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MICROSCOPIC CALCULATION OF JOSEPHSON
CURRENT IN TUNNEL JUNCTIONS WITH TWO-GAP
SUPERCONDUCTORS

Quasiclassical equations of the one-gap superconductivity theory have been applied to super-
conductors with two energy gaps. Using the equations for Green’s functions obtained in the
𝑡-representation, the Josephson current density through tunnel junctions with two-gap super-
conductors is calculated.
K e yw o r d s: quasiclassical equation, energy gap, Green’s function, 𝑡-representation, current
density, dielectric film, Josephson junction, two-gap superconductor, phase difference.

1. Introduction

The Josephson effect has been studied in plenty of
works (see, e.g., reviews [1, 2]), including the cur-
rent states in tunnel junctions of the superconductor-
insulator-superconductor (SIS) type. In particular,
in work [3], the non-stationary Josephson current
was considered in the framework of the kinetic ap-
proach. The Josephson current at temperatures close
to the critical one, 𝑇c, was calculated in work [4] for
pure superconductor electrodes and in works [5–7]
for electrodes with non-magnetic impurities. The au-
thors of works [8, 9] calculated the dependence of the
current density on the phase difference across the tun-
nel SIS junction with regard for the unparing effects,
by using the asymptotic form obtained in the mi-
croscopic superconductivity theory for temperatures
near 𝑇c. However, all those works concerned only su-
perconductors with a single energy gap.

A possibility for superconductors with two energy
gaps to exist was considered as long ago as in works
[10, 11]. But active researches in the domain of two-
gap superconductivity were started after the discov-
ery [12] of two energy gaps in the binary MgB2 com-
pound with the critical temperature 𝑇c = 39 K, which
is the highest one among superconductors with the
phonon mechanism of electron pairing. The proper-
ties of MgB2 were studied in works [13–18, 20, 21],
where, in essence, the BCS theory for two-gap super-
conductors was developed.
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In work [22], the dependence of the current den-
sity on the phase difference across a tunnel Joseph-
son junction on the basis of MgB2 was obtained in
the framework of the Ginzburg–Landau phenomeno-
logical theory. In this work, we will carry on a micro-
scopic calculation of the Josephson current in tunnel
superconductor junctions including two-gap super-
conductors. The calculations are performed within
the method of quasiclassical equations. This method
was described in detail in monograph [23]. In the cited
work, Gor’kov’s equations for Green’s functions were
written in the so-called 𝑡-representation. The latter
has already proven its efficiency in the one-gap the-
ory of superconductivity. In other words, our aim is
to extend the method of quasiclassical equations onto
the case of superconductivity with two energy gaps.

2. Equations for Green’s Functions

Let us write down the Hamiltonian for a system of free
electrons in the field of complex sources of electron
pairs [24]

�̂�𝐵 =
∑︁
𝑙,𝜎

∫︁
𝑑r𝜓+

𝑙,𝜎 (r) 𝜉𝜓𝑙,𝜎 (r)−

−

(︃∑︁
𝑙,𝑙′

𝑔𝑙,𝑙′

∫︁
𝑑rΔ𝑙′ (r)𝜓

+
𝑙,↑ (r)𝜓

+
𝑙,↓ (r) + h.c.

)︃
. (1)

Since the superconductivity is assumed to have a two-
gap origin, the band indices 𝑙 and 𝑙′ can acquire values
of 1 and 2. The constants 𝑔𝑙,𝑙′ describe the interaction
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between the 𝑙-th and 𝑙′-th bands. In the case of mag-
netic field absence, we may write

𝜉 =
p̂2

2𝑚
− 𝜇.

The complex functions Δ𝑙 (�⃗�) in Eq. (1) are called the
order parameters.

We seek for an expression for the current den-
sity in the framework of Green’s function formalism.
Green’s functions are defined by the formulas

𝐹𝑙 (r1, r2; 𝜏1, 𝜏2) =
⟨
𝑇𝜏𝜓

+
𝑙,↑ (r1, 𝜏1)𝜓

+
𝑙,↓ (r2, 𝜏2)

⟩
,

𝐺𝑙 (r1, r2; 𝜏1, 𝜏2) = −
⟨
𝑇𝜏𝜓𝑙,↓ (r1, 𝜏1)𝜓

+
𝑙,↓ (r2, 𝜏2)

⟩
.

They contain the so-called imaginary time 𝜏 , which
varies from 0 to 1/𝑇 . The creation and annihilation
operators are taken in the Heisenberg representa-
tion. These Green’s functions satisfy the closed sys-
tem of Gor’kov’s equations(︂

𝜕

𝜕𝜏1
+ 𝜉1

)︂
𝐺𝑙 (r1, r2; 𝜏1, 𝜏2)−

−
∑︁
𝑙′

𝑔𝑙,𝑙′Δ𝑙′ (r1)𝐹𝑙 (r1, r2; 𝜏1, 𝜏2) =

= −𝛿 (𝜏1 − 𝜏2) 𝛿 (r1 − r2),(︂
𝜕

𝜕𝜏1
− 𝜉1

)︂
𝐹𝑙 (r1, r2; 𝜏1, 𝜏2)−

−
∑︁
𝑙′

𝑔𝑙,𝑙′Δ
*
𝑙′ (r1)𝐺𝑙 (r1, r2; 𝜏1, 𝜏2) = 0.

(2)

Since the order parameters do not depend on the vari-
ables 𝜏1 and 𝜏2, Green’s functions are characterized
by the following properties:

𝐹𝑙 (r1, r2; 𝜏1, 𝜏2) = 𝐹𝑙 (r1, r2; 𝜏1 − 𝜏2),

𝐺𝑙 (r1, r2; 𝜏1, 𝜏2) = 𝐺𝑙 (r1, r2; 𝜏1 − 𝜏2).

By expanding these functions in the series in odd
Matsubara frequencies 𝜔𝑛 = 𝜋𝑇 (2𝑛+ 1),

𝐹𝑙 (r1, r2; 𝜏1 − 𝜏2) = 𝑇
∑︁
𝜔𝑛

𝐹𝑙,𝜔𝑛
(r1, r2) 𝑒

−𝑖𝜔𝑛(𝜏1−𝜏2),

𝐺𝑙 (r1, r2; 𝜏1 − 𝜏2) = 𝑇
∑︁
𝜔𝑛

𝐺𝑙,𝜔𝑛
(r1, r2) 𝑒

−𝑖𝜔𝑛(𝜏1−𝜏2),

and substituting them into the system of Gor’kov’s
equations (2), we can obtain the following system of

equations:(︁
𝑖𝜔𝑛 − 𝜉1

)︁
𝐺𝑙,𝜔𝑛

(r1, r2)+

+
∑︁
𝑙′

𝑔𝑙,𝑙′Δ𝑙′ (r1)𝐹𝑙,𝜔𝑛 (r1, r2) = 𝛿 (r1 − r2),(︁
𝑖𝜔𝑛 + 𝜉1

)︁
𝐹𝑙,𝜔𝑛

(r1, r2)+

+
∑︁
𝑙′

𝑔𝑙,𝑙′Δ
*
𝑙′ (r1)𝐺𝑙,𝜔𝑛

(r1, r2) = 0.

(3)

It is expedient to introduce two more Green’s func-
tions according to the definition

𝐹𝑙 (r1, r2; 𝜏1, 𝜏2) =
⟨
𝑇𝜏𝜓𝑙,↓ (r1, 𝜏1)𝜓𝑙,↑ (r2, 𝜏2)

⟩
,

�̃�𝑙 (r1, r2; 𝜏1, 𝜏2) = −
⟨
𝑇𝜏𝜓

+
𝑙,↑ (r1, 𝜏1)𝜓𝑙,↑ (r2, 𝜏2)

⟩
.

These functions satisfy the system of equations(︂
𝜕

𝜕𝜏1
+ 𝜉1

)︂
𝐹𝑙 (r1, r2; 𝜏1, 𝜏2) −

−
∑︁
𝑙′

𝑔𝑙,𝑙′Δ𝑙′ (r1) �̃�𝑙 (r1, r2; 𝜏1, 𝜏2) = 0,(︂
𝜕

𝜕𝜏1
− 𝜉1

)︂
�̃�𝑙 (r1, r2; 𝜏1, 𝜏2) −

−
∑︁
𝑙′

𝑔𝑙,𝑙′Δ
*
𝑙′ (r1)𝐹𝑙 (r1, r2; 𝜏1, 𝜏2) =

= −𝛿 (𝜏1 − 𝜏2) 𝛿 (r1 − r2).

(4)

The application of the Fourier transformation con-
verts system (4) into the system of equations(︁
𝑖𝜔𝑛 − 𝜉1

)︁
𝐹𝑙,𝜔𝑛

(r1, r2)+

+
∑︁
𝑙′

𝑔𝑙,𝑙′Δ𝑙′ (r1) �̃�𝑙,𝜔𝑛
(r1, r2) = 0,(︁

𝑖𝜔𝑛 + 𝜉1

)︁
�̃�𝑙,𝜔𝑛 (r1, r2)+

+
∑︁
𝑙′

𝑔𝑙,𝑙′Δ
*
𝑙′ (r1)𝐹𝑙,𝜔𝑛

(r1, r2) = 𝛿 (r1 − r2).

(5)

Now, by introducing the matrix Green’s function

�̂�𝑙,𝜔𝑛 (r, r′) =

(︂
𝐺𝑙,𝜔𝑛

(r, r′) −𝐹𝑙,𝜔𝑛
(r, r′)

−𝐹𝑙,𝜔𝑛
(r, r′) �̃�𝑙,𝜔𝑛

(r, r′)

)︂
,

we can unite systems (3) and (5) into a single matrix
equation(︂
𝑖𝜔𝑛 − 𝜎𝑧𝜉 −

∑︁
𝑙′

𝑔𝑙,𝑙′Δ̂𝑙′ (r)

)︂
�̂�𝑙,𝜔𝑛

(r, r′) =
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= 𝛿 (r− r′), (6)

where

Δ̂𝑙 (r) =

(︂
0 Δ𝑙 (r)

Δ*
𝑙 (r) 0

)︂
.

In the case of an external potential 𝑈 (r), the matrix
equation (6) reads(︁
𝑖𝜔𝑛 − 𝜎𝑧

(︁
𝜉 + 𝑈 (r)

)︁)︁
�̂�𝑙,𝜔𝑛

(r, r′) −

−
∑︁
𝑙′

𝑔𝑙,𝑙′Δ̂𝑙′ (r) �̂�𝑙,𝜔𝑛
(r, r′) = 𝛿 (r− r′).

3. Quasiclassical Equations

In order to develop the method of quasiclassical equa-
tions in the framework of the two-gap superconduc-
tivity theory, let us introduce the matrix Green’s
functions in the momentum space,

�̂�𝑖,𝑘
𝑙,𝜔𝑛

(p,p′)=

∫︁
𝑑r

∫︁
𝑑r′𝜓*(𝑖)

p (r)𝜓
(𝑘)
p′ (r′) �̂�𝑙,𝜔𝑛 (r, r′).

The superscripts 𝑖 and 𝑘 can acquire values of 1 and 2.
The functions 𝜓(𝑘)

p (r) are solutions of the Schrödinger
equation with the potential

𝑈 (r) = 𝑈 (𝑧) = 𝑈0𝛿 (𝑧),

which simulates a thin dielectric film. In this case,
the order parameters and the current density depend
only on the 𝑧-coordinate. Using a calculation scheme
similar to that described in monograph [25], we ar-
rive at the following matrix equations in terms of the
variables 𝑡 and 𝑡′:(︂
𝑖𝜔𝑛 + 𝑖𝜎𝑧

𝜕

𝜕𝑡

)︂
�̂�𝑖,𝑘

𝑙,𝜔𝑛
(𝑡, 𝑡′) −

−
∑︁
𝑖′

�̂�𝑖,𝑖′

𝑙 (𝑡, 𝑥) �̂�𝑖′,𝑘
𝑙,𝜔𝑛

(𝑡, 𝑡′) = 𝛿𝑖,𝑘𝛿 (𝑡− 𝑡′). (7)

Here, we use the notation

�̂�𝑖,𝑖′

𝑙 (𝑡, 𝑥) =

=

⎛⎜⎝ 0
∑︀
𝑙′
𝑔𝑙,𝑙′Δ

𝑖,𝑖′

𝑙′ (𝑡, 𝑥)

(−1)
𝑖+𝑖′ ∑︀

𝑙′
𝑔𝑙,𝑙′Δ

*𝑖,𝑖′
𝑙′ (𝑡, 𝑥) 0

⎞⎟⎠,
where

Δ1,1
𝑙 (𝑡, 𝑥) = 𝐷Δ𝑙 (𝑣0𝑥𝑡)+

+𝑅 [𝜃 (−𝑡)Δ𝑙 (𝑣0𝑥𝑡) + 𝜃 (𝑡)Δ𝑙 (−𝑣0𝑥𝑡)],

Δ1,2
𝑙 (𝑡, 𝑥) = 𝑖

√
𝐷𝑅𝜃 (𝑡) [Δ𝑙 (−𝑣0𝑥𝑡)−Δ𝑙 (𝑣0𝑥𝑡)],

Δ2,1
𝑙 (𝑡, 𝑥) = 𝑖

√
𝐷𝑅𝜃 (𝑡) [Δ𝑙 (𝑣0𝑥𝑡)−Δ𝑙 (−𝑣0𝑥𝑡)],

Δ2,2
𝑙 (𝑡, 𝑥) = 𝐷Δ𝑙 (−𝑣0𝑥𝑡)+

+𝑅 [𝜃 (𝑡)Δ𝑙 (𝑣0𝑥𝑡) + 𝜃 (−𝑡)Δ𝑙 (−𝑣0𝑥𝑡)].

The physical quantity 𝑣0 is called the Fermi velocity.
It is worth noting that

𝑥 =
𝑝𝑧√︁

𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

.

The coefficients of electron reflection from, 𝑅, and
transmission through, 𝐷, the potential barrier are
calculated by the following formulas:

𝑅 (𝑥) =
𝑚2𝑈2

0

𝑝20𝑥
2 +𝑚2𝑈2

0

, 𝐷 (𝑥) =
𝑝20𝑥

2

𝑝20𝑥
2 +𝑚2𝑈2

0

.

The quantity 𝑝0 is called the Fermi momentum.
When determining the matrix equations for Green’s
functions in the 𝑡-representation, all required calcula-
tions were performed in a vicinity of this momentum
value.

4. Current Density

The current density in the case of superconductivity
with two energy gaps was calculated using the for-
mula

j (r) =
𝑖𝑒

𝑚
𝑇
∑︁
𝑙,𝜔𝑛

lim
r′→r

(∇r′ −∇r)𝐺𝑙,𝜔𝑛
(r, r′). (8)

With the help of Green’s functions in the 𝑡-represen-
tation, this expression can be transformed as follows:

𝑗 (𝑧) = 2𝜋𝑒𝑣0𝑁 (0)𝑇 ×

×
∑︁
𝑙,𝜔𝑛

1∫︁
0

𝑥𝑑𝑥

[︂
𝐷
{︁
𝐺1,1

𝑙,𝜔𝑛
(𝑡, 𝑡)−𝐺2,2

𝑙,𝜔𝑛
(−𝑡,−𝑡)

}︁
+

+𝑅

{︂
𝜃 (−𝑧)

[︁
𝐺1,1

𝑙,𝜔𝑛
(𝑡, 𝑡)−𝐺1,1

𝑙,𝜔𝑛
(−𝑡,−𝑡)

]︁
+

+ 𝜃 (𝑧)
[︁
𝐺2,2

𝑙,𝜔𝑛
(𝑡, 𝑡)−𝐺2,2

𝑙,𝜔𝑛
(−𝑡,−𝑡)

]︁}︂
+

+ 𝑖
√
𝐷𝑅

{︂
𝜃 (𝑧)

[︁
𝐺1,2

𝑙,𝜔𝑛
(𝑡, 𝑡)−𝐺2,1

𝑙,𝜔𝑛
(𝑡, 𝑡)

]︁
+

+ 𝜃 (−𝑧)
[︁
𝐺1,2

𝑙,𝜔𝑛
(−𝑡,−𝑡)−𝐺2,1

𝑙,𝜔𝑛
(−𝑡,−𝑡)

]︁}︂]︂
.
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This formula includes the notation 𝑡 = 𝑧
𝑣0𝑥

and the

quantity 𝑁 (0) = 𝑚2𝑣0
2𝜋2 . Below, we use a model with

piecewise constant order parameters. In this approx-
imation, the absolute values of order parameters are
assumed to be constant within each superconductor,
whereas the phases are different. Then, one may write
that

Δ𝑙 (𝑧) = Δ𝑙 [𝜃 (−𝑧) exp (𝑖𝜙𝑙) + 𝜃 (𝑧) exp (𝑖𝜒𝑙)].

After having solved Eq. (7) for Green’s functions
in the 𝑡-representation for the case of small trans-
parency and in the selected order parameter approx-
imation, we can calculate the current density in the
plane 𝑧 = 0:

𝑗 =
∑︁
𝑖,𝑘

𝑗𝑖,𝑘 sin (𝜒𝑖 − 𝜙𝑘), (9)

where

𝑗𝑖,𝑘 = 𝜋𝑒𝑣0𝑁 (0)𝑇Δ𝑖Δ𝑘 ×

×
∑︁
𝑙

𝑔𝑙,𝑖𝑔𝑙,𝑘
∑︁
𝜔𝑛

1

Ω1,1
𝑙,𝜔𝑛

Ω2,2
𝑙,𝜔𝑛

1∫︁
0

𝑥𝐷 (𝑥) 𝑑𝑥,

Ω𝑘,𝑘
𝑙,𝜔𝑛

=

√︂
|𝜔𝑛|2 +

⃒⃒⃒
𝐸𝑘,𝑘

𝑙

⃒⃒⃒2
,

𝐸1,1
𝑙 =

∑︁
𝑙′

𝑔𝑙,𝑙′Δ𝑙′ exp (𝑖𝜙𝑙′),

𝐸2,2
𝑙 =

∑︁
𝑙′

𝑔𝑙,𝑙′Δ𝑙′ exp (𝑖𝜒𝑙′).

5. Conclusions

In this work, the method of quasiclassical equations,
which is known in the theory of one-gap supercon-
ductors, is extended onto the case of superconduc-
tors with two energy gaps. The equation for Green’s
functions in the 𝑡-representation is obtained, and the
formula for the current density is found, by using
Green’s functions in this representation. All calcula-
tions are made at the Fermi surface. By consider-
ing the case of low transparency, we haave obtained
a quite compact dependence of the current density
on the phase difference. By its mathematical struc-
ture, the final result is similar to that obtained in the
framework of the phenomenological approach [22].

Our work clearly demonstrates the advantage of the
microscopic approach, because it allows one to obtain

the dependence for the current density with parame-
ters that can be calculated. Those parameters have a
physical sense, which is hidden in the phenomenolog-
ical theory of superconductivity.
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МIКРОСКОПIЧНИЙ РОЗРАХУНОК
ДЖОЗЕФСОНIВСЬКОГО СТРУМУ В ТУНЕЛЬНИХ
НАДПРОВIДНИХ КОНТАКТАХ НА ОСНОВI
ДВОЩIЛИННИХ НАДПРОВIДНИКIВ

Р е з ю м е

Метод квазiкласичних рiвнянь, побудований у теорiї одно-
щiлинної надпровiдностi, застосовано для випадку надпро-
вiдникiв з двома енергетичними щiлинами. Побудованi рiв-
няння для функцiй Грiна у 𝑡-представленнi дають можли-
вiсть обчислювати густину струму, який протiкає крiзь тон-
ку дiелектричну плiвку у тунельних джозефсонiвських кон-
тактах на основi двощiлинних надпровiдникiв. Отримана
залежнiсть густини струму вiд рiзниць фаз мiстить коефi-
цiєнти зрозумiлого походження.
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