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NATURE OF SELF-DIFFUSION IN FLUIDS

The nature of the self-diffusion in low-molecular fluids is discussed. The particular attention is
paid to atomic fluids (such as argon), liquid metals, and associated fluids (such as water). The
self-diffusion coefficient in the fluids of all indicated types is considered to be the sum of two
components: one of them is associated with the transfer of molecules by hydrodynamic vortex
modes, and the other is generated by the circulatory motion of local molecular groups. The
both components have a collective nature, they are genetically related to each other and differ
only by their scales: the former is mesoscopic, the latter is nanoscopic. Manifestations of
the collective vortical transport of molecules as specific features in the time dependence of
the root-mean-square displacement of molecules are discussed. Sound arguments are proposed
concerning the inadequacy of the activation mechanism of thermal molecular motion in low-
molecular liquids. The immanent contradiction of exponential temperature dependences for
the viscosity and self-diffusion coefficients is proved. In all cases, the preference is given to
qualitative arguments.
K e yw o r d s: self-diffusion coefficient, shear viscosity, molecular liquids.

1. Introduction

Self-diffusion of atoms or molecules in fluids belongs
to the simplest kinetic processes. It has been studied
in numerous theoretical and experimental works (see,
e.g., works [1,2]). However, a lot of aspects of the self-
diffusion still remain not quite clear. After the works
by I.Z. Fisher [3,4] and L.A. Bulavin [2,5,6], it became
clear that the self-diffusion coefficient of fluids is the
sum of the collective and, as it was coined in the cited
works, “one-particle” components:

𝐷𝑠 = 𝐷𝑐 +𝐷𝑟, (1)

where 𝐷𝑟 describes the stochastic motion of molecules
on molecular scales.

The emergence of the collective component no-
tion did not invoke principal objections, but the
calculation of its magnitude and temperature de-
pendence became associated with serious difficulties
due to the lack of reliable data concerning the be-
havior of the Maxwell relaxation time (MRT). As a
rule, this parameter is determined by computer sim-
ulations. However, various additional approximations
have a too strong effect on the final result. In partic-
ular, most of the obtained MRT values do not satisfy

c○ M.P. MALOMUZH, 2018

the inequality [7]

𝜏M > 𝜈/𝑐2𝑙 , (2)

where 𝜈 is the kinematic shear viscosity, and 𝑐𝑙 the
longitudinal sound velocity. In essence, this inequal-
ity follows from the MRT definition, 𝜏M = 𝜈/𝑐2𝑡 , and
the explicit inequality 𝑐𝑡 < 𝑐𝑙, where 𝑐𝑡 is the high-
frequency transverse sound velocity in fluids. As a re-
sult, the estimates of the collective component turned
out overestimated [2, 8]. Moreover, the applicability
region of the obtained MRT values has not been an-
alyzed, so that the MRT continues to exist even in a
vicinity of the critical point, where system’s density
approaches the values typical of the gaseous state.

There are even more difficulties with the physical
interpretation of the so-called “one-particle” compo-
nent of the self-diffusion coefficient. Let us emphasize
from the very beginning that the concept of “one-
particle character” is applicable only in the case of
rarefied gas, where the motion of a particle during its
free-run time is determined only by the correspond-
ing initial parameters. In a dense liquid system, ev-
ery molecule interacts with all its nearest neighbors,
i.e. its motion is also collective. The only difference
consists in that no hydrodynamic methods can be
used for its description. Attempts to estimate 𝐷𝑟 on
the basis of concepts used in solid state physics are
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also incorrect. In particular, the inapplicability of the
activation mechanism has been repeatedly noted in
the literature.

This work is mainly devoted to the discussion of
qualitative issues associated with the self-diffusion
process in fluids of various types, first of all, in argon
and water. It will be shown that 1) the fundamental
basis of the collective molecular drift in fluids is the
fluidity of the latter; 2) a characteristic indicator of
the collective transfer in fluids is a square-root con-
tribution to the root-mean-square displacement of a
molecule; 3) the so-called “one-particle” contributions
to the self-diffusion coefficient are formed by circular
(vortical) molecular motions; and 4) the activation
mechanism of thermal molecular motion in fluids is
inconsistent with the character of this motion.

2. Hydrodynamic Mechanism
of Collective Transfer in Fluids

In this section, the main attention is focused on pe-
culiarities of the collective molecular drift, which is
the most important attribute of the thermal motion
in fluids.

2.1. Collective transfer in fluids

The most important difference between fluids and
solids, which are close by density,is the fluidity of
the former. This characteristic is directly associated
with the transfer of matter, momentum, heat, and so
forth. This transfer is reversible and is not connected
with the formation of the self-diffusion, viscosity,
thermal conductivity, and so on coefficients. However,
the fluidity of fluids is a prerequisite for the forma-
tion of fluctuating hydrodynamic fields in them. The
space-time evolution of those fields is irreversible and
favors the appearance of corresponding contributions
to kinetic coefficients.

The formation of collective contributions to the
self-diffusion coefficient of fluids is the simplest man-
ifestation of fluctuating hydrodynamic flows that are
permanently generated in the system. In essence, the
emergence of a collective component in the self-
diffusion coefficient of molecules is as natural and uni-
versal as the fluidity of fluids. Chaotic molecular dis-
placements observed on the molecular scale take place
independently of those induced by fluctuating hy-
drodynamic flows, whose scale considerably exceeds
molecular sizes. Accordingly, the coefficient of molec-

ular self-diffusion is represented in the form

𝐷𝑠 = 𝐷𝑐 +𝐷𝑟. (3)

Hence, the main issue is reduced to the following ques-
tion: What is the share of the collective contribution
to the experimental self-diffusion coefficient?

It is worth noting here that a stochastic collective
drift of a molecule is very similar, in many aspects, to
the random motion of a Brownian particle, which is
transferred by a fluctuating hydrodynamic flow like a
bobber on rapids of a river. The self-diffusion coeffi-
cient 𝐷𝑠 of Brownian particles is well studied and is
described by the Einstein formula [9]

𝐷𝑠 =
𝑘B𝑇

6𝜋𝜂𝑟𝑝
, (4)

where 𝑘B is the Boltzmann constant, 𝑇 the tempe-
rature, 𝜂 the shear viscosity coefficient, and 𝑟𝑝 the
radius of a Brownian particle. An amazing feature of
this formula is that it produces a quite satisfactory
value for the self-diffusion coefficient of molecules, if
𝑟𝑝 is substituted by the molecular radius. Further-
more, the temperature dependence of the self-diffu-
sion coefficient is also described by this formula quite
satisfactorily.

One should expect the collective component 𝐷c of
the molecular self-diffusion coefficient to have a struc-
ture similar to Eq. (4):

𝐷𝑐 =
𝑘B𝑇

6𝜋𝜂𝑟𝐿
, (5)

where 𝑟𝐿 is the effective radius of a “fluid” parti-
cle that drifts in the field of thermal hydrodynamic
fluctuations like a Brownian particle. To estimate the
value of 𝑟𝐿, we should analyze the properties of the
fluctuating hydrodynamic field of velocities, u(r, 𝑡),
in more details.

2.2. Role of longitudinal
and transverse modes of the hydrodynamic
field of velocities in the formation
of the collective self-diffusion component

In the general case, the velocity field of a liquid
medium is the sum of two components [10],

u(r, 𝑡) = u𝑠(r, 𝑡) + u𝑝((r), t). (6)
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Fig. 1. Schematic diagram of the collective transfer mecha-
nism by fluctuation vortices

The first component describes the medium motions
of the vortex type, the second one the motions of the
potential type,

divu𝑠(r, 𝑡) = 0, rotu𝑝(r, 𝑡) = 0. (7)

The potential component of the velocity field is di-
rectly associated with the changes of the density
and temperature. Those changes are mainly reduced
to the translational forward-backward motion of the
medium (sound vibrations), which results in negligi-
bly small displacements of the medium particles and,
hence, equivalently small contributions to the collec-
tive component of the self-diffusion coefficient. On the
contrary, vortical displacements lead to a systematic
drift of fluid molecules (see Fig. 1).

A molecule in the medium (a circle in Fig. 1) is
firstly captured by vortex 1 and transferred over a
certain distance. Vortex 1 decays, but there arises an-
other vortex 2 in a vicinity of the molecule and trans-
fers it else over some distance. Subsequent particle
displacements occur in this way.

It is very important that the solenoidal (trans-
verse) component of the fluctuating velocity field is
described by the diffusion equation

𝜕u𝑠(r, 𝑡)

𝜕𝑡
= 𝜈Δu𝑠(r, 𝑡), (8)

where Δ is the Laplace operator, and 𝜈 the kinematic
shear viscosity. The same law describes the velocity
field of a vortical flow. This fact means that if the hy-
drodynamic velocity at a certain fixed spatial point
located at the distance 𝑟0 from the vortex center is

taken to equal u(𝑟0, 𝑡0) = u0 at the time moment
𝑡0, it becomes equal to u(𝑟0, 𝑡) = u0(𝑡0/𝑡)

3/2 at the
same point at the time moment 𝑡. A molecule cap-
tured by this vortex moves along a circle of the ra-
dius 𝑟0. Its drift velocity decreases following the same
dependence,

Vdr(𝑡) = u0(𝑡0/𝑡)
3/2. (9)

The combination 𝜙
(dr)
V (𝑡, 𝑡0) = ⟨V𝑑𝑟(𝑡)V𝑑𝑟(𝑡0)⟩, in

which the angle brackets denote the averaging over
possible values of the initial velocity u0, in accordance
with Eq. (9), equals

𝜙
(dr)
V (𝑡, 𝑡0) = ⟨u2

0⟩
(︂
𝑡0
𝑡

)︂3/2
. (10)

It is conventionally called the autocorrelation func-
tion of the molecular drift velocity.

2.3. Features of the collective
drift of molecules

Let Δr𝑖(𝑡) denote a displacement of the molecule in-
duced by the velocity field of the 𝑖-th vortex during
the lifetime of the latter: 0 < 𝑡 < 𝑡𝑉 . Since different
vortices arise statistically independently of one an-
other, the root-mean-square displacement of the mo-
lecule, Γ(𝑡) = ⟨(Δr𝑖(𝑡))

2⟩, looks like

Γ(𝑡) = 6𝐷𝑉 (𝑡− 𝑡0), (11)

where the coefficient 𝐷𝑉 is determined by the exp-
ression

𝐷𝑉 =
1

6

𝛾(𝑡𝑉 )

𝑡𝑉
, (12)

and

𝛾(𝑡𝑉 ) = ⟨(Δr𝑖(𝑡𝑉 ))
2⟩.

The displacement of the molecule due to the vortex
rotation is determined by the standard expression

Δr𝑖(𝑡) =

𝑡∫︁
𝑡0

V𝑑𝑟(𝑢)𝑑𝑢.

The displacement of the molecule during the lifetime
of a fluctuation vortex is assumed to be small, so that
the influence of the circle curvature can be neglected.
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One can directly verify that the root-mean-square
displacement of the molecule

𝛾(𝑡0 < 𝑡 < 𝑡𝑉 ) = ⟨(Δr(𝑡))2⟩

and the autocorrelation function of its drift velocity
(10) are coupled by the integral relation

𝛾(𝑡) = 2[(𝑡− 𝑡0)

𝑡−𝑡0∫︁
𝑡0

𝜙
(dr)
V (𝑥)𝑑𝑥−

−
𝑡−𝑡0∫︁
𝑡0

𝜙
(dr)
V (𝑥)𝑥𝑑𝑥],

where 𝜙
(dr)
V (𝑥) =

⟨︀
u2
0

⟩︀
(𝑡0/𝑥)

3/2. The integration
leads to the result

𝛾(𝑡) = 6𝐷0(𝑡− 𝑡0)− 12𝐷0

√︀
𝑡0(𝑡− 𝑡0) + 𝐶0, (13)

where

𝐷0 =
2

3
⟨u2

0⟩𝑡0, 𝐶0 = 6𝐷0𝑡0.

The first term in Eq. (13) has the same structure as
the root-mean-square displacement of the molecule
during a sufficiently long time interval, as it should
be for the self-diffusion process. At the same time, the
self-diffusion coefficient depends on the choice of both
the initial point inside the vortex (it affects the value
of

⟨︀
u2
0

⟩︀
) and the initial time moment. This seems to

be not quite correct, because the self-diffusion na-
ture should not depend on the choice of 𝑡0. Howe-
ver, in the framework of our consideration, the choice
of the initial moment is not absolutely arbitrary, be-
cause it is preceded by the appearance of the vortex
in a certain space region at a certain time moment. In
the framework of a more rigorous description, the in-
fluence of the choice of 𝑡0 on the self-diffusion coef-
ficient is nullified, and the parameter 𝑡0 acquires a
well-defined physical meaning. Namely, it defines the
time moment, when the hydrodynamic description of
the corresponding thermal excitation in the fluid be-
comes possible. A more rigorous description leads to
a specific expression for the collective component of
the self-diffusion coefficient.

In our opinion, a more important fact is the pres-
ence of the second and third terms in Eq. (13). The
appearance of the second term with the quadratic-
root dependence on the time is the most important vi-
sual indicator of the collective molecular drift within

the time interval 𝑡0 < 𝑡 < 𝑡𝑉 . The root-mean-square
displacement of the molecule becomes non-negative
and approaching the linear law of growth with the
time 𝑡− 𝑡0 at

𝑡 > 𝑡*, 𝑡* = 5𝑡0. (14)

This result, as well as the appearance of the constant
𝐶0, is qualitatively consistent with the results of com-
puter simulations of a molecular drift in fluids [2].

2.4. Qualitative estimation
of the collective component
of the self-diffusion coefficient

From a dimensional analysis applied to Eq. (8), it fol-
lows that the fluctuating hydrodynamic excitations
are characterized by the following hydrodynamic cor-
relation radius:

𝑟
(H)
𝐶 (𝑡) = 𝜅

√
𝜈𝑡, (15)

where 𝜅 is a proportionality constant. A more de-
tailed analysis of the situation brings about the value
𝜅 = 2 [2]. From the physical point of view, the most
important parameter is the minimum value of the cor-
relation radius. In this case, the hydrodynamic field
of velocities in a fluid can be regarded as that created
by the motion of an ensemble of fluid, or Lagrangian,
particles. The drift velocity of a molecule coincides
with the velocity of a liquid particle that includes this
molecule. On the other hand, the attention should
be paid to that system’s responses to external per-
turbations are different within short and sufficiently
long time intervals: in the case of short-term impacts,
the system exhibits elastic properties; otherwise, it
demonstrates the fluidity as its basic property. In the
case of solenoidal perturbations, it is assumed that
those types of system’s response are separated by the
Maxwell relaxation time 𝜏M. Accordingly, the mini-
mum size of a Lagrangian particle takes the value

𝑟𝐿 = 𝑟
(H)
𝐶 (𝜏M) = 𝜅

√
𝜈𝜏M. (16)

By its essence, the collective component of the mole-
cular self-diffusion coefficient coincides with the self-
diffusion coefficient of a Brownian particle with ra-
dius (16):

𝐷𝐶 =
𝑘B𝑇

6𝜅𝜋
√
𝜈𝜏M

. (17)
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3. Nature of the Self-Diffusion
Component Associated with a Local
Intermixing of Neighbor Molecules

In this section, the arguments concerning the role of
activation mechanism in the thermal motion of mole-
cules [11–13] and their self-diffusion in low-molecular
fluids are first discussed. Afterward, a new mecha-
nism giving rise to a local intermixing of molecules is

)(2 lOH

)(2 gOH

)(2 lOD

)(2 gOD

)(2 lSH

)(2 gSH

)(lAr

)(gAr

6

9

12

15

18

21

24

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

3

t

eff

Fig. 2. Temperature dependences of the dimensionless heat
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works [14, 15]
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Fig. 3. Dependence of ln 𝜂 on the reciprocal temperature 1/𝑇

for argon: sections 1 and 3 correspond to the liquid and vapor
sections of the coexistence curve, section 2 to the viscosity
diameter 𝜂𝑑(𝑇 ) = 0.5(𝜂𝐿(𝑇 ) + 𝜂𝑉 (𝑇 )), section 4 to isochores,
and section 5 to isobars. Points correspond to experimental
values taken from work [16]

considered. For certainty, the consideration is based
on the analysis of the temperature dependence of the
shear viscosity coefficient, for which the exponential
dependence

𝜂 = 𝜂0 exp(𝐸𝑎/𝑘B𝑇 ),

where 𝐸𝑎 is the activation energy, is often used. This
behavior corresponds to the following assumption.
During the residence time 𝜏0, the liquid molecule vi-
brates around a certain temporary equilibrium posi-
tion. Then, within the time interval 𝜏1 ≪ 𝜏0, it jumps
into a new temporary position with equilibrium vibra-
tions. To make this jump, the molecule has to over-
come a certain energy barrier, so that the correspon-
ding kinetic coefficients are proportional to the factor
exp(−𝐸𝑎/𝑘B𝑇 ). This scenario of a molecular thermal
motion in fluids is borrowed from the theory of solids
with a crystalline or amorphous structure. However,
the issue to what extent it corresponds to reality re-
mains unclear. On the example of liquid argon, let us
consider below the basic facts that testify to the fa-
vor of this scenario of a thermal motion and against
it. It will be demonstrated that the thermodynamic
properties of liquid argon are really similar, to some
extent, to those observed in the crystalline phase. At
the same time, it will be shown that the behavior
of the simplest transfer coefficients – shear viscosity
and self-diffusion – is definitely inconsistent with the
quasicrystalline model of molecular thermal motion.

3.1. Density and heat
capacity of liquid argon

The density and specific heat of liquid argon are its
simplest characteristics. In a vicinity of the argon
triple point, they turn out really close to those ob-
served in the crystalline state. In particular, at the
triple point itself, the densities of the crystalline and
liquid phases differ from each other by no more than
2%. The behavior of the heat capacity of argon, as
well as that of water and its homologs, is illustrated
in Fig. 2.

With the temperature elevation, the exhibited de-
pendences more and more deviate from the values
corresponding to the solid state at the triple point. If
a state of the system changes along the coexistence
curve up to the critical point, as in Fig. 2, then the
density of argon becomes three times lower, and its
heat capacity decreases by about 20%. Moreover, at
𝑡 = 0.9, the heat capacity becomes even lower than
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the heat capacity of argon in the gaseous state. Thus,
any similarity between the critical and solid states of
argon is out of question.

3.2. Behavior of shear viscosity

The behavior of the shear viscosity of liquid argon on
its coexistence curve, isochores, and isobars is shown
in Fig. 3. Here are arguments that testify to an ob-
vious inconsistency of the features in the presented
temperature dependence of the shear viscosity with
the quasicrystalline model of molecular thermal mo-
tion. For example, the isochoric viscosity values corre-
spond to a dimensionless activation energy (𝐸𝑎/𝑘B𝑇c)
that is significantly lower than unity. In other words,
the activation energy turns out lower than the ther-
mal noise energy (𝐸𝑎 < or ≪ ≪ 𝑘B𝑇c), which has
no sense from the physical standpoint. Moreover, the
activation energy turns out negative on many iso-
chores. At the same time, the values of the activation
energy on the isobars and the coexistence curve seem
to be satisfactory (see Table 1).

It should be emphasized that it is the isochoric val-
ues of the activation energy that have a direct phys-
ical meaning, because, in this case, the macroscopic
state of the system changes only owing to the tem-
perature increment. The fulfillment of the condition
𝐸𝑎 ≫ 𝑘B𝑇 is mandatory at that.

Let us supplement those results with a simple quan-
titative analysis of interrelations between the activa-
tion energy values typical of various phenomena. We
proceed from the expression for the kinematic shear
viscosity on isochores, 𝜈 = 𝜈0 exp(𝜀𝑎(𝑛)/𝑇 )), where
𝜀𝑎(𝑛) = 𝐸𝑎(𝑛)/𝑘B. A shift along an arbitrary direc-
tion in the density-temperature (𝑛, 𝑇 ) plane corre-
sponds to the kinematic shear viscosity variation (see
also work [17])

𝑑𝜈

𝑑𝜁
= 𝜈

[︂
1

𝑇

𝑑𝜀𝑎(𝑛)

𝑑𝑛

𝑑𝑛

𝑑𝜁
− 𝜀𝑎(𝑛)

𝑇 2

𝑑𝑇

𝑑𝜁

]︂
, (18)

where 𝑑𝜁 is a certain linear combination of the den-
sity and temperature increments. From Eq. (18), it
follows that the effective value of the viscosity activa-
tion energy on the isobar equals

𝜀eff = 𝜀𝑎(𝑛)− 𝑇
𝑑𝜀𝑎(𝑛)

𝑑𝑛

𝛽𝑇𝑛

𝑑𝑇/𝑑𝑝
, (19)

where 𝛽𝑇 is the isothermal compressibility. Substitu-
ting the numerical valuesof the derivatives into ex-

Table 1. Dimensionless activation
energy values for argon on its isochores,
isobars, and coexistence curve

Ar

𝜌 = const 𝑝 = const Coexistence
curve

𝜌/𝜌𝑐 𝐸𝑎/𝑘B𝑇c 𝑃/𝑃𝑐 𝐸𝑎/𝑘B𝑇c 𝐸𝑎/𝑘B𝑇c

1.12 –0.67 5.14 1.37 1.75
1.34 –0.55 10.28 1.25
1.49 –0.46 15.42 1.17
1.87 –0.22 20.56 1.19
2.24 0.012
2.61 0.31

Table 2. Dimensionless activation
energy 𝐸𝑎/𝑘B𝑇𝑚 of the self-diffusion coefficient
𝐷𝑠 = 𝐷0 exp(−𝐸𝑎/𝑘B𝑇 ) in the solid and liquid
states. 𝑇𝑚 is the melting temperature

Matter 𝑇𝑚, K 𝐸
(𝑆)
𝑎 /𝑘B𝑇𝑚 𝐸

(𝐿)
𝑎 /𝑘B𝑇𝑚

Ar 80 26.18 –
Li 454 14.64 1.46
Na 371 13.59 2.03
Rb 312 15.20 1.98
Cs 301 9.56 1.92
Al 933 16.51 1.69
Au 1337 14.86 1.58
Cr 2130 17.46 –
Pb 600 20.46 1.63
Fe 1811 19.81 3.15
Sn 505 26.22 1.39
Bi 544.5 1.15

pression (19), we obtain 𝜀eff = 1.19, which is in full
agreement with the data in Table 1.

Hence, the effective value of the shear viscosity and
self-diffusion activation energy substantially depends
on system’s state change direction. To obtain its iso-
choric value, the corresponding recalculation is re-
quired. This circumstance was also marked in work
[4, 11]. The values of the ratio 𝐸𝑎/𝑘B𝑇 on the argon
isochores clearly testify that the character of the ther-
mal motion of its molecules has nothing in common
with the quasicrystalline one.

3.3. On the existence of voids
in the structure of a molecular system

A substantial difference between the self-diffusion co-
efficients in liquids near their triple point and in
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a b
Fig. 4. Temperature dependences 𝑓(𝑡) for water, argon, and liquid Sn, Bi, Ga, Zn, and Na

a b
Fig. 5. Schematic diagram of particle motion in a vicinity of
the triple point or melting point 𝑇𝑚 (𝑎) and near the critical
point 𝑇c (𝑏)

the corresponding adjacent crystalline states (see Ta-
ble 2) is often explained by the existence of voids
in the liquid state structure [18]. The fallacy of this
model follows directly from the temperature depen-
dence of the function 𝑓(𝑡) = 𝛿/𝜎, where 𝛿 = =
⟨𝑟12⟩ − 𝜎 is the average gap between the nearest mo-
lecules (ions), ⟨𝑟12⟩ the average distance between the
particles, and 𝜎 the particle diameter. In other words,
it describes the relative size of the gap between the
nearest neighbor molecules. It is evident that

𝑓(𝑡) =
𝑣1/3(𝑡)− 𝑣

1/3
0

𝑣
1/3
0

,

where 𝑣 is the specific volume per particle, and 𝑣0 the
own particle volume, which is quite close to the spe-
cific volume at the triple point or the melting point of
metals. The temperature dependences 𝑓(𝑡) for argon,
water, and liquid metals are shown in Fig. 4.

As one can see from Fig. 4, near the triple point of
argon and water or the melting points of liquid met-
als, the relative gap value does not exceed 1%, i.e. the

gap is practically the same as for the system in the
crystalline state. In other words, every molecule or
ion is in a “cell,” whose parameters are close to those
in the solid state. As a result, a simple translational
motion of molecules in fluids is impossible. At the
same time, the values of self-diffusion coefficients in
the crystalline and liquid states differ from each other
by ten orders of magnitude or more, which is difficult
to explain by assuming a fluctuation-driven formation
of voids in a vicinity of the diffusing molecule.

3.4. The self-diffusion component
associated with a local intermixing
of liquid molecules

It would be more reasonable, if we address the most
important difference between liquids and solids, the
fluidity of the former. In other words, the rotation of
a group of molecules by a small azimuthal angle is
more realistic (Fig. 5). It is important to note that
azimuthal motions can be irreversible. In a more gen-
eral case, the displacements of molecules are combina-
tions of radial and azimuthal displacements of small
groups of neighbor molecules. Such permanent small
displacements of particles can result in quite large val-
ues of the self-diffusion coefficients in fluids. When
approaching the critical point, the average distance
between the particles grows, and there emerge condi-
tions for a more conventional mechanism of molecu-
lar drift, namely, the displacement of molecules into
voids that appear in their neighborhood (Fig. 5).

Jump-like (hopping) displacements are also possi-
ble, but their contribution to the self-diffusion is ex-
pected to be roughly the same as in solids. Such a
situation takes place, when persons move in a dense
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crowd (but there are no jumps here!). The corre-
sponding mechanism of self-diffusion in fluids was
proposed for the first time in work [21].

To obtain an explicit expression for the component
𝐷𝑟, which arises due to small rotations of molecular
groups, let us apply dimensional reasons and similar-
ity relations. From the former, it follows that 𝐷𝑟 has
to look like

𝐷𝑟 ∼ 𝑘B𝑇

𝜂𝑟𝑝
.

Hence, the self-diffusion coefficients for molecules
with different sizes are related to one another as

𝐷
(2)
𝑟

𝐷
(1)
𝑟

=
𝑟
(1)
𝑝

𝑟
(2)
𝑝

.

Taking into account that the self-diffusion coefficients
of macromolecules are described by the Einstein for-
mula (4), we conclude that the component 𝐷𝑟 must
have the same form:

𝐷𝑟 =
𝑘B𝑇

6𝜋𝜂𝑟𝑝
, (20)

where the molecular radius value has to be deter-
mined from the analysis of the shear viscosity of a
fluid [17].

3.5. Transfer processes in liquid water

Properties of water are much more diverse than those
of argon. This is a result of the extremely strong inter-
action and a non-trivial, for low-molecular liquids, an-
gular dependence of the corresponding intermolecu-
lar interaction potential. One of the specific features
of this interaction is a possibility to extract contribu-
tions of hydrogen bonds, which had been considered
for a long time as irreducible interaction objects [22].

Actually, the main contribution to the hydrogen
bond energy is made by electrostatic forces. There is
only a small irreducible component, which is associ-
ated with the overlapping of electron shells in neigh-
bor molecules; just this component can be called the
hydrogen bond [23, 24]. Its contribution does not ex-
ceed 10–15% of the total electrostatic interaction en-
ergy [24].

Hydrogen bonds, whose interaction energy has an
order of magnitude 𝐸H ∼ 5𝑘B𝑇c, stimulate the clus-
tering of various types [25], so that the local struc-

Fig. 6. Temperature dependence of the ratio 𝜏𝑑(𝑡) = 𝜏𝑑(𝑡)/𝜏𝑟.
The data were taken from the works: + [25], � [29], × [30],
and ◇ [31]. Points correspond to interpolation values

ture of water differs significantly from that of ar-
gon [26]. The existence of clusters allows the appea-
rance of specific excitations of the vibrational type,
which obviously affects the water heat capacity and
its temperature dependence (see Fig. 2). It is hydro-
gen bonds that are responsible for the clustering in
liquid water and water vapor, as well as for the con-
siderable differences between the behavior of the heat
capacity of water and its homologs, especially H2S.

However, some of the thermodynamic and kinetic
properties of water are insensitive to clustering ef-
fects. The most important among them are the spe-
cific volume and the evaporation heat per water mo-
lecule. In works [27, 28], it was shown that, after the
corresponding normalization, the temperature depen-
dences of those parameters on the coexistence curve
have the same character as for argon. This non-or-
dinary result can be explained by the fact that wa-
ter molecules permanently rotate, so that their non-
trivial potentials of the intermolecular interaction be-
come self-averaged and acquire a structure that is
close to that in argon. In this case, the argon-like be-
havior of the specific volume and evaporation heat is a
logical consequence of the principle of corresponding
states.

The specific features of the molecular rotation at
various water temperatures are evidently determined
by the behavior of the dipole relaxation time 𝜏𝑑(𝑡)
(see Fig. 6). In the figure, 𝜏𝑟 ∼ 2𝜋/𝜔𝑇 is the char-
acteristic time of the complete revolution of a mole-
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cule, 𝜔𝑇 ∼
√︀
𝑘B𝑇/𝐼 a characteristic angular velocity,

𝐼 ∼ 𝑚H𝑟
2
OH the moment of inertia of a water mole-

cule, 𝑚H the hydrogen atom mass, and 𝑟OH the dis-
tance between the oxygen and hydrogen atoms in a
water molecule. As one can see, in the temperature
interval 0.6 < 𝑡 < 1, the value of 𝜏𝑑(𝑡) is close to
unity, i.e. the molecular rotation becomes more and
more quasifree. Substantial deviations of 𝜏𝑑(𝑡) from
unity are observed only at 𝑡 < 0.5 and, especially,
in the overcooled region (𝑡 < 0.42). In this temper-
ature interval, the behavior of 𝜏𝑑(𝑡) is satisfactorily
approximated by the exponential function

𝜏𝑑 = 𝜏
(0)
𝑑 exp(𝜀H/𝑡), (21)

where 𝜏
(0)
𝑑 = 5.1× 10−4 and 𝜀H = 𝐸H/𝑘B𝑇c = 4.71,

which is typical of the activation theory.
Attention is drawn by the activation energy value:

it has the same order of magnitude as the dimen-
sionless energy per hydrogen bond. This fact stimu-
lates us to conclude that the rotation of molecules at
𝑡 < 0.5 is intermittent, i.e. every rotation by a small
angle occurs after only one of hydrogen bonds has
been broken.

An important feature of the thermal motion of mo-
lecules in water is the applicability of the residence
time notion to its description. This quantity, 𝜏0, is
directly required, when analyzing the scattering of
thermal neutrons [32, 33]. Since the temperature de-
pendence of 𝜏0 has the same character as 𝜏𝑑(𝑡), a con-
clusion can be drawn that a certain configuration of
hydrogen bonds remains, in essence, unchanged dur-
ing the time interval 𝜏0. It is essential that the break
of any bond and the formation of a new bond configu-
ration are also connected with a small displacement of
the center of mass of a water molecule, |Δr| ∼ 0.1 Å,
i.e. with a contribution to the self-diffusion process.

In accordance with the aforesaid, we conclude that
the temperature dependences of the kinetic coef-
ficients of liquid water should demonstrate different
specific features in the following temperature inter-
vals: 1) 𝑇 < 𝑇H, where 𝑇H ≈ 315 K [22, 32]; this
interval includes both normal and supercooled states;
and 2) 𝑇H < 𝑇 < 𝑇c; this interval includes almost all
liquid states of water. In the former interval, when the
temperature decreases, the character of the thermal
motion of water molecules becomes more and more
similar to that inherent in hexagonal ice. In the latter

interval, when the temperature increases, this char-
acter becomes more and more argon-like.

The described features in the thermal motion of
water molecules are responsible for the behavior of
the temperature dependence of the self-diffusion co-
efficient. In the temperature interval 𝑇 < 𝑇H, the dis-
placement of a molecule mainly occurs as a result of
the cluster decay, and the thermal motion has a qua-
sicrystalline character. In this case, during the tran-
sition time 𝜏1, every molecule in the cluster becomes
shifted, on average, by a distance equal to a char-
acteristic interparticle distance ⟨𝑟12⟩, which makes it
possible to write the following approximate expres-
sion for the self-diffusion coefficient in water (see work
[34]):

𝐷𝑠 ≈
⟨𝑟12⟩2

6𝜏0
(𝑇 < 𝑇H). (22)

3.6. Similarity relation

In the adjacent temperature interval 𝑇H < 𝑇 < 𝑇c,
the magnitude and the character of the temperature
dependence of the self-diffusion coefficient in water
are assumed to be similar to those in liquid argon
(see work [35]):

𝐷(w)
𝑠 (𝑇w) =

𝜎w

𝜎Ar

(︂
𝜀w
𝜀Ar

𝑚Ar

𝑚w

)︂1/2
𝐷

(Ar)
𝑆 (𝑇Ar),

𝑇H < 𝑇 < 𝑇c,

(23)

where 𝑇w and 𝑇Ar are the temperatures of the corres-
ponding states for water and argon, respectively,

𝑇w =
𝜀w
𝜀Ar

𝑇Ar. (24)

In Eqs. (23) and (24), the following notations are
used: 𝜀Ar and 𝜎Ar are the Lennard-Jones potential
parameters for argon, 𝜀w and 𝜎w the parameters of
the averaged interaction potential for water molecules
similar to the Lennard-Jones potential, and 𝑀Ar and
𝑚w the masses of an argon atom and a water mole-
cule, respectively.

Note that similar relations must be valid for the
coefficients of kinematic shear viscosity,

𝜈w(𝑇w) =
𝜎w

𝜎Ar

(︂
𝜀w
𝜀Ar

𝑚Ar

𝑚w

)︂1/2
𝜈Ar(𝑇Ar),

𝑇H < 𝑇 < 𝑇c,

(25)

and the Maxwell relaxation times,

𝜏
(w)
M

𝜎w

𝜎Ar

(︂
𝜀w
𝜀Ar

𝑚Ar

𝑚w

)︂1/2
𝜏
(Ar)
M . (26)
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From Eqs. (20)–(22), it follows that

𝐷
(w)
𝑠 (𝑇 ) =

𝜈w(𝑇 )

𝜈Ar(𝜆𝑇 )
𝐷

(Ar)
𝑠 (𝜆𝑇 ),

𝜆 = 𝑇
(Ar)
c /𝑇

(w)
c ,

𝑇H < 𝑇 < 𝑇c.

(27)

Here, we assume that the similarity relations for ki-
netic and thermodynamic quantities are self-consis-
tent. In particular, for the ratio between the interac-
tion constants and critical temperatures, the follow-
ing equality is satisfied:

𝜀w
𝜀Ar

=
𝑇

(𝑤)
c

𝑇
(Ar)
c

.

Analogously, from Eqs. (24) and (25), it follows that

𝑟
(w)
𝐿 (𝑇 ) =

𝜎w

𝜎Ar
𝑟
(Ar)
𝐿 (𝜆𝑇 ), (28)

where 𝑟𝐿 = 2
√
𝜈𝜏M is the appropriate radius of a La-

grangian particle [1]. In this case, for the Lagrange
theory of thermal hydrodynamic fluctuations and the
method of evaluating, on its basis, the collective com-
ponent in the self-diffusion coefficient of molecules to
be applicable, the inequality

𝑟
(𝑖)
𝐿 (𝑇 ) ≫ (>)𝜎𝑖, 𝑖 = Ar,w. (29)

must be satisfied.
The applicability of similarity relations to describe

the viscosity and self-diffusion in water was analyzed
in work [35] in detail. The analysis demonstrates that
those relations lead to a rather good agreement be-
tween experimental data and calculation results ob-
tained on their basis for the viscosity and self-diffu-
sion coefficients. This fact allows a conclusion to be
made that the character of the thermal motion of wa-
ter molecules in the whole temperature interval of the
liquid water state is the same as in argon, i.e. it has
nothing in common with the activation mechanism.

4. Conclusions

According to the arguments presented above, a con-
clusion can be drawn that the molecular thermal mo-
tion in fluids and self-diffusion in them have predomi-
nantly a non-activation character. The intermixing of
particles occurs owing to 1) a collective drift in the
field of thermal hydrodynamic fluctuations and 2) ir-
reversible circular motions of small groups of mole-
cules that form closed chains. It is obvious that such

circulatory displacements of small molecular groups
are genetically associated with vortical hydrodynamic
motions giving rise to a collective drift. It is proved
that the circulatory particle intermixing is success-
fully described by the Einstein formula proposed for
the description of the self-diffusion of Brownian par-
ticles.

When approaching the critical point of the system,
the situation chages radically. In this case, the system
expands substantially, and the fluctuation-driven for-
mation of voids near the diffusing particle becomes
possible (Fig. 2, 𝑏). As a result, the kinetic theory
can be used to describe the transport processes in
enought dense systems [39].

It should be noted that the concept of collective
component in the self-diffusion coefficient was intro-
duced for the first time by Oskotskii in work [40] de-
voted to the analysis of the incoherent scattering of
thermal neutrons in water. However, it began to be
discussed and used purposefully only after Fisher’s
works [3, 4], where it was independently introduced,
and where a method for its determination on the basis
of the Lagrange theory of thermal hydrodynamic fluc-
tuations was proposed. Of basic importance were the
works by Bulavin and co-authors [2,5,6], in which the
value of the collective component in the self-diffusion
coefficient was determined for the first time in exper-
iments on the incoherent scattering of thermal neu-
trons. It was found that the collective component can
comprise one fourth and even one third of the total
self-diffusion coefficient magnitude. Those works un-
doubtedly belong to the most profound achievements
in molecular physics and the physics of fluids.

Some later, Mikhailenko [41, 42] obtained simi-
lar results, by using computer simulations. A further
progress and refinement in the Lagrange theory of
thermal hydrodynamic fluctuations were made by Lo-
kotosh and the author of this work [43–45]. Compu-
tational methods for determining the Maxwell relax-
ation time of viscous tensions developed by Shakun in
works [7, 45] are important for estimating the collec-
tive component of the self-diffusion coefficient of mo-
lecules. In works [46, 47], Malenkov and Naberukhin
developed computer methods for the determination of
the size of a Lagrangian particle and explicitly visu-
alized vortical flows that play such an important role
in the collective transfer [48]. Makhlaichuk’s works
[49–51] played a key role in describing the processes
of self-diffusion in simple liquids, liquid metals, water,

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 12 1085



M.P. Malomuzh

δ

Fig. 7. Illustration of the motion of molecular layers with
respect to one another

and aqueous electrolyte solutions. A detailed study of
the incoherent scattering of thermal neutrons in wa-
ter and aqueous solutions was made in the works by
Pankratov et al. [31, 32].

The described scenario of a thermal motion in flu-
ids also leads to another mechanism of shear viscosity
formation. The jump-like motion of molecules from
one molecular layer into an adjacent one that moves
with respect to the former seems to be hardly prob-
able, because the average gap between the neighbor
molecules is much narrower than the molecular diam-
eter:

2(𝑣 − 𝑣0)
1/3 ≪ 𝑣

1/3
0 .

Accordingly, the shear viscosity of fluids is formed
by friction effects between the molecular layers that
move with respect to one another (Fig. 7).

A more detailed analysis of the issues discussed
above will be made in a separate work.

To summarize, I would like to thank Prof. Leonid
Bulavin for his stable interest to all issues raised in
this work. Clear formulations of many questions and
corresponding answers would be impossible without
permanent discussions with T.V. Lokotosh, G.G.Ma-
lenkov, V.M.Makhlaichuk, Yu.I. Naberukhin, and
K.S. Shakun.
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ПРИРОДА САМОДИФУЗIЇ В РIДИНАХ

Р е з ю м е

Робота присвячена обговоренню природи самодифузiї в
низькомолекулярних рiдинах. Особлива увага придiляється
атомарним рiдинам типу аргону, рiдким металам та асо-
цiйованим рiдинам типу води. Пiдкреслюється, що коефi-
цiєнт самодифузiї усiх рiдин зазначеного типу є сумою
двох складових: однiєї, що є зумовленою переносом молекул
гiдродинамiчними вихровими модами, i другої, що поро-
джується циркуляторним рухом локальних груп молекул.
Обидвi складовi мають колективну природу, є генетично
пов’язаними й вiдрiзняються мiж собою тiльки масштаба-
ми: першi є мезоскопiчними, другi – наноскопiчними. Обго-
ворюється прояв колективного вихрового переносу молекул
у специфiцi часової залежностi середньоквадратичного змi-
щення молекули. Подаються вагомi аргументи щодо неаде-
кватностi активацiйного механiзму теплового руху молекул
у низькомолекулярних рiдинах, доводиться внутрiшня су-
перечливiсть експоненцiальних залежностей для коефiцiєн-
тiв в’язкостi й самодифузiї. В усiх випадках перевага нада-
ється, перш за все, якiсним аргументам.
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