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PHASE EQUILIBRIUM, THERMODYNAMIC LIMIT,
AND MELTING TEMPERATURE IN NANOCRYSTALS

The phase equilibrium condition is shown to be strictly satisfied only in the thermodynamic
limit. The notion of melting temperature in the thermodynamic limit is introduced. Formu-
las are obtained that determine the melting conditions and the melting temperature for finite
systems including nanocrystals. The validity of those formulas is confirmed, by comparing them
with experimental data for organic materials in porous solids.
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1. Introduction

The study of nanosystems is one of the main tasks
of modern physics. These researches often result in
a necessity of rethinking the well-known and seem-
ingly well-established concepts. This situation is ob-
served, for example, for the term “melting point” for
nanocrystals, and there is a variety of opinions on this
issue (see, e.g., works [1–3]). Unfortunately, it is im-
possible to discuss about that or another statement
concerning the melting temperature in nanocrystals,
because, as a rule, no arguments in favor of such state-
ments are given.

In this work, we attempt to define the term “melt-
ing temperature”. For this purpose, we consider it
pertinent to trace how the “melting point” notion was
formed in thermodynamics at all.

2. Phase Equilibrium
Condition According to Gibbs

One of the fundamental domains in thermodynamics
is that developed by J.W. Gibbs [4] and devoted to
the phase equilibrium. A certain heterophase system
is considered that consists of 𝑞 phases and 𝑠 indepen-
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dent components. When this system is in equilibrium,
it was found that the pressure 𝑝 and the temperature
𝑇 must be identical in all phases, and the chemical
potentials must satisfy the equalities

𝜇1
1 = 𝜇1

2 = ... = 𝜇1
𝑞,

𝜇2
1 = 𝜇2

2 = ... = 𝜇2
𝑞.

. . .

𝜇𝑠
1 = 𝜇𝑠

2 = ... = 𝜇𝑠
𝑞,

(1)

where the subscripts and the superscripts denote the
phase and the component, respectively.

The number of phases in the system must satisfy
the relation

𝑞 ≤ 𝑠+ 2. (2)

If the number of phases equals two, condition (1)
reads

𝜇1(𝑝, 𝑇 ) = 𝜇2(𝑝, 𝑇 ). (3)

Relations (1) and (3) are called phase equilibrium
conditions.

3. Gibbs Model of Heterophase System

Of course, the heterophase system described above is
a simplified model of real situation. In work [4], it was
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emphasized that this model must satisfy the following
requirements:

1) the phases of the system exist simultaneously
and contact with one another;

2) the phase interfaces are flat;
3) the contribution of interfaces to the thermody-

namic characteristics of the system can be neglected.
The Gibbs theory was quoted, commented, and

used in plenty of publications (see, e.g., works [5, 6]).
However, there is a vagueness in the model, on
which this theory is based. This vagueness escaped
the attention of commentators. Namely, the issue to
what extent the requirements to the model must
be adequate to the reality remains almost beyond
discussion.

As was already mentioned, according to the first
requirement, every area occupied by a certain phase
must be in contact with all areas occupied by other
phases. It is difficult to imagine a real configuration
of interfaces that could provide those contacts, of
course, except for the case where the matter concerns
the coexistence of only two phases. Moreover, the in-
terfaces are required to be flat. Again, this require-
ment can be satisfied only in the case of coexistence
of two phases.

Finally, it remains unclear how the interfaces can
be so arranged in space that their contribution to
thermodynamic characteristics could be neglected.

As a result of the aforementioned vagueness, there
arises an impression that relations (1)–(3) correspond
to system’s model that is completely different from
the Gibbs one. Then, which model is adequate to re-
lations (1)–(3)?

4. Phase Equilibrium Condition
in the Thermodynamic Limit

An answer to the posed question is already contained
in the definition of chemical potential. This definition
(see, e.g., work [7]) implies a transition to the thermo-
dynamic limit (a single-phase system in contact with
a thermostat is meant)

𝜇 = lim
𝑉→∞,𝑁→∞

Φ

𝑁
, (4)

where Φ is the thermodynamic potential of the sys-
tem, 𝑉 system’s volume, and 𝑁 the number of parti-
cles in it.

Let the examined system consist of two phases. The
thermodynamic potentials of the phases will be de-

noted as Φ1 and Φ2, the volumes occupied by the
phases as 𝑉1 and 𝑉2, and the numbers of particles in
them as 𝑁1 and 𝑁2. According to definition (4), the
chemical potentials of those phases are defined as

𝜇1 = lim
Φ1

𝑁1
(𝑉1 → ∞, 𝑁1 → ∞), (5)

𝜇2 = lim
Φ2

𝑁2
(𝑉2 → ∞, 𝑁2 → ∞). (6)

Substituting these formulas into Eq. (3), we obtain

lim
Φ1

𝑁1
=

= lim
Φ2

𝑁2
(𝑉1 → ∞, 𝑁1 → ∞, 𝑉2 → ∞, 𝑁2 → ∞). (7)

According to formula (7), when equating the chemi-
cal potentials in both phases, it is necessary to turn
the volume of each phase and the number of parti-
cles in it to infinity independently. This circumstance
removes all ambiguities of the model that were dis-
cussed above. For instance, let 𝑆1 be the area of the
surface that confines the volume 𝑉1. It is clear that

lim
𝑉1→∞

𝑆1

𝑉1
= 0. (8)

Similar relations can be written for every phase con-
stituting the system, which means that the contribu-
tion of surfaces to the thermodynamic parameters of
the system can be neglected.

In the thermodynamic limit, every phase occupies
an infinite volume. Therefore, there is no sense to
talk about the location of interfaces in the real space
and, the more so, that those interfaces should be flat.

5. Gibbs Model
in the Thermodynamic Limit

Thus, we may say that the fundamental assumptions
of the Gibbs model are not satisfied in the real space,
but are satisfied in the thermodynamic limit. In this
case, the volume of every phase in the system is in-
finite. Therefore, all those phases, when contacting
with the thermostat at infinity, simultaneously con-
tact at infinity with one another. Furthermore, if we
consider system’s size 𝑅 ∼ 𝑉 1/3, it becomes evident
that we obtain 𝑅 → ∞ in the thermodynamic limit,
i.e. the surface of the system becomes flat. Finally,
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it is in the thermodynamic limit that the assump-
tion about the neglection of the contribution from the
surfaces to the thermodynamic parameters becomes
valid, as is testified by relation (8).

Thus, in the thermodynamic limit, in accordance
with the Gibbs model, the system consists of infinite
subsystems, phases, which are in equilibrium with
one another, thus providing the equilibrium over the
whole system. For example, in the case of two phases,
the corresponding model consists of two semiinfinite
spaces filled with the corresponding phases and sep-
arated by an infinite plane.

6. Melting Point
in the Thermodynamic Limit

What is understood in thermodynamics under the
term “melting point” or, more generally, “the tem-
perature of a phase transition of the first kind”?
An answer to this question can be, for example,
the following fragment from Ya. Frenkel’s mono-
graph [5]:

“In the ordinary thermodynamic theory of phase
transitions, not the evolution of those transitions in
time, but only an equilibrium between the initial and
new phases is considered assuming that the latter has
reached a full development, and the interface between
the two phases is flat. In so doing, at the transition
temperature and at a given pressure, not the temper-
ature at which the transition actually begins is un-
derstood, but a temperature at which it terminates,
i.e. at which the both phases can remain in equilib-
rium with each other infinitely long.”

From the definition quoted above, the following
conclusions are drawn:

1) since the definition assumes a total equilibrium
between the phases, the transition temperature is a
solution of Eq. (3) at a given pressure;

2) the mentioned definition uses the two-phase
Gibbs model in the thermodynamic limit; therefore,
it is reasonable to call this temperature as the phase
transition temperature in the thermodynamic limit;
below, it will be denoted as 𝑇∞.

As was already mentioned, in the heterophase
Gibbs model, the system is in equilibrium only pro-
vided an equilibrium between its subsystems that are
in different phase states. In the thermodynamic limit,
those subsystems contact at infinity. Simultaneously,
every subsystem contacts with the thermostat at in-

finity. Under such conditions, there is no need to talk
about the equilibrium between separate subsystems,
because each of them is in equilibrium with the ther-
mostat, which automatically provides an equilibrium
between the subsystems.

This circumstance makes it possible to introduce a
single-phase model instead of the heterophase Gibbs
one by confining the consideration to the behav-
ior of any of the mentioned subsystems, renaming
it as “system”, and forgetting about the existence
of other subsystems. Now, expressions (1)–(3) lose
their meaning as phase equilibrium conditions: those
phases do not exist simultaneously in the single-
phase model. Now, there is only one, initial, phase
at 𝑇 < 𝑇∞, and the other phase at 𝑇 > 𝑇∞. At
𝑇 = 𝑇∞, the system is in an indefinite equilibrium
state for each of two phases. However, the sense of
expressions (1)–(3) as phase transition conditions is
preserved.

As was already mentioned, condition (3) acquires
form (7) in the thermodynamic limit. Formula (7)
corresponds to the two-phase model. In the case of
single-phase model, this formula should be rewritten
in the form

lim
Φ1

𝑁
= lim

Φ2

𝑁
(𝑉 → ∞, 𝑁 → ∞). (9)

7. Melting Point in a Finite System

Now, when expression (9) is adopted as the melting
condition in the thermodynamic limit, i.e. in an in-
finite system, it is logical to assume that the same
condition, but for a finite system, should look like

Φ1

𝑁
=

Φ2

𝑁
. (10)

Let us introduce the following notations: Δ𝜇 = 𝜇2 −
−𝜇1, 𝜙1 = Φ1/𝑁 , 𝜙2 = Φ2/𝑁 , Δ𝜙 = 𝜙2 − 𝜙1, and
𝜂 = 𝑆/𝑉 , where 𝑆 is the area of system’s surface. We
assume the pressure to be fixed and consider the tem-
perature as the only independent variable. This state-
ment can be written in the form

Δ𝜇 = Δ𝜇(𝑇 ), (11)

and the melting condition in the thermodynamic limit
(9) [or, equivalently, (3)] is rewritten in the form

Δ𝜇(𝑇∞) = 0. (12)
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As follows from relation (8), the transition to the
thermodynamic limit is described by the expression
𝜂 → 0. Therefore, the quantity Δ𝜙 should be consid-
ered as a function of two variables, 𝑇 and 𝜂, i.e.

Δ𝜙 = Δ𝜙(𝑇, 𝜂). (13)

With regard for equalities (9) and (10), we obtain
that, in the thermodynamic limit,

Δ𝜙(𝑇∞, 0) = Δ𝜇(𝑇∞) = 0. (14)

Let us consider the case

|𝑇 − 𝑇∞| ≪ 𝑇∞. (15)

By expanding the function Δ𝜙(𝑇, 𝜂) in a power series
of 𝑇 − 𝑇∞ and 𝜂 up to the linear terms, we obtain

Δ𝜙(𝑇, 𝜂) = Δ𝜙(𝑇∞, 0) + 𝑎(𝑇 − 𝑇∞) + 𝑏𝜂, (16)

where the notations

𝑎 =
𝜕Δ𝜙

𝜕𝑇
(𝑇∞, 0), 𝑏 =

𝜕Δ𝜙

𝜕𝜂
(𝑇∞, 0) (17)

were introduced. Taking equality (14) into account,
formula (16) can be rewritten in the form

Δ𝜙(𝑇, 𝜂) = 𝑎(𝑇 − 𝑇∞) + 𝑏𝜂. (18)

Let 𝑇0 denote the melting point in a finite system.
Substituting this value into formula (18), we obtain

Δ𝜙(𝑇0, 𝜂) = 𝑎(𝑇0 − 𝑇∞) + 𝑏𝜂. (19)

In terms of new notations, the melting condition (10)
for a finite system acquires the form

Δ𝜙(𝑇0, 𝜂) = 0, (20)

which enables us to rewrite formula (19) in the form

𝑇0 = 𝑇∞ − 𝑏

𝑎

𝑆

𝑉
. (21)

Formula (21) determines the melting temperature in
finite crystalline systems, including nanocrystals.

8. Comparison with Experiment

In work [8], the differences between the melting tem-
peratures of trans-decalin, chlorobenzene, and hep-
tane in the bulk and in the pores of porous silica gel,

Dependences of the temperature difference Δ𝑇 = = 𝑇∞ − 𝑇0

on the ratio 𝑆/𝑉 for trans-decalin (𝑎), chlorobenzene (𝑏) and
heptane (𝑐)

as well as their dependences on the geometric pore
parameters, were measured. On the basis of those
data, the dependences of the temperature difference
Δ𝑇 = 𝑇∞ − 𝑇0 on the ratio 𝑆/𝑉 were plotted (see
Figure). As one can see, the linear dependence (21) is
true for the examined objects within the experimental
error limits.

9. Conclusions

When we started this paper, our aim was to solve a
narrow specific problem and to elucidate the notion of
“melting point” for nanocrystals. It was assumed that
this problem could be solved by considering it as a
partial case in the framework of the general theory of
melting. It seemed that the generally accepted term
“melting point”, which has been used for decades, re-
mains to be an absolute and immovable truth till
now. However, it turned out that this very concept
needs a correction.

This is so because, by definition, the melting point
is a temperature, at which the crystal and its melt are
in equilibrium. This means that the crystalline phase
in a system, whose melting point is considered, has to
be in contact with the melt. As a rule, this require-
ment is not satisfied for real systems, e.g., nanocrys-
tals in a solid matrix.

The problem is solved by introducing the melting
temperature in the thermodynamic limit. In this case,
the crystal has infinite dimensions and no necessity to
contact with the melt.
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The motion toward the thermodynamic limit cor-
responds to a sequence of finite-size crystalline sys-
tems. This size increases, as we approach the ther-
modynamic limit. Every of those systems has its own
melting point. Accordingly, there exists a sequence of
melting temperatures, whose limit is the melting tem-
perature in the thermodynamic limit.

Every of those finite-size systems, including
nanocrystals, is characterized by the ratio between
the area of system’s surface and volume. In the ther-
modynamic limit, this ratio equals zero. The melting
temperature of the finite-size system is a linear func-
tion of this ratio. This dependence was obtained in
the framework of the thermodynamic approach. The-
refore, it has a universal character and should be valid
for various crystalline systems, in particular, for the
substance that fills pores in porous solids.
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Л.А.Булавiн, О.М.Алєксєєв,
Ю.Ф. Забашта, М.М.Лазаренко

РIВНОВАГА ФАЗ, ТЕРМОДИНАМIЧНА ГРАНИЦЯ
ТА ТЕМПЕРАТУРА ПЛАВЛЕННЯ НАНОКРИСТАЛIВ

Р е з ю м е

Показано,що умова рiвноваги фаз строго задовольняється
тiльки в термодинамiчнiй границi. Вводиться поняття тем-
ператури плавлення в термодинамiчнiй границi. Отримано
формули, що визначають умову та температуру плавлення
скiнченних систем, включаючи нанокристали. Дiєвiсть цих
формул пiдтверджено порiвнянням з експериментальними
данними щодо плавлення органiчних матерiалiв в пористих
твердих тiлах.
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