𝛽, 𝑥) = 𝐷(𝛼+𝛽, 𝑥) for 𝑥 ∈
∈ R∖{±𝑎𝑛}, and 𝐷(𝛼,±𝑎𝑛) ̸= [𝐷(±𝑎𝑛)]

𝛼 in general.
Evolving in space-time, the PDF defines the nor-

malized statistical measure 𝜇𝑡 for a fixed 𝑡:

d𝜇𝑡 = 𝑃 (𝑥, 𝑡)d𝑥,

∫︁
d𝜇𝑡 = 1, (10)

which is used for computing the averages.

3. Finding a PDF

To find a PDF, we follow [1] and concentrate the ge-
ometrical data in the new coordinate

𝜉(𝑥) =

𝑥∫︁
0

𝐷(−1/2, 𝑥′)d𝑥′. (11)

Note that the derivatives of 𝜉(𝑥) are singular, in gen-
eral, at the points 𝑥 = {±𝑎𝑛}.

Integrating (11), we obtain 𝜉(𝑥) = 𝜀𝑥𝑋(−1/2, 𝑥),

𝑋(𝛼, 𝑥) ≡ 1

2

𝑁∑︁
𝑛=1

(𝑑𝑛)
𝛼 [𝑙𝑛(𝑥)− 𝑙𝑛−1(𝑥)], (12)

𝑙𝑛(𝑥) = 𝑎𝑛 − ||𝑥| − 𝑎𝑛|.

We also define the functions �̃�(𝛼, 𝜉(𝑥)) = 𝐷(𝛼, 𝑥):

�̃�(𝛼, 𝜉) =

𝑁∑︁
𝑛=1

(𝑑𝑛)
𝛼�̃�𝑛(𝜉), (13)

where �̃�𝑛(𝜉) = 𝜃(𝑏𝑛 − |𝜉|) − 𝜃(𝑏𝑛−1 − |𝜉|), and 𝑏𝑛 ≡
≡ 𝜉(𝑎𝑛).
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Then, introducing the probability distribution
𝒫(𝜉, 𝑡), we re-write the statistical measure as

d𝜇𝑡 = 𝒫(𝜉, 𝑡)d𝜉 =

= 𝒫(𝜉(𝑥), 𝑡)𝐷(−1/2, 𝑥)d𝑥. (14)

Substituting the re-defined 𝑃 (𝑥, 𝑡) into (9), we ar-
rive at the equation:

𝜕𝑡𝒫 + 𝑉 𝜕𝜉(𝜀𝜉𝒫)− 𝜕2
𝜉𝒫 = 𝜅𝜕𝜉(𝛽𝒫), (15)

where the constant 𝜅 controls the interface effect be-
tween zones; 𝒫(𝜉, 0) = 𝛿(𝜉).

Reformulating the model in terms of 𝜉, 𝑉 is re-
garded as a global velocity, which takes the opposite
signs in two infinite intervals of 𝜉: 𝜉 > 0 and 𝜉 < 0.

The right-hand side of (15) can be reduced to the
form with 𝛽(𝜉) = �̃�(−1/2, 𝜉)𝜕𝜉�̃�(1/2, 𝜉) and 𝜅 = 1.
The computations lead to the expression:

𝛽(𝜉) = 𝜀𝜉

𝑁−1∑︁
𝑛=1

𝛽𝑛𝛿(|𝜉| − 𝑏𝑛), 𝛽𝑛 =
𝑑𝑛+1 − 𝑑𝑛

2
√︀
𝑑𝑛𝑑𝑛+1

. (16)

A sign of 𝛽𝑛 is defined by the difference 𝑑𝑛+1 − 𝑑𝑛,
although the form of 𝛽𝑛 can vary.

We substitute now a formal series in 𝜅:

𝒫(𝜉, 𝑡) = 𝜙(𝜉, 𝑡) +

∞∑︁
𝑟=1

𝜅𝑟𝒮𝑟(𝜉, 𝑡), (17)

where

𝜙(𝜉, 𝑡) =
1√
4𝜋𝑡

exp

(︂
− (|𝜉| − 𝑉 𝑡)2

4𝑡

)︂
−

− 𝑉

4
e𝑉 |𝜉|erfc

(︂
|𝜉|+ 𝑉 𝑡

2
√
𝑡

)︂
(18)

is a basic normalized solution to (15) at 𝜅 = 0.
It is instructive to compare the fundamental so-

lution 𝜃(𝑡)𝜙(𝜉, 𝑡) with analytical solutions to the
advection-diffusion equation under other conditions
from the recent works [20–22].

The remaining problem is to examine the surface
effect induced by 𝛽(𝜉), which disappears in the ho-
mogeneous environment.

In general, each term 𝒮𝑟 is determined by the di-
vergence 𝜕𝜉(𝛽𝒮𝑟−1) with a point-like carrier on the
right-hand side of (15) and, therefore, results in

∞∫︁
0

𝒮𝑟(𝜉, 𝑡)d𝜉 = 0, 𝑟 ≥ 1, (19)

what preserves the normalization. This integral sta-
tistically means that 𝒮𝑟 is a fluctuating sign-alter-
nating function of space. Its magnitude is not sup-
pressed by the factor 𝜅𝑟, and the probability may fall
down to negative values. Although series (17) allows
us to calculate all of 𝒮𝑟 in a simple way, the appro-
priate resummation is still needed.

Nevertheless, we compute here the first-order term
𝒮1 from the inhomogeneous equation

𝜕𝑡𝒮1 + 𝑉 𝜕𝜉(𝜀𝜉𝒮1)− 𝜕2
𝜉𝒮1 = 𝜕𝜉(𝛽𝜙), (20)

contracting 𝜙(𝜉, 𝑡) with 𝜕𝜉(𝛽𝜙) to obtain

𝒮1(𝜉, 𝑡) =

𝑁−1∑︁
𝑛=1

∑︁
𝜖=±

𝜖𝛽𝑛sign(𝜉 − 𝜖𝑏𝑛)𝐼
𝜖
𝑛(𝜉, 𝑡), (21)

𝐼±𝑛 (𝜉, 𝑡) =

𝑡∫︁
0

𝑓(𝜉 ∓ 𝑏𝑛, 𝑡− 𝜏)𝜙(𝑏𝑛, 𝜏)d𝜏, (22)

where 𝑓(𝜉, 𝑡) = 𝜕|𝜉|𝜙(𝜉, 𝑡); 𝑏𝑛 > 0.
Performing the integration, we get

𝐼±𝑛 (𝜉, 𝑡) = −1 + 𝑉 2𝑡

4
√
𝜋𝑡

exp

(︂
− (|𝜉 ∓ 𝑏𝑛|+ 𝑏𝑛 − 𝑉 𝑡)2

4𝑡

)︂
+

+
𝑉

8
e𝑉 (|𝜉∓𝑏𝑛|+𝑏𝑛)erfc

(︂
|𝜉 ∓ 𝑏𝑛|+ 𝑏𝑛 + 𝑉 𝑡

2
√
𝑡

)︂
×

× [3 + 𝑉 (|𝜉 ∓ 𝑏𝑛|+ 𝑏𝑛) + 𝑉 2𝑡]. (23)

Limiting ourselves by accounting for the first-order
correction, we obtain our main result for PDF:

𝑃 (𝑥, 𝑡) = 𝜙(𝜉(𝑥), 𝑡)𝐷(−1/2, 𝑥)+

+𝜅

𝑁−1∑︁
𝑛=1

𝛽𝑛[sign(𝑥− 𝑎𝑛)𝐼
+
𝑛 (𝜉(𝑥), 𝑡)−

− sign(𝑥+ 𝑎𝑛)𝐼
−
𝑛 (𝜉(𝑥), 𝑡)]𝐷(−1/2, 𝑥), (24)

where sign(𝑥± 𝑎𝑛) = sign(𝜉(𝑥)± 𝑏𝑛).
At the vanishing 𝑉 , this reproduces the result of

[1] and describes the ordinary RW at 2𝑑𝑛 = 1 for all
𝑛, when 𝜉(𝑥) =

√
2𝑥 and 𝛽𝑛 = 0.

If 𝑑𝑛+1 = 𝑑𝑛 for two neighboring zones, the inter-
face points 𝑥 = ±𝑎𝑛 become regular, and (24) welds
these zones automatically.

Note that the correction by 𝜅 looks improper at
𝑉 < 0, because it has no static limit at large 𝑡, al-
though the diffusion in the presence of an attractor
at 𝑥 = 0 has to be a relaxation process leading to
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Fig. 1. Probability distribution function at 𝑡 = 200 and
𝑉 = 0.2 for two sets of environment parameters. Solid curve
corresponds to the model with 2𝑑1 = 0.6, 2𝑑2 = 0.4, 2𝑑3 = 0.9;
the dashed one is for 2𝑑1 = 0.4, 2𝑑2 = 0.9, 2𝑑3 = 0.6. In the
both cases, 𝑎1 = 6, 𝑎2 = 8

a steady state distribution 𝑃eq(𝑥) and preventing a
collapse ⟨𝑥2⟩ = 0 due to the chaotic motion. Taking
𝑡 → ∞ and 𝜅 = 0 (or 𝛽𝑛 = 0, equivalently) in (24),
we obtain

𝑃eq(𝑥) =
|𝑉 |
2

exp (−|𝑉 ||𝜉(𝑥)|)𝐷(−1/2, 𝑥). (25)

This results in the limiting value of the variance ⟨𝑥2⟩
at 𝑡 → ∞, as we shall see. Thus, PDF (24) is appli-
cable to the models with 𝑉 < 0 at 𝜅 = 0.

Considering the case of 𝑉 > 0, the surface term is
relevant at |𝛽𝑛| ≪ 1, because 𝐼±𝑛 is of the same order
of magnitude as 𝜙. As the result, Fig. 1 demonstrates
two peaks of PDF, tending to escape in opposite di-
rections to infinity with increasing 𝑡. However, the
peak motion speeds for two sets of parameters look
different because of different dampings caused by the
adhesion.

Note finally that Eq. (15) can be transformed into
the potential form by excluding the term 𝜕𝜉𝒫.

4. Probability Function

Using the PDF, let us compute the probability of the
walker manifestation at a given space-time point,

Pr(𝑥, 𝑡) =
1

𝑡

𝑡∫︁
0

𝑃 (𝑥, 𝜏)d𝜏, (26)

that is the frequency of visiting a point 𝑥 in a time 𝑡.

Integrating, 𝜙(𝜉, 𝑡) results in

Φ(𝜉, 𝑡) =
1√
4𝜋𝑡

exp

(︂
− (|𝜉| − 𝑉 𝑡)2

4𝑡

)︂
+

+
1

4𝑉 𝑡

[︂
erfc

(︂
|𝜉| − 𝑉 𝑡

2
√
𝑡

)︂
− e𝑉 |𝜉|erfc

(︂
|𝜉|+ 𝑉 𝑡

2
√
𝑡

)︂]︂
−

− |𝜉|+ 𝑉 𝑡

4𝑡
e𝑉 |𝜉|erfc

(︂
|𝜉|+ 𝑉 𝑡

2
√
𝑡

)︂
. (27)

Computing the total probability, we arrive at

Pr(𝑥, 𝑡) = Φ(𝜉(𝑥), 𝑡)𝐷(−1/2, 𝑥)+

+𝜅

𝑁−1∑︁
𝑛=1

𝛽𝑛[sign(𝑥− 𝑎𝑛)ℐ+
𝑛 (𝜉(𝑥), 𝑡)−

− sign(𝑥+ 𝑎𝑛)ℐ−
𝑛 (𝜉(𝑥), 𝑡)]𝐷(−1/2, 𝑥), (28)

where the first-order term in 𝜅 is determined by

ℐ±
𝑛 (𝜉, 𝑡) = ℐ(|𝜉 ∓ 𝑏𝑛|+ 𝑏𝑛, 𝑡), (29)

ℐ(𝜉, 𝑡) = − 1√
4𝜋𝑡

e−(𝜉−𝑉 𝑡)2/(4𝑡)

(︂
1 +

𝑉 𝜉 + 𝑉 2𝑡

4

)︂
+

+
𝑉

4
e𝑉 𝜉erfc

(︂
𝜉 + 𝑉 𝑡

2
√
𝑡

)︂[︂
3

2
+

𝜉

𝑉 𝑡
+

(𝜉 + 𝑉 𝑡)2

4𝑡

]︂
. (30)

We test our formulas by comparing Pr(𝑥, 𝑡) with
outcomes of numerical simulations. Data are pre-
sented in Fig. 2 and Fig. 3, putting 𝜅 = 1 and
𝜅 = 0, respectively, as it was argued above. Indeed,
the bulk analytical solution is justified by the RW
simulation in a three-zone environment. However, we
hope for that the accounting for the series in 𝜅 or its
finite part, at least, will allow us to reproduce better
the considerable changes of the probability profile at
short Δ𝑥.

The difference between peak heights obtained an-
alytically and numerically at 𝑥 = 0 is independent
of the approximation in 𝜅 and can be also explained
by the feature of our formalism describing mainly a
walker behavior in bulk.

At 𝑉 < 0, we see actually the coincidence of three
probability functions inside zones: numerical one,
Pr(𝑥, 𝑡) at 𝑡 = 200, and Preq(𝑥) = 𝑃eq(𝑥) at 𝑡 → ∞.

On the other hand, we observe a widening of the
probability profile in Fig. 2 in comparison with one
in [1] at 𝑉 = 0 for the same environment param-
eters. Comparing, we also note the growing proba-
bility peaks in Fig. 2, a, which correspond to the
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Fig. 2. Probability function at 𝑡 = 200 and 𝑉 = 0.2 for three-
zone environment models. Solid lines are the analytical results
given by (28). Dashed lines correspond to the numerical data of
averaging over 3000 random trajectories. Panel (a): 2𝑑1 = 0.6,
2𝑑2 = 0.4, 2𝑑3 = 0.9; (b): 2𝑑1 = 0.4, 2𝑑2 = 0.9, 2𝑑3 = 0.6. In
the both cases, 𝑎1 = 6, 𝑎2 = 8

zone with 2𝑑2 = 0.4. It turns out that the presence
of attractors causes the pumping effect, which de-
pends on the local adsorption (determined by 𝑟𝑛 =
= 1−2𝑑𝑛) and is already revealed in the leading order
(𝜅 = 0).

5. Computing the Variance
in the Leading Order

The variance ⟨𝑥2⟩− ⟨𝑥⟩2 is an important RW charac-
teristic denoted here as

Λ(𝑡) ≡
∫︁

𝑥2d𝜇𝑡; ⟨𝑥⟩ ≡
∫︁

𝑥d𝜇𝑡 = 0. (31)

In our approach, we have Λ(𝑡) = Λ0(𝑡) +𝑂(𝜅),

Λ0(𝑡) =

∞∫︁
−∞

[𝑥(𝜉)]2𝜙(𝜉, 𝑡)d𝜉. (32)
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Fig. 3. Probability function at 𝑡 = 200 and 𝑉 = −0.2. Panels
a, b correspond to the parameter sets in Fig. 2, respectively.
Solid lines are analytically obtained; dashed ones represent the
numerical results

We focus on the properties of Λ0(𝑡), corresponding to
the leading-order approximation.

Although the function 𝑥(𝜉) can be presented simi-
larly to (12), it is convenient to substitute it in terms
of the characteristic functions {�̃�𝑛(𝜉)}. We find that

[𝑥(𝜉)]2 = 𝜉2𝐴2(𝜉) + |𝜉|𝐴1(𝜉) +𝐴0(𝜉), (33)

𝐴𝑠(𝜉) =

𝑁∑︁
𝑛=1

𝐴𝑠,𝑛�̃�𝑛(𝜉); (34)

where the numerical coefficients are

𝐴0,𝑛 =
(︁
𝑐𝑛 −

√︀
𝑑𝑛𝑏𝑛−1

)︁2

, (35)

𝐴1,𝑛 = 2
(︁√︀

𝑑𝑛𝑐𝑛 − 𝑑𝑛𝑏𝑛−1

)︁
, (36)

𝐴2,𝑛 = 𝑑𝑛, 𝑐𝑛 =

𝑛−1∑︁
𝑚=1

√︀
𝑑𝑚 (𝑏𝑚 − 𝑏𝑚−1). (37)

Note that 𝐴2(𝜉) coincides with the diffusivity �̃�(𝜉).
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Fig. 4. Time dependences of the variance Λ0 at 𝑉 = −0.2 (a)
and 𝐶0 = 𝜕2

𝑡 Λ0/2 at 𝑉 = 0.2 (b) for two sets of parameters.
Solid curves correspond to 2𝑑1 = 0.6, 2𝑑2 = 0.4, 2𝑑3 = 0.9;
dashed ones are for 2𝑑1 = 0.4, 2𝑑2 = 0.9, 2𝑑3 = 0.6

Combining the environment parameters 𝐴𝑠,𝑛 and
the time-dependent integrals, we write

Λ0(𝑡)=2

2∑︁
𝑠=0

𝑁∑︁
𝑛=1

𝐴𝑠,𝑛[𝑈𝑠,𝑉 (𝑏𝑛, 𝑡)−𝑈𝑠,𝑉 (𝑏𝑛−1, 𝑡)], (38)

where functions 𝑈𝑠,𝑉 (𝑏, 𝑡),

𝑈0,𝑉 (𝑏, 𝑡) =
1

4
erf

(︂
𝑏− 𝑉 𝑡

2
√
𝑡

)︂
− e𝑉 𝑏

4
erfc

(︂
𝑏+ 𝑉 𝑡

2
√
𝑡

)︂
, (39)

𝑈1,𝑉 (𝑏, 𝑡) = −1

2

√︂
𝑡

𝜋
exp

(︂
− (𝑏− 𝑉 𝑡)2

4𝑡

)︂
+

+
1

4𝑉

[︂
erf

(︂
𝑏− 𝑉 𝑡

2
√
𝑡

)︂
+ e𝑉 𝑏erfc

(︂
𝑏+ 𝑉 𝑡

2
√
𝑡

)︂]︂
+

+
1

4

[︂
𝑡𝑉 erf

(︂
𝑏− 𝑉 𝑡

2
√
𝑡

)︂
− 𝑏e𝑉 𝑏erfc

(︂
𝑏+ 𝑉 𝑡

2
√
𝑡

)︂]︂
, (40)

𝑈2,𝑉 (𝑏, 𝑡) =

(︂
𝑡+

𝑉 2𝑡2

4
− 1

2𝑉 2

)︂
erf

(︂
𝑏− 𝑉 𝑡

2
√
𝑡

)︂
−

− 1

2

(︂
𝑏+ 𝑉 𝑡+

2

𝑉

)︂√︂
𝑡

𝜋
exp

(︂
− (𝑏− 𝑉 𝑡)2

4𝑡

)︂
−

− 2− 2𝑉 𝑏+ 𝑉 2𝑏2

4𝑉 2
e𝑉 𝑏erfc

(︂
𝑏+ 𝑉 𝑡

2
√
𝑡

)︂
, (41)

determine the integrals for positive 𝑏 (or |𝑏|):

𝑏∫︁
0

𝜉𝑠𝜙(𝜉, 𝑡)d𝜉 = 𝑈𝑠,𝑉 (𝑏, 𝑡)− 𝑈𝑠,𝑉 (0, 𝑡). (42)

Questioning on the behavior of Λ0(𝑡) at large 𝑡,
the answers turn out to be sufficiently different for
the models with 𝑉 < 0 and 𝑉 > 0, respectively. We
can see that Fig. 4, a shows the existence of the equi-
librium static limit ⟨𝑥2⟩eq = lim𝑡→∞ Λ0(𝑡) at 𝑉 < 0,
while Fig. 4, b indicates the ballistic regime for 𝑉 > 0
with ⟨𝑥2⟩ ∼ 𝐶0𝑡

2 at 𝑡 → ∞. Moreover, the environ-
ment structure given by the different sets of parame-
ters {𝑑𝑛} does not affect these tendencies.

Assuming the presence of an attractor at 𝑥 = 0
(𝑉 < 0) and taking 𝑡 → ∞ in (38), we have

⟨𝑥2⟩eq =
2𝑑1
𝑉 2

+
1

𝑉 2

𝑁−1∑︁
𝑛=1

e−|𝑉 |𝑏𝑛
[︀
𝑉 2(𝐴0,𝑛+1 −𝐴0,𝑛) +

+ |𝑉 |(𝐴1,𝑛+1 −𝐴1,𝑛)(1 + |𝑉 |𝑏𝑛)+

+ (𝑑𝑛+1 − 𝑑𝑛)
(︀
2 + 2|𝑉 |𝑏𝑛 + 𝑉 2𝑏2𝑛

)︀]︀
. (43)

From whence, it follows that the maximum val-
ues of Λ0(𝑡) for models in Fig. 4, a are ⟨𝑥2⟩eq,1 ≈
≈ 15.16 and ⟨𝑥2⟩eq,2 ≈ 11.12, when (2𝑑1/𝑉

2)1 = 15
and (2𝑑1/𝑉

2)2 = 10, respectively. Thus, the points
𝑥 = ±

√︀
⟨𝑥2⟩eq lie inside the first zone (−𝑎1; 𝑎1) for

both models.
Focusing on the case of 𝑉 > 0, the time asymp-

totics of Λ0(𝑡) is determined by the term contain-
ing 𝑈2,𝑉 (𝑏𝑁 , 𝑡) − 𝑈2,𝑉 (𝑏𝑁−1, 𝑡) at 𝑏𝑁 → ∞. Thus,
⟨𝑥2⟩ = 𝑑𝑁𝑉 2𝑡2 at 𝑡 → ∞. This formula is valid,
when the PDF peaks are far from the region 𝑥 ∈
∈ (−𝑎𝑁−1; 𝑎𝑁−1) of the basic environment structure
presence (see Fig. 1). Thus, we arrive at the asymp-
totic values of 𝐶0 in Fig. 4, b: (𝑑3𝑉

2)1 = 0.018 and
(𝑑3𝑉

2)2 = 0.012.
We would like to note that the velocity correlator

𝐶 = 𝐶0−𝑑𝑁𝑉 2 reproduces here the typical properties
of 𝐶 at 𝑉 = 0 from [1] for the same environment
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parameters {𝑎𝑛; 𝑑𝑛}. We observe the similarity in a
sign-alternating 𝐶 at small 𝑡 for the model with 2𝑑3 =
= 0.9, while the regime 𝐶 > 0 is preserved during the
whole evolution for the model with 2𝑑3 = 0.6.

Note that the sign of 𝐶 allows us to classify sys-
tem’s behavior. The stages with 𝐶 > 0 correspond,
as usual, to the superdiffusion. On the other hand,
the regime with 𝐶 < 0 reveals the transient subdiffu-
sion caused by the particle capture for a short time
by zones with relatively small 𝑑𝑛.

Thus, the adsorption effect of each zone determined
by 𝑟𝑛 = 1 − 2𝑑𝑛 lasts to be important at 𝑉 > 0, al-
though a magnitude and time intervals of 𝐶’s varia-
tions depend on 𝑉 . Moreover, the models with 𝑉 > 0
give rise a possibility to investigate the influence of
the distant zones in comparison with the models at
𝑉 = 0 during the same time 𝑡. On contrary, the case
of 𝑉 < 0 does not allow us to overstep actually the
first zone.

6. Discussion

We have considered an asymmetric RW model in a
one-dimensional space densely covered by the finite-
sized zones 𝑥 ∈ (−𝑎𝑛,−𝑎𝑛−1) ∪ (𝑎𝑛−1, 𝑎𝑛), 𝑛 = 1, 𝑁 ,
with the specified properties, which allows us to in-
vestigate the affect of inhomogeneities in different
chaotic systems. Although the number of RW charac-
teristics can be extracted from numerical simulations,
the deeper analysis requires an analytical description,
which would be based in the continuous limit on the
advection-diffusion equation at the large total num-
ber of steps 𝑡 associated with a time.

Our model initially formulated in terms of probabil-
ities is designed also to include the familiar problems
of RW with various barriers [2–8] into the concept of
the heterogeneous environment. The present analysis
is stimulated by the predictions and the unsolvable
problems mentioned in those works.

Diffusion and advection are the main and compet-
ing processes, which we account for. Their parameters
(diffusion coefficients 0 < 𝑑𝑛 ≤ 1/2 and drift veloci-
ties 𝑣𝑛 = 𝑉

√
𝑑𝑛) varying from zone to zone allow us

to reveal also the adsorption in bulk (determined by
𝑟𝑛 = 1− 2𝑑𝑛) and the action of a long-range external
field 𝑉 . Sometimes, the latter notions are convenient
for the physical treatment of observed phenomena.

We can also relate the diffusion coefficient to the ef-
fective walker mass 𝑚𝑛 = 1/2𝑑𝑛 in each zone. Then,

from the point of view of a macroscopic particle en-
semble, the mass variations might be interpreted as
the result of a geometrically dependent interaction
among particles, which is not specified here, but leads
to the emergence of different states confined within
zones.

Before summarizing the results, we note briefly the
role of the advection which contributes to the directed
motion of RW and is induced by a global asymmetry
parameter −1 < 𝑉 < 1 determining the preference
between the left and right directions.

Precisely, the advection is involved here by means
of the space-dependent velocity 𝜀𝑥𝑉

√︀
𝐷(𝑥), where

𝜀𝑥 ≡ sign(𝑥) makes the RW root point 𝑥 = 0 to
play the attractive or repulsive role depending on the
sign of 𝑉 . The case of 𝑉 < 0 corresponds to the case
where the point 𝑥 = 0 attracts a walker. On contrary,
at 𝑉 > 0, we have a repulsor at 𝑥 = 0, which pushes
a walker away along one of the mutually opposite di-
rections of axis 𝑥.

Technically, such a definition preserves the model
symmetry under the coordinate inversion and leads
to ⟨𝑥⟩ = 0 for any 𝑉 .

Thus, under our assumptions, the probability to
find a walker at a space-time point is determined by
the diffusion and advection processes in various zones
of the environment. Finding a probability distribu-
tion function from the advection-diffusion differential
equation, the parameter constancy almost everywhere
looks as a crucial condition of solvability of the prob-
lem. Indeed, the geometrical data are easily concen-
trated in a new spatial variable 𝜉(𝑥). It leads to an
equation for the homogeneous environment with sin-
gular terms corresponding to the residual interface
effects and containing the Dirac 𝛿-function and its
derivatives. Although this contradicts the probabilis-
tic meaning of the quantities involved, it is a conse-
quence of the use of distributions in the continuous
limit. In the numerical simulations, no singularities
are obtained. However, a receipt of obtaining a PDF
by accounting for the interface contribution still has
to be found. It may be resolved exactly by construct-
ing the solutions with a gap [9], which is not consid-
ered here.

To obtain a PDF, we use a formal series in a switch-
ing parameter 𝜅 ∼ 1, which controls the surface ef-
fects in the equation. The leading term by 𝜅0 gives
us a basic normalized solution for the bulk, which
is equal, in terms of 𝜉, to the fundamental solution
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to the homogeneous system. Nevertheless, the result-
ing PDF of (𝑥, 𝑡) reflects an environment complexity
and the presence of the drift. We have also found a
solution with the surface correction by 𝜅1, which is
applicable at 𝑉 ≥ 0 and |𝑑𝑛+1 − 𝑑𝑛| ≪ 1, as was
shown above. We should use additional restrictions
to limit the correction magnitude, which is not sup-
pressed by 𝜅.

Although such an approach is already exploited and
justified by numerical simulations in [1] without drift,
the inclusion of the advection changes considerably
the dynamics of the system and the PDF form, which
results in new outcomes.

We also compute the probability function in the lin-
ear approximation in 𝜅 and the variance dependence
on 𝑡 in the leading order, by neglecting the interface
term.

For any 𝑁 , we have revealed the time asymptotics
of the variance:

⟨𝑥2⟩ ∼ 𝑡1+sign(𝑉 ), 𝑡 → ∞. (44)

This tendency is independent of the environment
structure with 𝑑𝑛 > 0, which is known to happen
also for the uniform models.

However, the environment complexity leads to the
effective power law ⟨𝑥2⟩ ∼ 𝑡𝛼 at finite 𝑡, with inter-
mediate values of exponent 𝛼, indicating the transient
anomalous diffusion. It is clearly seen at 𝑉 ≥ 0.

To show it, we appeal to the models with a
three-zone environment given by the parameter sets
from [1]. Furthermore, it is convenient to study the
diffusion regimes by means of the velocity autocorre-
lation function

𝐶(𝑡) =
1

2

d2⟨𝑥2⟩
d𝑡2

− 𝑣2𝑁 , 𝑣𝑁 = 𝑉
√︀

𝑑𝑁 . (45)

Then the super/sub-diffusion processes correspond to
sign(𝐶(𝑡)) = 1/(−1), respectively. Using that, such
time intervals are presented in Fig. 4, b.

It is worth to note that 𝐶 for a fixed set {𝑎𝑛; 𝑑𝑛}
indicates a similar (anomalous) behavior at 𝑉 = 0.2
and 𝑉 = 0 (see [1]), although the possibility to ob-
serve an affect of distant zones at 𝑉 > 0 is higher
than at 𝑉 = 0 for the same 𝑡.

Comparing the probability profiles at 𝑉 = 0.2 and
𝑉 = 0 (see [1]), we can see that the adsorption prop-
erty of zones is intensified in the presence of the ad-
vection (see Fig. 2). Such a pumping effect looks sur-

prisingly, because the advection and the diffusion are
competing processes.

At negative values of 𝑉 , we observe the PDF re-
laxation to a steady state distribution, as 𝑡 → ∞.
Although a walker is attracted to the origin 𝑥 = 0,
the diffusion prevents a collapse with ⟨𝑥2⟩ = 0. How-
ever, there is no manifestation of all zones.

Note finally that the perspective subject of a forth-
coming study is the analytical description of a model
with independent local velocities {𝑣𝑛}, by extending
the parameter set up to {𝑎𝑛; 𝑑𝑛; 𝑣𝑛}. The formalism
accounting for local fluctuations 𝛿𝒟(𝑥) ≡ 𝒟(𝑥)−𝐷(𝑥)
of the smoothly varied diffusivity 𝒟(𝑥), where 𝐷(𝑥) =
=

∑︀
{𝑛} 𝑑𝑛𝜒𝑛(𝑥), could be developed.
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АСИМЕТРИЧНI ХАОТИЧНI
БЛУКАННЯ В ОДНОВИМIРНОМУ
БАГАТОЗОННОМУ СЕРЕДОВИЩI

Р е з ю м е

Ми розглядаємо модель хаотичних блукань в одновимiр-
ному середовищi, сформованому кiлькома зонами скiнче-
ної ширини з фiксованими ймовiрностями переходу. Також
припускається, що переходи до лiвої та правої сусiднiх то-
чок мають нерiвнi ймовiрностi. У неперервнiй границi, ми
аналiтично виводимо функцiю розподiлу ймовiрностi, яка,
головним чином, визначається дифузiєю та дрейфом i пер-
турбативно враховує поверхневi ефекти мiж зонами. Вона
використовується для обчислення ймовiрностi знаходжен-
ня частинки у точцi простору-часу та часової залежностi
середньоквадратичного вiдхилення частинки, яке виявляє
перехiдну аномальну дифузiю. Для пiдтвердження нашого
пiдходу, функцiя ймовiрностi порiвнюється з результатами
чисельного моделювання для тризонного середовища.
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