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MICROSCOPIC CALCULATION OF JOSEPHSON
CURRENT IN TUNNEL JUNCTIONS WITH TWO-GAP

SUPERCONDUCTORS

Quasiclassical equations of the one-gap superconductivity theory have been applied to super-
conductors with two energy gaps. Using the equations for Green’s functions obtained in the
t-representation, the Josephson current density through tunnel junctions with two-gap super-

conductors is calculated.

Keywords: quasiclassical equation, energy gap, Green’s function, ¢-representation, current
density, dielectric film, Josephson junction, two-gap superconductor, phase difference.

1. Introduction

The Josephson effect has been studied in plenty of
works (see, e.g., reviews [1, 2]), including the cur-
rent states in tunnel junctions of the superconductor-
insulator-superconductor (SIS) type. In particular,
in work [3], the non-stationary Josephson current
was considered in the framework of the kinetic ap-
proach. The Josephson current at temperatures close
to the critical one, T, was calculated in work [4] for
pure superconductor electrodes and in works [5-7]
for electrodes with non-magnetic impurities. The au-
thors of works [8, 9] calculated the dependence of the
current density on the phase difference across the tun-
nel SIS junction with regard for the unparing effects,
by using the asymptotic form obtained in the mi-
croscopic superconductivity theory for temperatures
near T.. However, all those works concerned only su-
perconductors with a single energy gap.

A possibility for superconductors with two energy
gaps to exist was considered as long ago as in works
[10, 11]. But active researches in the domain of two-
gap superconductivity were started after the discov-
ery [12] of two energy gaps in the binary MgBs, com-
pound with the critical temperature T, = 39 K, which
is the highest one among superconductors with the
phonon mechanism of electron pairing. The proper-
ties of MgBs were studied in works [13-18, 20, 21|,
where, in essence, the BCS theory for two-gap super-
conductors was developed.
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In work [22], the dependence of the current den-
sity on the phase difference across a tunnel Joseph-
son junction on the basis of MgBy was obtained in
the framework of the Ginzburg—Landau phenomeno-
logical theory. In this work, we will carry on a micro-
scopic calculation of the Josephson current in tunnel
superconductor junctions including two-gap super-
conductors. The calculations are performed within
the method of quasiclassical equations. This method
was described in detail in monograph [23]. In the cited
work, Gor’kov’s equations for Green’s functions were
written in the so-called t-representation. The latter
has already proven its efficiency in the one-gap the-
ory of superconductivity. In other words, our aim is
to extend the method of quasiclassical equations onto
the case of superconductivity with two energy gaps.

2. Equations for Green’s Functions

Let us write down the Hamiltonian for a system of free
electrons in the field of complex sources of electron
pairs [24]

o= Y [ i, ) v ) -
l,o

. (Z o

L

/ drAy (v) g (0) &) (r) + h.c.>. (1)

Since the superconductivity is assumed to have a two-
gap origin, the band indices [ and I’ can acquire values
of 1 and 2. The constants g; ;- describe the interaction
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between the I-th and I’-th bands. In the case of mag-
netic field absence, we may write
-2

o
§=5 ~H
The complex functions A, (7) in Eq. (1) are called the
order parameters.

We seek for an expression for the current den-
sity in the framework of Green’s function formalism.
Green’s functions are defined by the formulas

Fy(r1,12;71,72) = <Trl/3f} (I"17T1)1ﬁr¢ (1‘2,72)>7
Gy (r1,12571,72) = _<T‘r7/;l,¢ (1‘1’7'1)1511 (r2,72)>.

They contain the so-called imaginary time 7, which
varies from 0 to 1/T. The creation and annihilation
operators are taken in the Heisenberg representa-
tion. These Green’s functions satisfy the closed sys-
tem of Gor’kov’s equations

9 .
( + 51) Gy (r1,12;71,72) —

87’1
_Zgl,l’Al’ (r1) Fy (r,r2;71,72) =
l/
:—(5(7'1—7'2)(5(1‘1—1‘2)7 (2)
0

o 51) Fy(ri,ro;71,72) —

> g Aj (r1) Gy (r1,12;71,72) = 0.
l/

Since the order parameters do not depend on the vari-
ables 71 and 7o, Green’s functions are characterized
by the following properties:

Fy(r1,re;71,72) = F (r1, 12571 — 72),

G (r1,r2;71,72) = Gy (r1,12; 71 — T2).

By expanding these functions in the series in odd
Matsubara frequencies w,, = 77T (2n + 1),

Fi(ryrosm —m) = TZFl,wn (r1,15) e on(m=72)

Wn

Gi(ry,rom =) = TZ G, (r1,12) e7w0n(=72),

Wn

and substituting them into the system of Gor’kov’s
equations (2), we can obtain the following system of
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equations:
(iwn - él) Gl,wn (rla 1'2) +

+ Zgl,l/Al’ (r1) Flw, (r1,12) =6 (11 — 12),
e 3)
(an + 51) -Fl,wn (rla 1‘2) +
+ Zgl,l/Azk/ (r1) Giw, (r1,r2) =0.
ll

It is expedient to introduce two more Green’s func-
tions according to the definition

Fy(r1,12;71,7) = <T71ﬁl,¢ (1“177'1)%@ (T2’T2)>,
Gi(r1,r2;71,72) = — <Trl/3ff¢ (v, 71) i (r2,72)>-

These functions satisfy the system of equations
0 +& ) Fi(ry,r )
i T, To) —
87’1 1 t\11,12,71,72,
= g A (r1) Gi (r1,19;71,72) =0,
l/

o\ -
(8 —€1> Gy (ry,12;71,72) —
T1

- Zgl,l’A; (r1) B (r1,12;71,72) =
l/

= —5 (7'1 — TQ)(S (I‘1 — 1‘2).

The application of the Fourier transformation con-
verts system (4) into the system of equations

(iwn - él) E,wn (rla r2) +
—+ Zgl’l/All (rl) él,wn (rlv r2) = 0’

v (5)
(iwn + 51) Giw, (r1,r2) +

+> g A (r1) Fr, (r1,12) = 6 (r1 — 12).
l/

Now, by introducing the matrix Green’s function

Gl,wn (I', I'/) _E,wn (I‘, I'/))

. N
Glw, (r,v') = (Fz,wn (r,r') G, (r,1)

we can unite systems (3) and (5) into a single matrix
equation

(19— 02 = X onw b)) G, () =
l/
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=d0(r—71), (6)

vAvhe:e: o
0= (s ")

In the case of an external potential U (r), the matrix
equation (6) reads

(iwn — 0, (é-i— U (I‘))) él,wn (r,x') —

> grhr (1) Gr, (1) =5 (x — 1),
l/

3. Quasiclassical Equations

In order to develop the method of quasiclassical equa-
tions in the framework of the two-gap superconduc-
tivity theory, let us introduce the matrix Green’s
functions in the momentum space,

2ok

Gt (p,p')= / dr / dr' g (0) 5 (1) G, (1),

The superscripts ¢ and k can acquire values of 1 and 2.

The functions 1/1£k> (r) are solutions of the Schrédinger
equation with the potential

U (r) = U (=) = Uod (2),

which simulates a thin dielectric film. In this case,
the order parameters and the current density depend
only on the z-coordinate. Using a calculation scheme
similar to that described in monograph [25], we ar-
rive at the following matrix equations in terms of the
variables t and ¢':

(z’wn + wzgt) Gyt (tt) —
~STE () GLE () = 6 (¢ 1), (7)
Here, we use the notation
B (ta) =

0 > g AG ()
DT DA (b) 0

)

where
AP (t,x) = DA, (voxt) +
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RO (—t) Ay (vot) + 0 (£) A (—vot)],
( t) [Ar (—voxt) — Ay (voxt)],

t) [A (voxt) — Ay (—voat)],

AZ? (t,2) = DA (—voxt) +

+R[0(t) A (voxt) + 6 (—t) Ay (—vot)].

The physical quantity vy is called the Fermi velocity.
It is worth noting that

p-
\/Pi+ Py + P2

The coefficients of electron reflection from, R, and
transmission through, D, the potential barrier are
calculated by the following formulas:

2772
m=Uj
=———-—., D
par? + m2U¢’ (z)

Tr =

2.2
Pox
R = .

(@) p3z? +m2U¢

The quantity po is called the Fermi momentum.
When determining the matrix equations for Green’s
functions in the ¢t-representation, all required calcula-
tions were performed in a vicinity of this momentum
value.

4. Current Density

The current density in the case of superconductivity
with two energy gaps was calculated using the for-
mula

jr) = 575 lim (Ve — V) Gra, (r,1). (8)
m r’'—r

Lwn

With the help of Green’s functions in the ¢-represen-
tation, this expression can be transformed as follows:

J(z) =2mevoN (0) T x

1
- / vdz [D ford en-@2 (-0} +
lywn 0
+ R{e (~2) [l @D -Gl (~t, -] +
00 622, (00 - 622, (-n. 0] b+
+NDR{9 (2) [G}j (t.t) - G, (t,t)} +
+0(-2) [612, (-0 - 62, (-t -] |
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This formula includes the notation ¢ = ;= and the
quantity N (0) = ’gfgo Below, we use a model with

piecewise constant order parameters. In this approx-
imation, the absolute values of order parameters are
assumed to be constant within each superconductor,
whereas the phases are different. Then, one may write
that

Ap(z) = Ag [0 (=2) exp (1) + 0 (2) exp (ixa)]-

After having solved Eq. (7) for Green’s functions
in the t-representation for the case of small trans-
parency and in the selected order parameter approx-
imation, we can calculate the current density in the
plane z = 0:

J=diksin (i — x), (9)
ik

where

Jik = mevgN (0) TA; Ag X

1
1
X Z 91,i91k Z il 2 /xD (z) dz,
l Wn 0

Lwn " "lwn

2
kk 2 k. k
o, =\ lwnl” + ‘Ez )

Bt =" gD exp (iow),
Z/

E}? = Z giir Ay exp (ixy).
l/

5. Conclusions

In this work, the method of quasiclassical equations,
which is known in the theory of one-gap supercon-
ductors, is extended onto the case of superconduc-
tors with two energy gaps. The equation for Green’s
functions in the t-representation is obtained, and the
formula for the current density is found, by using
Green’s functions in this representation. All calcula-
tions are made at the Fermi surface. By consider-
ing the case of low transparency, we haave obtained
a quite compact dependence of the current density
on the phase difference. By its mathematical struc-
ture, the final result is similar to that obtained in the
framework of the phenomenological approach [22].
Our work clearly demonstrates the advantage of the
microscopic approach, because it allows one to obtain
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the dependence for the current density with parame-
ters that can be calculated. Those parameters have a
physical sense, which is hidden in the phenomenolog-
ical theory of superconductivity.

1. A.A. Golubov, M. Yu. Kupriyanov, E. Il'ichev. The
current-phase relation in Josephson junctions. Rev. Mod.
Phys. 6, 411 (2004).

2. K.K. Likharev. Superconducting weak links. Rev. Mod.
Phys. 51, 101 (1979).

3. A.V. Svidzinskii, V.A. Slyusarev. Contribution to the the-
ory of tunneling in superconductors. JETP 24, 120 (1967).

4. V.P. Galaiko, A.V. Svidzinskii, V.A. Slyusarev. Concerning
the theory of proximity effects in superconductors. JETP
56, 835 (1969).

5. E.N. Bratus, A.V. Svidzinskii. Josephson current in junc-
tions with nonmagnetic impurities. Teor. Mat. Fiz. 3, 239
(1977) (in Russian).

6. M.Yu. Kupriyanov. Influence of finite transparency on the
properties of tunnel SIS junctions. Pis’'ma Zh. Eksp. Teor.
Fiz. 56, 414 (1992) (in Russian).

7. V.E. Sakhnyuk, A.V. Svidzynskyi. Dirty Josephson junc-
tions with incomplete barrier transparency. Ukr. Fiz. Zh.
9, 876 (2006) (in Ukrainian).

8. V. Sakhnyuk, V. Golovii. Influence of the dielectric layer
transparency on the shape of current dependence on the
phase difference in contacts of the SIS type. Zh. Fiz. Dosl.
15, 2702 (2011) (in Ukrainian).

9. O.Yu. Pastukh, A.M. Shutovskii, V.E. Sakhnyuk. Influ-
ence of depairing effects on current-phase relation in SIS
contacts in present of nonmagnetic impurities of arbitrary
concentration. Fiz. Nizk. Temp. 43, 835 (2017) (in Rus-
sian).

10. D.F. Moskalenko. Superconductivity in metals with over-
lapped energy bands. Fiz. Met. Metalloved. 8, 503 (1959)
(in Russian).

11. H. Suhl, B.T. Matthias, L.R. Walker. Bardeen—Cooper—
Schrieffer theory of superconductivity in the case of over-
lapping bands. Phys. Rev. Lett. 3, 552 (1959).

12. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani,
J. Akimitsu. Superconductivity at 39 K in magnesium di-
boride. Nature 410, 63 (2001).

13. A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen,
Y. Kong, O.K. Andersen, B.J. Gibson, K. Ahn, R.K. Kre-
mer. Specific heat of MgBs in one- and two-band model
from first principle calculations. J. Phys. Condens. Matter
14, 1353 (2002).

14. A. Brinkman, A.A. Golubov, H. Rogalla, O.V. Dolgov,
J. Kortus, Y. Kong, O. Jepsen, O.K. Andersen. Multiband
model for tunneling in MgB2 junctions. Phys. Rev. B 65,
180517 (2002).

15. L.I. Mazin, O.K. Andersen, O. Jepsen, O V. Dolgov, J. Ko-
rtus, A.A. Golubov, A.B. Kuz’'menko, D. van der Marel.
Superconductivity in MgBsa: Clean or dirty? Phys. Rev.
Lett. 89, 107002 (2002).

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 11



Microscopic Calculation of Josephson Current in Tunnel Junctions with Two-Gap Superconductors

16. M.B. Maple, P.-C. Ho, V.S. Zapf et al. Heavy fermion
superconductivity in the filled skutterudite compound
PrOs4Sbi2. J. Phys. Soc. Jpn. 71, 23 (2002).

17. P. Miranovié¢, K. Machida, V.G. Kogan. Anisotropy of
the upper critical field in superconductors with anisotropic
gaps: Anisotropy parameters of MgBa. J. Phys. Soc. Jpn.
72, 221 (2003).

18. T. Dahm, N. Schopohl. Fermi surface topology and the up-
per critical field in two-band superconductors: Application
to MgBa. Phys. Rev. Lett. 91, 017001 (2003).

19. T. Dahm, S. Graser, N. Schopohl. Fermi surface topol-
ogy and vortex state in MgBa. Physica C 408, 336
(2004).

20. A. Gurevich. Enhancement of the upper critical field by
nonmagnetic impurities in dirty two-gap superconductors.
Phys. Rev. B 67, 184515 (2003).

21. A.E. Koshelev, A.A. Golubov. Why magnesium diboride
is not described by anisotropic Ginzburg-Landau theory.
Phys. Rev. Lett. 92, 107008 (2004).

22. A. Omelyanchouk. Coherent current states in two-band
superconductors. In: Superconductivity — Theory and
Applications. Edited by A.M. Luiz (InTech, 2011),
p. 37.

23. A.V. Svidzinskii, Spatially Inhomogeneous Problems in the
Superconductivity Theory (Nauka, 1982) (in Russian).

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 11

24. M.E. Zhitomirsky, V.-H. Dao. Ginzburg-Landau theory of
vortices in a multigap superconductor. Phys. Rev. B 69,
054508 (2004).

25. A.V. Svidzynskyi. Microscopic Theory of Superconductiv-
ity (Vezha, 2001), Part 1 (in Ukrainian).

Received 30.10.18.
Translated from Ukrainian by O.I. Voitenko

A.M. IIIymoscovkut, A.B. Ceidszuncvrud,
B.€. Caxnrox, O.FO. [lacmyx

MIKPOCKOIITYHII PO3PAXYHOK
KO3E®COHIBCHKOT'O CTPYMY B TYHEJILHIX
HAJIITIPOBIIHNX KOHTAKTAX HA OCHOBI
JBOIILIMHHUX HAJIIIPOBIIHUKIB

Peszmowme

Meron KBa3iK/IaCHYHUX PIBHSIHB, IIOOYJOBaHUM y Teopil omHO-
MIIJIMHHOI HAJIIPOBIIHOCTI, 32CTOCOBAHO JJIsSI BUIAJAKY HaJIIPO-
BIJIHUKIB 3 JIBOMa eHepreTuIHUMH IiiinaaMu. [loOymoBaHi piB-
uannsa qias eyuknin ['pina y t-npencrasiienni JaioTh MOXKJIIU-
BICTb OOYHCIIIOBATH I'YCTUHY CTPYMY, SIKU IPOTiKA€ KPi3b TOH-
KY HIeJIEKTPUIHY ILIIBKY y TYHEJIBHUX [12K03€(PCOHIBCHKUX KOH-
TaKTaX Ha OCHOBI JBOIIMHHMX HaAnpoBimaukis. OTpumana
3aJIeXKHICTh T'yCTHUHU CTPyMy Bif pisHuip ¢as micturhb Koedi-
IIE€HTU 3PO3YMIJIOrO ITOXO2KEHHS.
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