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СENTROSYMMETRIC SOLITONS
WITH POWER ASYMPTOTICS FOR MEDIA
OF DIFFERENT DIMENSIONS

Analytic solutions of radially symmetric nonlinear Schrödinger equations with two nonlinear
terms with different powers are analyzed for 1D, 2D, and 3D spaces. They are typical of the
equations, where there are two nonlinear terms instead of one cubic term, as a rule. An im-
portant feature of the solutions obtained is that they are expressed not in terms of hyperbolic
functions, but in terms of rational functions finite in the entire space with a power asymptotics
at infinity. The solutions obtained significantly expand the range of applications of the non-
linear Schrödinger equations. Separate relevant cases of the general solution are considered in
the applications.
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1. Introduction
Nonlinear Schrödinger equations have a wide range of
applications from polymers [1] and polymer-like sys-
tems [2, 3] to solids [4–9] and a plasma [10, 11]. Des-
pite this, there are still a number of problems that
require to be solved. Till the recent time, one of
such problems was the lack of analytical solutions to
the radially symmetric nonlinear Schrödinger equa-
tion. Except the numerical and asymptotic solutions
[12,13], it is worth to mention the studies carried out
to find analytical solutions [4–7]. In [4–6], a radially
symmetric modified nonlinear Schrödinger equation
with a nonlinearity of differential-degree nature in a
2D space is considered [4, 5], and the analysis of lo-
calized states [6] in the 2D space and in the quasi-
momentum representation is carried out. There was
found the case [7], which admits an analytic solu-
tion for the radially symmetric nonlinear Schrödin-
ger equation. Radially symmetric soliton solutions in
two-dimensional systems are now especially relevant
due to the wide application of hyperfine films (sev-

c○ A.D. SUPRUN, L.V. SHMELEVA, 2018

eral atomic layers) [14] and graphenes [8]. On the
other hand, the one-dimensional systems also do not
lose relevance. They have well-known soliton solu-
tions [15], which are expressed in terms of hyperbolic
functions.

We will analyze a radially symmetric modified non-
linear Schrödinger equation with complex power non-
linearity and zero boundary conditions at infinity. In
contradistinction to the modified Schrödinger equa-
tion considered in [4–6], we consider a nonlinearity
consisting of two terms, each of which contains the
unknown function in various powers. Such nonlinear-
ity is usually a result of the expansion, for example,
of some potential in a series with the preservation of
two terms (usually only the first non-vanishing term
is conserved in such expansions). In addition, we will
introduce a parameter into the equation that allows
us to simultaneously analyze this radially symmetric
problem for all three spatial dimensions: 1D (poly-
mers), 2D (graphene, etc.) and 3D (objects of the
crystal type).

The problem under consideration is relevant due
to the search for radially symmetric soliton-type solu-
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tions in nonlinear optics, nonlinear quantum mechan-
ics, and nonlinear solid-state theory (or condensed
matter). It can also be relevant in studies of the inter-
action of a plasma with electromagnetic radiation. It
should be noted that the solutions found, strictly
speaking, are not solitons, although they are localized
solutions of stationary nonlinear equations. They do
not belong to the traveling wave class and are not
generalized to the case of a nonzero velocity. But,
to simplify the analysis, as was done in other stud-
ies [4–7], we consider the stationary case (zero-speed
soliton).

Solutions are found in the form of radially symmet-
ric solitons, which are functions of the form 𝜙(𝑟) =
= 𝐴/(1 + 𝛼𝑟2)𝑛, where 0 < 𝑛 ≤ 1 is any real num-
ber. The influence of a combination of the powers
of nonlinearities and the spatial-dimension parameter
on the solution obtained is analyzed. It is shown that
a consistent increase in the powers of the nonlinearity
in the equation leads to a decrease in the exponent 𝑛
regardless of the spatial dimension of the problem. As
the dimensionality of space increases, the soliton is
narrowed, and its amplitude increases.

2. General Formulation
and Solution of the Problem

Soliton problems in nonlinear physical systems are
usually reduced to a nonlinear Schrödinger equation
with power nonlinearity. As a rule, they arise from
equations of the following general form:

Δ𝜓 + 𝜓𝐺 (𝜓) + 𝜀𝜓 = 0.

In this case, the wave function is constructed in
the form of a plane wave with modulated amplitude:
𝜓 (r) = 𝜙 (r) 𝑒𝑖k·r. This leads to a redefinition of the
eigenvalue 𝜀 due to the dispersion of the energy term.
The equation itself assumes the form:

Δ𝜙+ 𝜙 𝑔 (𝜙) + 𝜆𝜙 = 0. (1)

Further, the function 𝑔 (𝜙) is expanded in a series in
powers of 𝜙. Now, this can lead to another overdeter-
mination of the parameter 𝜆. To determine the mod-
ulating factor 𝜙 (r) , there are equations, which can
be reduced in the radially symmetric representation
to the form of the generalized nonlinear Schrödinger
equation:

𝜕2𝜙

𝜕𝑟2
+
𝛽

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑔1𝜙

𝑎 − 𝑔2𝜙
𝑏 + 𝐿𝜙 = 0. (2)

The generality of Eq. (2) relative to the ones usu-
ally considered is reduced to two circumstances. The
first circumstance is the presence of a factor 𝛽 =
= 0, 1, 2, respectively, for 1D- (𝛽 = 0), 2D- (𝛽 = 1),
and 3D-spaces (𝛽 = 2). This possibility of the simul-
taneous consideration of all three spatial dimensions
in a solution is a specific feature of the radially sym-
metric consideration. The second circumstance is the
presence of two nonlinear power terms: 𝑔1𝜙𝑎 and 𝑔2𝜙𝑏

(but not one, which is cubic, as usual). The coeffi-
cients 𝑔1 and 𝑔2 together with the coefficient 𝐿 de-
pend on the parameters of the particular problem un-
der consideration. At the same time, 𝑎 and 𝑏 in these
terms are not given and, in the process of construct-
ing a solution, can be made consistent with it. The
presence of two nonlinear terms in Eq. (2) allows us
to find analytical solutions for a number of combina-
tions of powers 𝑎, 𝑏, which refer to real physical situa-
tions and will be considered further. The combination
of signs at the coefficients 𝑔1, 𝑔2 ensures the maxi-
mum physical correctness of Eq. (2) and most of the
specific situations considered below. There are, how-
ever, individual cases requiring either a combination
of signs or even the absence of one of the nonlinear
terms. They will be analyzed as well.

The solution of Eq. (2) is constructed in the form
of a substitution:

𝜙 (𝑟) =
𝐴

(1 + 𝛼𝑟2)
𝑛 . (3)

The parameters 𝐴,𝛼, and 𝑛 are determined from
the condition that the left-hand side of Eq. (2) van-
ishes identically after the substitution of solution (3)
into it. Such a substitution, after some transforma-
tions, leads to the relation

− 4𝛼𝑛(𝑛+ 1)

(1 + 𝛼𝑟2)
2 +

2𝛼𝑛(2𝑛+ 1− 𝛽)

(1 + 𝛼𝑟2)
+

+
𝑔1𝐴

𝑎−1

(1 + 𝛼𝑟2)
(𝑎−1)𝑛

− 𝑔2𝐴
𝑏−1

(1 + 𝛼𝑟2)
(𝑏−1)𝑛

+ 𝐿 = 0.

As can be seen, to convert the left-hand side of
this equation to zero, it is necessary to require that
the algebraic sum of the first and third terms, as well
as the second and fourth terms, is zero. The parame-
ter 𝐿 must also be assumed to be zero. As was shown
in [9–16], the condition 𝐿 = 0 for the quantum and
solid-state problems leads to the determination of the
eigenvalue of the problem under consideration, which
corresponds to Eq. (2). This is due to the fact that,
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Fig. 1. Comparative graphs of solution (10) for 𝑗 = 1 and
three values of the spatial-dimension parameter 𝛽 = 0, 1, 2.
The plots on the graph correspond to the values 𝛽. The graphs
show a special case 𝑔1 = 𝑔2 = 1

in the simplest case, 𝐿 has a structure of the dif-
ference between this eigenvalue and the dispersion
energy term, which determines the dynamic proper-
ties of a quasiparticle. In other problems, this term
in Eq. (2) can be absent. Having in mind only such
problems, we assume 𝐿 = 0 and require that the alge-
braic sum of the first and third, as well as the second
and fourth terms, be zero.

As a result, the requirement of equality of the de-
nominators yields two conditions that relate the pow-
ers (𝑎 and 𝑏) of the nonlinear terms and the power 𝑛
of the solution:

𝑎 =
2

𝑛
+ 1; 𝑏 =

1

𝑛
+ 1. (4)

For the numerators, two conditions remain:

− 4𝛼𝑛(𝑛+ 1) + 𝑔1𝐴
𝑎−1 = 0;

2𝛼𝑛(2𝑛+ 1− 𝛽)− 𝑔2𝐴
𝑏−1 = 0.

(5)

With the help of these four conditions, it is nec-
essary to determine three characteristics of solution
(3): the amplitude 𝐴, growth rate 𝛼, and power 𝑛. In
this sense, system (4), (5) is overdetermined. Howe-
ver, as was mentioned above, one of the factors, the
generalization of Eq. (2), is associated with the un-
conditionedness of the powers 𝑎 and 𝑏, and system
(4), (5) becomes already underdetermined: five un-
knowns with four equations. In most physical prob-
lems, the powers 𝑎, 𝑏 are integer. This is due to the
fact that the nonlinear terms in (2) are usually a
consequence of the expansion in series of some po-
tential energy that depends on the desired function

𝜙 (𝑟). From relations (4), it is clear that the inte-
gerity of the powers 𝑎, 𝑏 can be ensured, by assuming
𝑛 = 1/𝑗, 𝑗 = 1, 2, 3, ... . Then: 𝑎 = 2𝑗+1, 𝑏 = 𝑗+1. In
this case, Eq. (2) for each 𝑗 becomes

𝜕2𝜙

𝜕𝑟2
+
𝛽

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑔1𝜙

2𝑗+1 − 𝑔2𝜙
𝑗+1 = 0, (6)

and solution (3) for this value 𝑗 reads

𝜙 (𝑟) =
𝐴

(1 + 𝛼𝑟2)
1/𝑗

. (7)

The coefficients 𝐴 and 𝛼 are determined by
Eqs. (5). Substituting 𝑛 = 1/𝑗 into them and solv-
ing them with respect to 𝐴 and 𝛼, we obtain

𝐴 =

(︂
2 (1 + 𝑗) 𝑔2

(2 + (1− 𝛽) 𝑗) 𝑔1

)︂1/𝑗
; 𝛼 =

𝑗2 (1 + 𝑗) 𝑔22

(2 + (1− 𝛽) 𝑗)
2
𝑔1
.

(8)

Equation (6) and its solution in the form (7), (8) for
different values 𝑗 = 1, 2, 3, ..., correspond to different
physical situations. Some of them, the most common,
will be discussed in the following sections.

3. Generalized Cubic Nonlinearity (𝑗 = 1)

Assuming 𝑗 = 1 in (6)–(8), we get the equation

𝜕2𝜙

𝜕𝑟2
+
𝛽

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑔1𝜙

3 − 𝑔2𝜙
2 = 0. (9)

Its solution and coefficients are as follows:

𝜙 (𝑟) =
𝐴

1 + 𝛼𝑟2
, (10)

𝐴 =
4𝑔2

(3− 𝛽) 𝑔1
; 𝛼 =

2𝑔22

(3− 𝛽)
2
𝑔1
. (11)

Equation (9) is atypical of the solid-state problems
related to a response of the crystal lattice to the ex-
citation. This is due to the fact that, in them, the
function 𝑔 (𝜙) of Eq. (1) usually depends not only on
𝜙, but on 𝜙2 as well. When this function is expanded
in a series, the structure 𝜙𝑔 (𝜙) cannot contain, in
principle, a term 𝜙2. In other quantum problems, the
problems of electrostatics, or problems of the interac-
tion of a plasma with electromagnetic radiation, equa-
tions similar to (9) can be realized.

Figure 1 shows the comparative graphs of solu-
tion (10), (11) for all three spatial dimensions: 𝛽 =
0, 1, 2.
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From the graphs in Fig. 1, it can be seen that,
as the space dimension increases, the soliton is nar-
rowed, and its amplitude increases.

An important property follows from solution (10) in
the case under consideration. At infinity, the soliton
has the asymptotics 𝜙 (𝑟) ∼ 1

⧸︀
𝑟2. It is more typical

of physical fields than the exponential one. In partic-
ular, it is typical of force characteristics such as the
field strength. At the same time, the soliton is finite
in the entire space, in particular at the point 𝑟 = 0.

4. Generalized Nonlinearity
of the Fifth Power (𝑗 = 2)

Assuming now 𝑗 = 2 in (6)–(8), we obtain the equa-
tion

𝜕2𝜙

𝜕𝑟2
+
𝛽

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑔1𝜙

5 − 𝑔2𝜙
3 = 0, (12)

its solution

𝜙 (𝑟) =
𝐴

(1 + 𝛼𝑟2)
1/2

, (13)

and the coefficients

𝐴 =

(︂
3𝑔2

(2− 𝛽) 𝑔1

)︂1/2
; 𝛼 =

3𝑔22

(2− 𝛽)
2
𝑔1
. (14)

In solid-state problems, this equation can have a
physical meaning for a certain symmetry of the func-
tion 𝑔 (𝜙) of Eq. (1). In these problems, as was al-
ready mentioned, the function 𝑔 (𝜙) depends not only
on 𝜙, but on 𝜙2. Thus, 𝑔 (𝜙) ≡ 𝑞

(︀
𝜙2

)︀
. In this case, if

the expansion function 𝑞 (𝑥) begins with a quadratic
term [e.g., if 𝑞 (𝑥) = 1 − cos (𝑥)], then the expansion
of the function 𝑞

(︀
𝜙2

)︀
would start with the term 𝜙4

[in the example, 𝑞
(︀
𝜙2

)︀
= 1− cos

(︀
𝜙2

)︀
]. Solution (13)

at infinity has the asymptotics 𝜙 (𝑟) ∼ 1/𝑟, which is
also typical of physical fields. In particular, it corre-
sponds to energy characteristics of a potential-type
field.

4.1. Cases of normal solution

As is seen from the definition of the coefficients 𝐴 and
𝛼, the trend for 1D-spaces (𝛽 = 0) and 2D-spaces
(𝛽 = 1) is the same as in Fig. 1. In particular, Fig. 2
shows the 3D picture of a distribution of the envelope
of a soliton (the square of function (13)) in 2D spaces
(𝛽 = 1).

Fig. 2. The spatial form of a 2D soliton (𝛽 = 1) in a special
case 𝑔1 = 𝑔2 = 1. The amplitude 𝐴 and growth rate 𝛼 have
the numerical values 𝐴 =

√
3, 𝛼 = 3

For the generalized cubic nonlinearity (𝑗 = 1) con-
sidered in Sec. 3, the shape of a 2D-soliton (𝛽 = 1)
will be qualitatively the same, as well as in cases that
will be considered further.

4.2. The case of specific solution

The case of 3D-soliton (𝛽 = 2) requires a separate
consideration. As follows from definitions (14), this
case is degenerate, since, at 𝛽 = 2, the coefficients
𝐴 and 𝛼 formally become infinite. In order for them
to be finite in the case where 𝛽 = 2 and 𝑗 = 2,
𝑔2 = 0 should be assumed. This case (generalized
fifth-power nonlinearity for 3D spaces (𝛽 = 2)) was
discussed in [17] in detail. It was shown there that
one “free” parameter remains in the solution. In rela-
tions (14), this can be formally achieved, if we assume
that if the parameter 𝑔2 and differences 2−𝛽 tend to
zero (above), their ratio 𝑔2/ (2− 𝛽) tends to a certain
number 𝜒. Then relations (14) formally take the form:
𝐴 =

√︀
3𝜒/𝑔1, 𝛼 = 3𝜒2/𝑔1. Excluding the parameter

𝜒, it is possible to bring these two relations to a form,
in which the growth parameter 𝛼: 𝐴 = 4

√︀
3𝛼/𝑔1.

5. Generalized Nonlinearity
of the Seventh Power (𝑗 = 3)

Here, Eq. (6) takes the form

𝜕2𝜙

𝜕𝑟2
+
𝛽

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑔1𝜙

7 − 𝑔2𝜙
4 = 0, (15)

its solution (7) is determined by the relation

𝜙 (𝑟) =
𝐴

(1 + 𝛼𝑟2)
1/3

,

and the coefficients 𝐴 and 𝛼 defined in (8) are reduced
to

𝐴 =

(︂
8𝑔2

(5− 3𝛽) 𝑔1

)︂1/3
, 𝛼 =

36𝑔2
2

(5−3𝛽)2𝑔1
.
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This case can be implemented, when the function
𝑔 (𝜙) in Eq. (1) has an even symmetry, and its ex-
pansion begins with a cubic term. For example, we
can take 𝑔 (𝜙) = cos(𝜙3/2−1. In particular, the pres-
ence of the argument 𝜙3/2 says that this case is not
implemented in solid-state problems, where, as was
already noted, the function 𝑔 (𝜙) depends on 𝜙2. The
asymptotics of the solution at infinity shows the un-
usual power of decrease: 𝜙 (𝑟) ∼ 1/𝑟2/3.

5.1. Cases of normal solution

From the definitions of the coefficients 𝐴 and 𝛼, it
follows that, as in Section 4, we observe the same
trend as in Fig. 1 for the 1D-spaces (𝛽 = 0) and 2D-
spaces (𝛽 = 1), as the space dimensionality increases.

5.2. Case of specific solution

But there is one feature. For a 3D-space (𝛽 = 2),
the soliton has a negative amplitude. This situation
can be considered as a separate case. The negativ-
ity of the amplitude is not a separate case, if the
square of the amplitude has a physical meaning. In
addition, the amplitude of a 3D soliton for this case
(𝑗 = 3, 𝛽 = 2) becomes positive, if 𝑔2 < 0, that is,
if 𝑔2 = −|𝑔2|. In this case, Eq. (15) takes the form
𝜕2𝜙
𝜕𝑟2 + 2

𝑟
𝜕𝜙
𝜕𝑟 + 𝑔1𝜙

7 + |𝑔2|𝜙4 = 0. It can be imple-
mented, when the function 𝑔 (𝜙) is not limited in
the entire space of its argument, as, for example, if
𝑔 (𝜙) = 𝑐ℎ(𝜙3/2)− 1.

6. Generalized Nonlinearity
of the Ninth Power (𝑗 = 4)

Now, Eq. (6) takes the form

𝜕2𝜙

𝜕𝑟2
+
𝛽

𝑟

𝜕𝜙

𝜕𝑟
++𝑔1𝜙

9 − 𝑔2𝜙
5 = 0.

Solution (7) is defined by

𝜙 (𝑟) =
𝐴

(1 + 𝛼𝑟2)
1/4

.

The coefficients 𝐴 and 𝛼 defined in (8) have now such
a specific form

𝐴 =

(︂
5𝑔2

(3− 2𝛽) 𝑔1

)︂1/4
; 𝛼 =

20𝑔22

(3− 2𝛽)
2
𝑔1
.

This case can be implemented with the same symme-
try of the function 𝑔 (𝜙) n Eq. (1), as in subsection

4.2. The only difference is that it could, for exam-
ple, be the function: 𝑔 (𝜙) = cos

(︀
𝜙2

)︀
− 1. In this

sense, the case under consideration can be of interest
for solid-state problems. The asymptotics of the so-
lution at infinity, as well as in the previous section, is
atypical of physical fields, but it also causes interest
in an unusual power of decrease: 𝜙 (𝑟) ∼ 1/𝑟1/4. At
the same time, the asymptotics 𝜙2 (𝑟) ∼ 1/𝑟1/2 can
be already of interest in some cases and for physical
fields.

6.1. Cases of normal solution

From the definition of the coefficient 𝐴, we can im-
mediately conclude that the solitons in the cases of
1D (𝛽 = 0) and 2D (𝛽 = 1) spaces have the same
properties as in all the previous sections (Fig. 1).

6.2. Case of specific solution

For a 3D-space (𝛽 = 2), the amplitude becomes com-
plex:

𝐴 =

(︂
−5𝑔2
𝑔1

)︂1/4
≡

√
𝑖

(︂
5𝑔2
𝑔1

)︂1/4
,

where 𝑖 is the imaginary unit. Since the amplitude
𝜙 (𝑟) must be real here, it can be provided only by
replacing the sign in front of the parameter 𝑔2 and
assuming, for example, 𝑔2 = −|𝑔2| (as well as in the
Section 5).

The remaining generalized nonlinearities, for which
𝑗 ≥ 5, are of little interest from the physical point of
view and will not be considered here.

7. Conclusions

The generalized nonlinear Schrödinger equation has
been analyzed in order to find radially symmetric
soliton solutions. The equation contains a parameter
that allows the analysis simultaneously for all three
spatial dimensions, 1D, 2D, and 3D. In addition, it
contains two nonlinear terms in different powers. We
consider four combinations of powers, called gener-
alized nonlinearities of the third, fifth, seventh, and
ninth powers, which can be related to physically rele-
vant problems. For the equation considered here, we
find radially symmetric solutions that have power-
law asymptotics at infinity ∼1/𝑟𝑣, but are not ex-
ponentially decreasing. With an increase in the pow-
ers of nonlinearity of the equation in question, the
power 𝑣 decreases. In all the cases considered, the so-
lutions found for 1D-spaces (polymers) and 2D-spaces
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(graphenes, etc.) are normal from the physical point
of view (they have a real and positive definite ampli-
tude). For 3D-spaces, from the four options of non-
linearity considered, three options require a separate
consideration. All of them are related to the need ei-
ther to change the sign of the coefficient of a term
with a lower power or even to turn this coefficient
to zero. It is shown that, in all the cases considered,
the soliton becomes narrower with an increase in the
space dimensionality, and its amplitude grows.
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A.Д.Супрун, Л.В.Шмельова

ЦЕНТРАЛЬНО-СИМЕТРИЧНI
СОЛIТОНИ ЗI СТУПЕНЕВОЮ АСИМПТОТИКОЮ
ДЛЯ СЕРЕДОВИЩ РIЗНОЇ РОЗМIРНОСТI

Р е з ю м е

У роботi проаналiзовано аналiтичнi розв’язки радiально-
симетричних нелiнiйних рiвнянь Шредiнгера з двома нелi-
нiйними доданками у рiзних ступенях для 1D, 2D i 3D про-
сторiв. Вони типовi для рiвнянь, у яких є два нелiнiйних
доданки, а не один, як правило, кубiчний. Важливою осо-
бливiстю отриманих розв’язкiв є те, що вони виражаються
не через гiперболiчнi функцiї, а через рацiональнi функцiї,
скiнченнi у всьому просторi i мають ступеневу асимптоти-
ку на нескiнченностi. Отриманi розв’язки iстотно розши-
рюють коло застосувань нелiнiйного рiвняння Шредiнгера.
Окремi актуальнi випадки загального розв’язку розглянутi
в додатках.
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