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ELECTRON-IMPACT EXCITATION
OF 51𝑆 − 51𝑃 𝑜 RESONANCE TRANSITION IN Sr ATOM

Main aspects of a new version of the 𝐵-spline 𝑅-matrix (BSR) method, in which nonorthogonal
orbitals are applied, have been described. The BSR approximation is used to calculate the reso-
nance structure of integral cross-sections of the 51𝑆 → 51𝑃 𝑜 transition at the electron scattering
by a strontium atom in the energy interval up to 10 eV. The multiconfiguration Hartree–Fock
method with a nonorthogonal set of orbitals is employed to accurately represent the target wave
functions. The close-coupling expansion included 31 bound states of a neutral strontium atom
ranging from the ground state to the 5𝑠5𝑓 1𝐹 𝑜 one. The calculated cross-sections are in good
agreement with available experimental data and can be exhaustively interpreted. The structure
of a resonance feature in the 𝑒-Sr scattering cross-sections at about 4 eV is discussed.
K e yw o r d s: strontium atom, electron-atom collisions, resonance transition, 𝐵-spline 𝑅-
matrix method, scattering cross-sections, resonances.

1. Introduction
Practical needs stemming from the development of
new types of lasers operating on electron transitions
in atoms, the purposeful search for the plasma diag-
nostic means in devices of controlled thermonuclear
fusion, the development of plasma-chemical technolo-
gies, and so forth require new methods for the calcu-
lation of atomic structures and the parameters of the
electron scattering by complex atoms. In our works
[1–8], we implemented the 𝐵-spline 𝑅-matrix (BSR)
version of the 𝑅-matrix method. It is based on the
application of nonorthogonal orbitals and 𝐵-splines
as the basis functions. At present, this is one of the
most efficient tools for studying the atomic structure
effects in the processes of low-energy electron scatter-
ing by multielectron atoms.

In the last decade, on the basis of the proposed ver-
sion of the 𝑅-matrix method, our research group reg-
ularly calculated the parameters of elementary pro-
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cesses, such as the elastic scattering, excitation, and
ionization, which take place at collisions of slow elec-
trons with Ca [1, 2], Mg [3], Sr [4], Si [5], F [6],
Al [7], and B [8] atoms. For all indicated atomic
systems, the calculation results were in good agree-
ment with available experimental data. By such pa-
rameters as the accuracy and details of calculations,
their convergence, the completeness of the account
for the exchange, correlation, and resonance effects,
the BSR method [1–9] has significant advantages in
comparison with standard methods used in the the-
ory of electron-atom collisions [10]. This method is
especially convenient for the calculation of the elec-
tron scattering by complex atoms, when multicon-
figurational wave functions of the target have to be
used. All this allows us to systematically obtain cor-
rect results in the region of small and intermediate
collision energies.

This work logically continues our researches of the
𝑒-Sr scattering processes, which were begun in work
[4]. At present, the processes of interaction between
slow electrons and strontium atoms, unlike the atoms
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of other alkaline-earth elements (Mg, Ca, and Ba),
remain poorly studied both experimentally and the-
oretically. Such situation is a strange example of the
theory’s pasiveness in the condition of experimental
data lack, which does not of principal character, but
rather is related to the difficulties in the formation of
monochromatic electron and atomic beams.

At low energies, the processes of electron scatter-
ing by strontium atoms were studied for the first time
in works [11, 12] using optical methods. The cited
authors obtained experimental data concerning the
excitation cross-sections for a large set of spectral
lines of a Sr atom and their energy dependences in a
rather wide interval of collision energies. Weak struc-
tural features were observed in some curves. Later,
Chen et al. [13] measured the excitation functions
(EFs) for the atomic and ionic resonance lines, as
well as the energy dependences of their polarization
degree. A characteristic feature was found in the EFs
of the singlet 51𝑆0 → 51𝑃 𝑜

1 transition in a vicinity
of 4 eV, which correlates by energy with the specific
feature in the energy dependence of their polariza-
tion degree. The mentioned structure in the EF of
the resonance line at 4 eV was explained in work [13]
by cascade transitions from the 61𝑆0 level (excitation
threshold of 3.79 eV) and engaging additional excita-
tion channels.

In work [14] of the Uzhgorod experimental group
headed by Prof. O.B. Shpenik, the structure of the
energy spectra of electrons scattered by strontium
atoms was studied using the electron spectroscopy
method. In particular, the resonance features asso-
ciated with the formation of short-lived negative Sr−
ions were revealed in the energy dependence of the
current created by electrons elastically scattered at
an angle of 90∘. In the cited work [14], the resonance
structure of the EF of the spectral line 𝜆 = 460.7 nm
corresponding to the 51𝑆0 → 51𝑃 𝑜

1 transition was also
discussed, and, as in work [13], a pronounced feature
in the EF of the indicated resonance transition was
found in a vicinity of 4 eV. According to work [14],
this feature is associated not only with cascades from
the upper 61𝑆0 level, but also with resonances result-
ing from the formation of autodetachment states of
the negative Sr− ion. Their parents are the groups
of higher arranged levels, including the 61𝑆0, 63𝑃012,
and 61𝑃1 ones. According to the estimation made by
the authors of work [14], the deviation from a uniform
growth of the EF of the resonance transition man-

ifests itself already at an energy of 3.66 ± 0.05 eV,
which almost coincides with the excitation threshold
of the 63𝑆1 level (3.60 eV). It is evident that in order
to clarify the nature of the feature in a vicinity of 4 eV
in the EF of the 51𝑆0 → 51𝑃 𝑜

1 transition, a more de-
tailed theoretical analysis of the structural features in
the cross-sections of elementary excitations that ac-
company the scattering of low-energy electrons by a
strontium atom is required.

In this work, the BSR method (see Section 2 and
works [1–9]) was used to calculate the integral cross-
sections for the electron excitation of the resonance
51𝑆 → 51𝑃 𝑜 transition in a Sr atom in the energy
interval up to 10 eV. The wave functions of the Sr
atomic states were calculated in the framework of the
multiconfiguration Hartree–Fock (MCHF) method
[15, 16]. In so doing, we considered the ground state
and 30 lowest excited states of a strontium atom
(BSR31 approximation) in the close-coupling expan-
sion of the electron-atom scattering problem.

The structure of this work is as follows. The key
aspects of the BSR version of the 𝑅-matrix method
are expounded in Section 2.1. This version is based
on the application of nonorthogonal orbitals and 𝐵-
splines as the basis functions. A brief description of
the electron structure in the target Sr atom is given
in Section 2.2. In Section 2.3, the most important
features of the computation procedure used at BSR
calculations of the 𝑒-Sr collision process are summa-
rized. Section 3 contains the results of our calcula-
tions for the integral and partial cross-sections for
the electron-impact excitation of the 51𝑃 𝑜 level in
the Sr atom. In Section 3, we also give a physical in-
terpretation to resonance features in the excitation
cross-sections of the 51𝑃 𝑜 level in a vicinity of 4 eV,
which were found experimentally [13, 14].

2. Calculation Methods

2.1. General scheme of the BSR
approximation

Let us briefly consider the key aspects of the BSR ver-
sion of the 𝑅-matrix method, which was proposed in
works [1–9]. The modification is based on the appli-
cation of nonorthogonal orbitals and 𝐵-splines as the
basis functions. As in the standard 𝑅-matrix method
[10], the total wave function of the (𝑁 + 1)-electron
system “atom + incident electron” is taken in the form
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of a series expansion,

ΨΓ
𝛼(𝑋,𝑥𝑁+1) = 𝐴

𝑛∑︁
𝑖=1

Φ̄Γ
𝑖 (𝑋; r̂𝑁+1, 𝜎𝑁+1)×

× 𝐹Γ
𝑖𝛼(𝑟𝑁+1)

𝑟𝑁+1
+

𝑚∑︁
𝑗=1

𝑐𝑗𝜒
Γ
𝑗 (𝑋,𝑥𝑁+1). (1)

Here, 𝐴 is the antisymmetrization operator; Φ̄Γ
𝑖 the

wave function of the channel formed by the vec-
tor coupling of the 𝑁 -electron wave function of the
target, Φ𝑖(𝑋) ≡ Φ𝑖(𝑥1, ..., 𝑥𝑁 ), with the angular,
𝑌𝑙𝑇𝑚𝑇

(𝑟𝑁+1), and spin, 𝜒
1/2
𝑚𝑆 (𝜎𝑁+1), parts of the

wave function of the (𝑁 + 1)-th electron; and 𝑥𝑖 ≡
≡ (r𝑖, 𝜎𝑖) stands for the set of spatial, r𝑖, and spin,
𝜎𝑖, coordinates of the 𝑖-th electron. In formula (1),
𝜒Γ
𝑗 (𝑋,𝑥𝑁+1) is a set of square-integrable antisym-

metrized correlation functions, which involve the ef-
fects of virtual electron capture into one of the unfilled
subshells of the target and are assumed to be known
together with the Φ̄Γ

𝑖 functions. The subscript 𝛼 char-
acterizes initial conditions and, as a result, means the
input scattering channel. Our task consists in finding
the radial functions for a scattered electron, 𝐹Γ

𝑖𝛼, and
the expansion coefficients 𝑐𝑗 . In the case of complex
atoms, the wave functions Φ𝑖(𝑋) are taken in the
form of a multiconfiguration series expansion

Φ𝑖(𝑥1, ..., 𝑥𝑁 ) =
∑︁
𝑗

𝑐𝑖𝑗𝜙𝑗(𝑥1, ..., 𝑥𝑁 ), (2)

where 𝜙𝑗 is a given set of antisymmetrized one-con-
figuration functions. The coefficients 𝑐𝑖𝑗 in expansion
(2) can be obtained by diagonalizing the 𝑁 -electron
Hamiltonian of the target, 𝐻𝑁 :

⟨Φ𝑖|𝐻𝑁 |Φ𝑗⟩ = 𝐸𝑖(𝑍,𝑁)𝛿𝑖𝑗 . (3)

The basis functions 𝜙𝑗 and 𝜒Γ
𝑗 in expansions (1)

and (2) are constructed from one-electron atomic or-
bitals 𝜙𝛼𝑖

. The latter, in the central-field approxima-
tion, look like

𝜙𝛼𝑖(𝑥) =
1

𝑟
𝑃𝑛𝑖𝑙𝑖(𝑟)𝑌𝑙𝑖𝑚𝑖(𝑟)𝜒(𝑚𝑆 |𝜎), 𝑥 ≡ (r, 𝜎), (4)

where the notation 𝛼𝑖 means the set of quantum num-
bers (𝑛𝑖, 𝑙𝑖,𝑚𝑖,𝑚𝑆). In the standard Burke approach
[10], in order to make calculations convenient, the ra-
dial wave functions of a scattered electron, 𝐹Γ

𝑖𝛼, are

selected to be orthogonal to every atomic orbital 𝑃𝑛𝑗 𝑙𝑗

of the target with the same symmetry, i.e.

∞∫︁
0

𝑃𝑛𝑗 𝑙𝑗 (𝑟)𝐹
Γ
𝑖𝛼(𝑟)𝑑𝑟 = 0 at 𝑙𝑗 = 𝑙𝑖. (5)

Evidently, this condition is purely mathematical
rather than physical one and does not follow from
the general quantum-mechanical principles, because
the radial orbitals 𝑃𝑛𝑗 𝑙𝑗 and 𝐹Γ

𝑖𝛼 are eigenfunctions of
different Hamiltonians.

The problem of low-energy electron scattering by
an 𝑁 -electron atom is reduced to a solution of the
Schrödinger equation

(𝐻𝑁+1 − 𝐸)ΨΓ
𝛼 (𝑋,𝑥𝑁+1) = 0 (6)

with corresponding boundary conditions. Here,

𝐻𝑁+1 =

𝑁+1∑︁
𝑖=1

(︂
−1

2
∇2

𝑖 −
𝑍

𝑟𝑖

)︂
+

𝑁+1∑︁
𝑖>𝑗=1

1

𝑟𝑖𝑗

is the Hamiltonian, and 𝐸 the total energy of the
(𝑁 + 1)-electron system “atom + incident electron”,
and 𝑍 is the nucleus charge. The Hamiltonian 𝐻𝑁+1

in Eq. (6) is diagonal with respect to the total orbital
momentum 𝐿, the total spin 𝑆, their projections 𝑀𝐿

and 𝑀𝑆 , respectively, on the given axis, and the par-
ity 𝜋. The function ΨΓ

𝛼 (𝑋,𝑥𝑁+1), which is usually
called the “collision wave function”, is a completely
antisymmetrized wave function of the (𝑁+1)-electron
system.

Substituting expansion (1) into Eq. (6), multiply-
ing the result, in turn, by the functions Φ̄Γ

𝑖 and 𝜒Γ
𝑗 ,

integrating the product over all variables except for
𝑟𝑁+1, and using the orthogonality conditions for the
functions Φ̄Γ

𝑖 and 𝜒Γ
𝑗 , we obtain the following system

of integro-differential close-coupling (CC) equations
for the functions 𝐹𝑖 ≡ 𝐹Γ

𝑖𝛼:(︂
d2

d𝑟2
− 𝑙𝑖(𝑙𝑖 + 1)

𝑟2
+

2𝑍

𝑟
+ 𝑘2𝑖

)︂
𝐹𝑖(𝑟) =

= 2
∑︁
𝑗

(𝑉𝑖𝑗 +𝑊𝑖𝑗 +𝑋𝑖𝑗)𝐹𝑗(𝑟), (7)

where 𝑘2𝑖 = 2 [𝐸 − 𝐸𝑖(𝑍,𝑁)]; and 𝑉𝑖𝑗 , 𝑊𝑖𝑗 , and 𝑋𝑖𝑗

are the local direct, nonlocal exchange, and nonlocal
correlation potentials, respectively. For the electron
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scattering by complex atoms, the explicit expressions
for those potentials depend on the type of input data,
and they are generated automatically by the BSR
computation code [9].

To solve the system of CC equations (7), let us ap-
ply the BSR version of the 𝑅-matrix method, which
is based on the application of nonorthogonal orbitals
and 𝐵-splines as the basis functions. This approach
allows various reaction types – for example, elastic
scattering, electron-impact excitation and ionization
of an atom – to be described within the framework of
the same formalism. The main idea of the 𝑅-matrix
method consists in dividing the configuration space
of the system “atom + electron” into two regions: in-
ternal (𝑟 < 𝑎) and external (𝑟 > 𝑎) ones. The radius
𝑎 of the internal region is selected so that the ex-
change and correlation effects should be rather small
at 𝑟 ≥ 𝑎.

Owing to the restrictions imposed by the orthogo-
nality conditions ⟨𝑃𝑛𝑗 𝑙𝑗 |𝐹𝑖⟩ = 0 on the collision wave
function ΨΓ

𝛼(𝑋,𝑥𝑁+1), the incident electron cannot
be virtually captured by one of the unfilled target
subshells. The finite set of square-integrable corre-
lation functions 𝜒Γ

𝑗 (𝑋,𝑥𝑁+1) in the second sum in
Eq. (1) makes it possible to partially consider the
effects associated with the orthogonality conditions
for the functions 𝑃𝑛𝑗 𝑙𝑗 and 𝐹𝑖, and with the con-
finement of the first sum in expansion (1) to a fi-
nite number of terms. However, in this case, it may
result in the appearance of an unphysical pseudo-
resonance structure in the scattering cross-sections
and can give rise to a significant increase in the num-
ber of integro-differential equations that are to be
solved [10].

It is evident that, in order to take the fact that
an electron can be virtually captured by an unfilled
target subshells into account, it is necessary to re-
ject the condition that the orbitals of the scattered
electron 𝐹𝑖 have to be orthogonal to the coupled tar-
get orbitals 𝑃𝑛𝑗 𝑙𝑗 . The BSR version of the 𝑅-matrix
method, which was realized in our works [1–8], advan-
tageously differs from the modern methods of scat-
tering theory by at least two innovations: (i) it uses
nonorthogonal orbitals to represent the radial parts of
the one-electron wave functions describing both the
bound atomic and scattered electron states; (ii) the
𝑅-matrix basis, which is given by a complete finite
set of 𝐵-splines with compact supports in the inter-
nal region, is better.

As was done in the standard 𝑅-matrix method [10],
in the internal region, the total wave function of the
(𝑁+1)-electron system with given energy 𝐸 is sought
as a series expansion

ΨΓ
𝐸 =

∑︁
𝑘

𝐴Γ
𝐸𝑘Ψ

Γ
𝑘 (8)

in an energy-independent discrete basis set

ΨΓ
𝑘 (𝑋,𝑥𝑁+1) =

= 𝐴
∑︁
𝑖,𝑗

Φ̄Γ
𝑖 (𝑋; r̂𝑁+1, 𝜎𝑁+1)

𝑢𝑗(𝑟𝑁+1)

𝑟𝑁+1
𝑐Γ𝑖𝑗𝑘 +

+
∑︁
𝑖

𝜒Γ
𝑖 (𝑋,𝑥𝑁+1)𝑑

Γ
𝑖𝑘, (9)

where the functions Φ̄Γ
𝑖 and 𝜒Γ

𝑖 are defined as in for-
mula (1). The functions 𝐹Γ

𝑖𝛼 describing the radial mo-
tion of the scattered electron in the 𝑖-th channel are
presented in expansion (9) as linear combinations of
a finite number of basis functions 𝑢𝑗 that satisfy the
boundary conditions 𝑢𝑗 = 0 and (𝑎/𝑢𝑗)𝑑𝑢𝑗/𝑑𝑟|𝑟=𝑎 =
= 𝑏, where 𝑏 is an arbitrary real constant. For the
basis functions of this type, Hamiltonian (6) is not
Hermitian in the internal region owing to nonzero (at
𝑟 = 𝑎) surface terms, which arise from the kinetic en-
ergy operator. However, those terms can be excluded
with the help of the Bloch operator 𝐿𝑁+1 [10]. Then,
the formal solution (1) of the Schrödinger equation
(6) reads

|Ψ⟩ = 1/2
∑︁
𝑘𝑗

|ΨΓ
𝑘 ⟩⟨ΨΓ

𝑘 |Φ̄Γ
𝑗 ⟩(𝐸𝑘 − 𝐸)−1 ×

× (𝑑/𝑑𝑟𝑁+1 − 𝑏𝑗/𝑟𝑁+1)⟨Φ̄Γ
𝑗 |Ψ⟩. (10)

By projecting this equation on the channel functions
Φ

Γ

𝑖 and performing calculations at the internal region
boundary, we obtain

𝐹Γ
𝑖 (𝑎) =

𝑛∑︁
𝑗=1

𝑅Γ
𝑖𝑗(𝐸)

(︃
𝑎

𝑑𝐹Γ
𝑗

𝑑𝑟𝑁+1
− 𝑏𝑗𝐹

Γ
𝑗

)︃
𝑟𝑁+1=𝑎

, (11)

where the 𝑅-matrix with the elements

𝑅Γ
𝑖𝑗(𝐸) =

1

2𝑎

∑︁
𝑘

𝑤Γ
𝑖𝑘(𝑎)𝑤

Γ
𝑗𝑘(𝑎)

𝐸Γ
𝑘 − 𝐸

, (12)

the radial functions 𝐹Γ
𝑖 , and the surface amplitudes

𝑤Γ
𝑖𝑘 were introduced. By diagonalizing the matrix

14 ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 1



Electron-Impact Excitation of 51𝑆 − 51𝑃 𝑜 Resonance Transition

⟨ΨΓ
𝑘 |𝐻𝑁+1 + 𝐿𝑁+1|ΨΓ

𝑘′⟩int for each set of quantum
numbers Γ, we can determine the energies 𝐸Γ

𝑘 and
the coefficients 𝑐Γ𝑖𝑗𝑘 and 𝑑Γ𝑖𝑘 in the series expansion
(9), i.e. the wave functions ΨΓ

𝑘 for the corresponding
basis states. However, this procudure should be ful-
filled only once in order to determine the 𝑅-matrix in
the whole interval of collision energies.

As was indicated above, in most cases, the inclu-
sion of additional correlation functions 𝜒Γ

𝑖 into the ini-
tial series expansion (9) results in the appearance of
a pseudo-resonance structure in the scattering cross-
sections and additional integro-differential equations
that follow from series expansion 9) and are required
for realistic calculations of complex atoms.

The BSR version of the 𝑅-matrix method, which
is based on the application of nonorthogonal orbitals
and 𝐵-splines as the basis functions and was realized
in our works [1–8], is free from those difficulties. The
indicated choice of 𝑢𝑗(𝑟) provides a rapid convergence
of the 𝑅-matrix expansion without introducing the
so-called Buttle corrections (see work [10]) into the
diagonal 𝑅-matrix elements (12). The basis splines
have excellent properties, as if they were cially cre-
ated for the 𝑅-matrix theory. They form a complete
basis in the finite 𝑅-matrix interval [0, 𝑎] and are con-
venient for the determination of the coupled target
orbitals and the orbitals of a scattered electron. The
convenience is provided first of all by the fact that the
𝐵-splines are finite functions that are different from
zero only in their support intervals.

The next step consists in the determination of the
𝐾- and 𝑆-matrices and the phase shifts. Since 𝑟 > 𝑎
in the external region, all exchange and correlation
potentials are almost equal to zero. Therefore, rather
a simple system of coupled integro-differential equa-
tions is obtained for the radial functions 𝐹𝑖(𝑟) in this
region. They can be solved numerically with a suffi-
cient accuracy making use of modern computers, pro-
viding unambiguous results. The obtained solutions
are matched at 𝑟 = 𝑎 with the solutions in the inter-
nal region (𝑟 < 𝑎). Then it is easy to determine the
𝐾-matrix from the asymptotic relation

𝐹𝑖𝛼 ∼
𝑟→∞

𝑘
−1/2
𝑖 (𝛿𝑖𝛼 sin 𝜃𝑖 +𝐾𝑖𝛼 cos 𝜃𝑖), (13)

where 𝜃𝑖 is the asymptotic phase of the regular
Coulomb functions (see, e.g., work [10]), and the sub-
script 𝛼 indicates the channel number of the inci-
dent wave. The scattering, 𝑆𝑖𝛼, and transition, 𝑇𝑖𝛼,

(𝑛× 𝑛)-matrices can be determined with the help of
the known matrix relation

S = 1+T = (1+ 𝑖K)/(1− 𝑖K).

In what follows, those matrices are used for the cal-
culation of scattering cross-sections and all other ob-
servable quantities.

From the computational viewpoint, the most im-
portant properties of the basis splines 𝐵𝑖 with com-
pact support were described, e.g. , in work [9]. In
the cited work, spline algorithms for the solution of
integro-differential equations obtained in the frame-
work of the scattering and bound-state problems were
also considered in detail. It should be emphasized
that those algorithms have two principal advantages
over the algorithms based on the finite-difference ap-
proximation. First, the local properties of spline al-
gorithms, which are provided by the finite properties
of basis splines with compact support, are especially
important for numerical calculations. Second, owing
to the finiteness and completeness of the finite system
of 𝐵-splines, the integro-differential equations, after
their discretization in the internal 𝑅-matrix region
(𝑟 < 𝑎), are reduced to a system of finite-rank mat-
rix-vector equations with sparse matrices (namely,
band ones), which significantly simplifies the numer-
ical analysis of such systems.

In our works [1–8], general approaches to the prob-
lem of electron correlation and its account were also
described. In particular, this is the 𝐵-spline MCHF
method. It is based on the representation of the radial
orbitals 𝑃𝑛𝑙(𝑟) as finite expansions in the complete
basis set of 𝐵-splines {𝐵𝑖}𝑛𝑆

𝑖=1. A multiconfiguration
character of the series expansion for the total wave
function Φ𝑖(𝑋) of the 𝑁 -electron system (2) allows
one to make allowance for a considerable number of
correlation effects.

A quantum-mechanical calculation in the frame-
work of the MCHF method consists of two stages.
These are the creation of a multielectron basis for
the configuration state functions (CSFs) and the so-
lution of multiconfiguration Hartree–Fock equations,
from which the radial wave functions 𝑃𝑛𝑙(𝑟) enter-
ing the Slater determinants are determined. Success
in any practical calculation of atomic characteris-
tics strongly depends on the choice of radial orbitals
𝑃𝑛𝑙(𝑟) and configurations that are included in the se-
ries expansion of the target wave function in the CSF
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basis. Unlike the standard approach [10], the applied
version of the 𝑅-matrix method uses nonorthogonal
coupled orbitals as one-electron functions. They are
optimized in independent MCHF calculations for ev-
ery term. The application of those orbitals is crucial
for the adequate description of a complicated reso-
nance structure in the scattering cross-sections of an
electron by multielectron atoms.

2.2. Electron structure
calculation for a Sr atom

Let us now consider the specific features in the ap-
plication of the 𝐵-spline MCHF method to calcu-
late the energy structure of a Sr atom. Various ap-
proximations of this method differ from one another
by the number and choice of basis configurations
that are taken into account in the series expan-
sion of the traget states and pseudo-states Φ𝑖(𝑋) ≡
≡ Φ𝑖(𝑥1, ..., 𝑥𝑁 ). In our calculations, the relevant
expansion included the ground state and 30 low-
est excited spectroscopic states of a Sr atom, up to
the 5𝑠5𝑓 1𝐹 𝑜 state inclusive. All those states are en-
ergetically allowed (i.e. they correspond to the so-
called open channels) at the collision energies con-
cerned. The wave functions of coupled atomic states
obtained at that are used to determine the parame-
ters of the 𝑒-Sr scattering, so that they should contain
rather compact configuration expansions.

Strontium, together with its ground state configu-
ration [1𝑠22𝑠22𝑝63𝑠23𝑝63𝑑104𝑠24𝑝6]5𝑠2 1𝑆 and singly
excited states 4𝑝65𝑠𝑛𝑙 3,1𝐿, is similar in many re-
spects to helium. In other words, under certain
conditions, it can be considered in the framework
of the model of two electrons above a Kr-like
[1𝑠22𝑠22𝑝63𝑠23𝑝63𝑑104𝑠24𝑝6]-core obtained by the
double ionization of a Sr atom. To simplify notations,
the closed shells of a Sr2+ ion will be omitted in the
further consideration. For the ground state and for
lower excited states of Sr, both the valence and core-
valence correlations are important. Bearing all that
in mind, we included the electron configurations with
the excited core into the MCHF expansion of the tar-
get wave function.

The calculation procedure for the target states in-
cludes the following steps. It begins from the gener-
ation of the Sr2+ core orbitals in the Hartree–Fock
approximation. As a result of calculations with the
“frozen” core, we obtain the valence 5𝑠, 5𝑝, and 4𝑑
orbitals for Sr+. The application of the most coupled

channels in the MCHF expansion makes it possible
to take a considerable part of the valence correlation
into account. At the same time, the core-valence cor-
relation is made allowance for by including the addi-
tional electron configurations 𝑝5𝑛𝑙𝑛′𝑙′ into the MCHF
expansion:

𝜑(4𝑝6𝑛𝑙) = 𝑎𝑛𝑙𝜑HF(4𝑝
6𝑛𝑙)+

+
∑︁
�̄�𝑙�̄�′𝑙′

𝑏�̄�𝑙�̄�′𝑙′𝜒(4𝑝
5�̄�𝑙�̄�′𝑙′), (14)

where the bar over the symbols marks the correla-
tion orbitals rather than the physical ones. In other
words, the Hartree–Fock wave functions 𝜑HF

(︀
4𝑝6𝑛𝑙

)︀
are appended here by the correlation functions 𝜒 with
a 4𝑝-excited core.

The described structural calculations were carried
out making use of the MCHF software [15, 16]. Since
the average radius of 𝑛𝑙 orbitals lies between the
average core radius and the radii of valence or-
bitals, this method allows the core-valence correla-
tion to be effectively taken into account with the
help of rather a small number of electron config-
urations. Note also that the correlation 𝑛𝑙 orbitals
were optimized in independent calculations for each
state separately. When generating the lower states of
a Sr atom using the MCHF method, the core-valence
states of Sr+ ion were used as initial ones.

The corresponding multichannel series expansion of
the target atom states has the following structure:

Φ(4𝑝65𝑠𝑛𝑙, 𝐿𝑆) = 𝒜
∑︁
𝑛𝑙

{︁
𝜑(4𝑝65𝑠)𝑃 (𝑛𝑙)

}︁𝐿𝑆

+

+𝒜
∑︁
𝑛𝑙

{︁
𝜑(4𝑝65𝑝)𝑃 (𝑛𝑙)

}︁𝐿𝑆

+

+𝒜
∑︁
𝑛𝑙

{︁
𝜑(4𝑝64𝑑)𝑃 (𝑛𝑙)

}︁𝐿𝑆

, (15)

where 𝒜 is the antisymmetrization operator. To sim-
plify notations, we assume that the expansion coeffi-
cients in formula (15) are included into the unknown
radial functions 𝑃 (𝑛𝑙) for the external valence elec-
tron. Those functions were expanded in the 𝐵-spline
basis, and the corresponding equations were solved
provided that the wave functions vanish at the bound-
ary of the internal 𝑅-matrix region. The described
scheme gives a set of orthogonal one-electron orbitals
for each bound state. However, orbitals from differ-
ent sets are not orthogonal to one another. This pro-
cedure is often mentioned in the literature as the ap-
plication of “nonorthogonal orbitals” and will be used
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below in this sense. Finally, we use the same multi-
channel series expansion (14) for both the 5𝑠𝑛𝑙 states
and all 𝑛𝑙2 states with equivalent electrons. The num-
ber of physical states that can be generated in this
method depends on the size 𝑎 of the 𝑅-matrix box. By
choosing 𝑎 = 80𝑎0, where 𝑎0 = 0.529×10−10 m is the
Bohr radius, we obtain the adequate description of
all lower Sr states up to the 5𝑠5𝑓 1𝐹 𝑜 one.

In this work, we included 119 𝐵-splines of the
eighth order into the calculations. Since the above-
mentioned calculations of coupled atomic states using
the 𝐵-spline MCHF method generate different sets of
nonorthogonal orbitals, their further usage becomes
some complicated. On the other hand, our configura-
tion series expansions for the atomic states of Sr tar-
get contain from 50 to 270 configurations, so that they
can be used to calculate collisions, by using rather
modest computational resources.

In Table 1, the results of calculations of the ex-
citation energies for 31 spectroscopic states of a Sr
atom are compared with experimental data [18]. In
general, the agreement between the experimental and
theoretical results is rather good, with the energy
deviations not exceeding 0.1–0.2 eV (and somewhere
0.01 eV). The only exception is the 4𝑑5𝑝 1𝐹 𝑜 state,
for which the effects of electron correlations have to
be taken into account more carefully. The calcula-
tion accuracy obtained for the structure of a Sr atom
(the energies of levels, the wave functions) was sig-
nificantly higher in comparison with the accuracy of
results used in our previous theoretical researches of
the 𝑒-Sr scattering (see, e.g., works [19–23]). Note
also that analogous calculations of the Ca [1] and
Mg [3] coupled atomic states were performed not in
the MCHF approximation [15, 16], but in the frame-
work of the close-coupling method with basis splines
localized in the 𝑅-matrix box [17]. However, in the
case of Sr atom (the nucleus charge 𝑧 = 38), such
calculations, as well as the account for the spin-orbit
interaction, go beyond our actual computational ca-
pabilities.

2.3. 𝑒-Sr collision calculations

Calculations of the processes of electron scattering
by a Sr atom were carried out in the 𝐵-spline 𝑅-
matrix approximation (the BSR soft code [9]). The
problem of 𝑒-Sr scattering in the internal 𝑅-matrix
region (𝑟 ≤ 𝑎) was solved similarly to Eq. (9) by

expanding the collision wave function in the discrete
basis,

ΨΓ
𝑘 (𝑥1, ..., 𝑥𝑁+1) =

= 𝐴
∑︁
𝑖,𝑗

Φ̄Γ
𝑖 (𝑥1, ..., 𝑥𝑁 ; r̂𝑁+1, 𝜎𝑁+1)×

× 𝑟−1
𝑁+1𝐵𝑗(𝑟𝑁+1)𝑐

Γ
𝑖𝑗𝑘, (16)

where Φ
Γ

𝑖 are the wave functions of the channels.
Here, we expanded the radial wave functions of the
continuum, 𝐹Γ

𝑖𝛼, in the finite system of basis splines

Table 1. Excitation energies (in eV)
for 31 lower spectroscopic states of the Sr target.
Theoretical 𝐸theor values are compared with Moore’s
experimental data [18]. Triplet energies are averaged
over the term. Δ𝐸 = 𝐸exp − 𝐸theor

No. State 𝐸exp [18] 𝐸theor Δ𝐸

1 5𝑠2 1𝑆 0.0 0.0 0.0
2 5𝑠5𝑝 3𝑃 𝑜 1.823 1.847 −0.024
3 5𝑠4𝑑 3𝐷 2.264 2.272 −0.008
4 5𝑠4𝑑 1𝐷 2.499 2.480 0.019
5 5𝑠5𝑝 1𝑃 𝑜 2.691 2.673 0.018
6 5𝑠6𝑠 3𝑆 3.601 3.633 −0.032
7 5𝑠6𝑠 1𝑆 3.793 3.714 0.079
8 4𝑑5𝑝 3𝐹 𝑜 4.173 4.111 0.062
9 4𝑑5𝑝 1𝐷𝑜 4.195 4.196 −0.001

10 5𝑠6𝑝 3𝑃 𝑜 4.207 4.222 −0.015
11 5𝑠6𝑝 1𝑃 𝑜 4.228 4.241 −0.013
12 5𝑠5𝑑 1𝐷 4.306 4.311 −0.005
13 5𝑠5𝑑 3𝐷 4.344 4.361 −0.017
14 5𝑝2 3𝑃 4.406 4.408 −0.002
15 4𝑑5𝑝 3𝐷𝑜 4.519 4.568 −0.049
16 5𝑝2 1𝐷 4.583 4.499 0.084
17 5𝑝2 1𝑆 4.608 4.590 0.018
18 4𝑑5𝑝 3𝑃 𝑜 4.628 4.767 −0.139
19 5𝑠7𝑠 3𝑆 4.641 4.579 0.062
20 4𝑑5𝑝 1𝐹 𝑜 4.713 4.944 −0.231
21 5𝑠7𝑠 1𝑆 4.767 4.954 −0.187
22 5𝑠4𝑓 3𝐹 𝑜 4.805 4.734 0.071
23 5𝑠7𝑝 1𝑃 𝑜 4.825 4.810 0.015
24 5𝑠7𝑝 3𝑃 𝑜 4.891 4.885 0.006
25 5𝑠4𝑓 1𝐹 𝑜 4.903 4.754 0.149
26 5𝑠6𝑑 3𝐷 4.922 4.885 0.037
27 5𝑠6𝑑 1𝐷 4.927 4.859 0.068
28 5𝑠8𝑠 3𝑆 5.054 5.008 0.046
29 5𝑠8𝑠 1𝑆 5.091 5.216 −0.125
30 5𝑠5𝑓 3𝐹 𝑜 5.129 5.049 0.080
31 5𝑠5𝑓 1𝐹 𝑜 5.148 5.140 0.008
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Fig. 1. Energy dependences of the ICS for the 51𝑆 → 51𝑃 𝑜

transition at the 𝑒-Sr scattering. The results of BSR31 cal-
culation (taking and not taking the cascade contribution into
account) are compared with the experiment by Chen et al. [13].
The ICS for the 51𝑆 → 61𝑆 transition and the experimental
excitation thresholds for the lower Sr levels [18] are shown (𝑎).
The scaled-up fragment of panel 𝑎 in a vicinity of 4 eV (𝑏)

𝐵𝑗(𝑟) given in the 𝑅-matrix interval 0 ≤ 𝑟 ≤ 𝑎. The
amplitudes of wave functions at the 𝑟 = 𝑎 bound-
ary, which are required to evaluate the 𝑅-matrix, are
determined by the coefficient in front of the last 𝐵-
spline; just this spline is the only basis spline that
differs from zero at the internal region boundary. The
number of 𝐵-splines and the 𝑅-matrix radius in
the scattering calculations were taken the same as
when calculating the coupled target states. The par-
tial wave contributions were calculated numerically

Fig. 2. Energy dependences of ICSs for the excitation of 63𝑆,
61𝑆, 4𝑑5𝑝 1𝐷𝑜, 61𝑃 𝑜, 51𝐷, and 5𝑝2 1𝐷 from the ground level
51𝑆 at the 𝑒-Sr scattering obtained in the BSR31 approxima-
tion. The excitation thresholds of the lower Sr levels [18] are
indicated

up to 𝐿 = 50. When evaluating the contributions
from higher 𝐿-values, the procedure of “remnant sum-
mation” was used as appropriate, which is based on
an approximation by geometrical series [9]. The cross-
sections were calculated, by following the standard
𝑅-matrix procedure with the use of the FARM soft
package [24] for the external region.

In order to simplify the calculations of the 𝑒-Sr
scattering and take the resonance structure into ac-
count most consistently, the experimental excitation
energies of the target [18] were not applied. Instead,
we used their values calculated with the help of the
MCHF soft code [15, 16] and using 𝐵-splines (see Ta-
ble 1).

3. Results and Their Discussion

Let us compare the integral cross-sections (ICSs) cal-
culated for the resonance transition excitation of a
Sr atom with the experimental data by Chen et al.
[13]. In Fig. 1, the ICSs for the 51𝑆 → 51𝑃 𝑜 transi-
tion at the 𝑒-Sr scattering are shown. Together with
the experimental EFs [13], the ICSs calculated in the
BSR31 approximation taking and not taking into ac-
count cascades from higher levels are also depicted.

In order to estimate the maximum possible con-
tribution of cascades, Fig. 2 demonstrates the energy
dependences of EFs for the electron-impact excitation
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of several higher states (63𝑆, 61𝑆, 4𝑑5𝑝 1𝐷𝑜, 61𝑃 𝑜,
51𝐷, and 5𝑝2 1𝐷) of a Sr atom. At collosion ener-
gies in a vicinity of 4 eV, which are of interest for the
comparison with the experiment, the radiative decay
of those states to the 51𝑃 𝑜 level expectedly results in
an appreciable cascade contribution to the EF, which
can be experimentally observed [13].

On the other hand, a comparison of the ICSs exhib-
ited in Figs. 1 to 3 testifies that, in the energy interval
from 3.6 to 4.2 eV, the mentioned cascade contribu-
tion to the 51𝑆 → 51𝑃 𝑜 transition cross-section can
be made only by transitions from the higher excited
states, the 63𝑆 and 61𝑆 ones, with a considerably pre-
vailing contribution of the 61𝑆 → 51𝑃 𝑜 transition. Fi-
gures 1 and 2 illustrate an almost complete agreement
between the theoretical (the BSR31 approximation
taking cascades into account) and experimental [13]
results in the energy interval from 2.69 eV (the exci-
tation threshold) to 4.8 eV, as well as above 6.8 eV. A
convex structure at about 4 eV in the energy depen-
dence of the ICS for the 51𝑆 → 51𝑃 𝑜 transition is a
result of both the resonance features in the ICS of the
direct excitation of the 51𝑃 𝑜 level and the radiative
decay of the higher excited state 61𝑆.

In Fig. 3, the BSR31 cross-sections calculated for
the direct 51𝑆 → 51𝑃 𝑜 transition in a Sr atom are
compared with experimental data [14]. Besides the
initial EFs [14], the same dependences, but calibrated
by shifting them by 0.21 eV to the right and multi-
plied by 1.2, are also plotted. Figure 3 demonstrates
remarkable agreement between the fitted experimen-
tal EF [14] with our calculated ICS of the resonance
transition in the energy interval from the excitation
threshold to 4.8 eV.

In order to analyze the resonance structure of the
excitation ICS for the dipole 51𝑆 → 51𝑃 𝑜 transition,
the expansion of this cross-section in the partial waves
2𝑃 𝑜, 2𝐷, and 2𝐺 is shown in Fig. 4. A similar expan-
sion of the excitation ICS for the 51𝑆 → 61𝑆 transi-
tion is exhibited in Fig. 5. The contributions made by
two other partial waves, 2𝑆 and 2𝐹 𝑜, to the resonance
structure of the ICSs of the mentioned transitions are
insignificant and therefore are not depicted in Figs. 4
and 5.

From Fig. 4, it is evident that the convex reso-
nance structure at about 3.6–4.3 eV in the theoretical
ICSs for the 51𝑆 → 51𝑃 𝑜 transition is substantially
governed by the behavior of the partial 2𝐺 wave. In
Fig. 6, the partial 2𝐺 cross-sections for the excita-

Fig. 3. Energy dependences of the ICS for the 51𝑆 → 51𝑃 𝑜

transition at the 𝑒-Sr scattering. The results of BSR31 calcu-
lations are compared with the experiment by Kazakov et al.
[14]. The experimental EFs are shown together with the same
functions, but calibrated by shifting them by 0.21 eV to the
right and multiplying by 1.2. The fitting Lorentzians for the
51𝑆 → 61𝑆 transition are also shown and the experimental ex-
citation thresholds for the 5𝑠6𝑝(1𝑃 𝑜)4𝑓 2𝐺 (at 4.216 eV) and
5𝑠5𝑑2(1𝐺) 2𝐺 (at 4.264 eV) resonances are indicated

Fig. 4. Energy dependences of the integral and partial 2𝑃 𝑜,
2𝐷, and 2𝐺 cross-sections for the 51𝑆 → 61𝑆 transition at
the 𝑒-Sr collision (the BSR31 approximation). The excitation
thresholds for the lower Sr levels [18] are indicated

tion from the ground 51𝑆 state of a Sr atom to the
states 43𝐷, 41𝐷, 51𝑃 𝑜, and 61𝑆 are exhibited. As
one can see from Figs. 4 and 6, the dominating res-
onance structure in the partial cross-sections of the
51𝑃 𝑜 and 43𝐷 excitations for the 2𝐺 wave looks like
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Fig. 5. Energy dependences of the integral and partial 2𝑃 𝑜,
2𝐷, and 2𝐺 cross-sections for the 51𝑆 → 51𝑃 𝑜 transition at
the 𝑒-Sr collision (the BSR31 approximation). The excitation
thresholds for the lower Sr levels [18] are indicated

Fig. 6. Energy dependences of the 2𝐺 partial cross-sections
for the transitions from the ground state 51𝑆 to the states
51𝑃 𝑜, 43𝐷, 41𝐷, and 61𝑆 at the 𝑒-Sr collision (the BSR31
approximation). The excitation thresholds for the lower Sr
levels [18] are indicated. The vertical dotted line is drawn to
facilitate a comparison of resonance structures in the cross-
sections of different transitions. The numbers of states in the
notations of transitions from the initial state to the final one
are indicated in accordance with Table 1

Fig. 7. Example of the partial-phase analysis used for the de-
tection and classification of resonance features in the 2𝐺 wave.
Cross-sections and phases were obtained in the BSR31 approx-
imation. Vertical dotted lines are drawn to facilitate a compar-
ison of resonance structures in different panels. The numbers
of states in the notations of transitions from the initial state
to the final one are indicated in accordance with Table 1

a wide peak in a vicinity of about 4 eV. A bifurcation
of the mentioned convex structure in an energy inter-
val of 4.1–4.2 eV is also observed. This phenomenon
is a result of imposing two narrow resonances of the
Feshbach type on the shape resonance (see Fig. 3).

A somewhat different scenario takes place for the
ICS of the 51𝑆 → 61𝑆 transition (see Fig. 5). Here,
the ICS behavior is governed by the character of the
energy dependences of the partial cross-sections for
the 2𝐷 and, to some extent, 2𝑃 𝑜 waves.

In order to detect and classify the resonance struc-
ture in the integral cross-sections of the 𝑒-Sr scatter-
ing, we carried out their partial-wave analysis, which
was based on the calculation of the sum of characteris-
tic phases for each partial wave. Illustrative examples
of this kind for the 2𝐺, 2𝐷, and 2𝑃 𝑜 waves are shown
in Figs. 7, 8, and 9, respectively. The energy regions,
where the sum of characteristic phases 𝛿 increases by
𝜋, were recalculated with a small energy step down to
10−4 eV. It was done in order to determine the deriva-
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tive of the sum of characteristic phases with respect
to the energy with a higher accuracy. In the resonance
region, this derivative looks like a Lorentzian, whose
maximum determines the resonance position, and the
resonance width equals 2/(𝑑𝛿/𝑑𝐸).

Unfortunately, the 𝑅-matrix method gives no di-
rect “recipe” for the detection and classification of
resonances in the ICS of the scattering in the given en-
ergy interval. It also does not point to a spectroscopic
“identity” (affiliation) of the transient quasistation-
ary state of the negative ion that is responsible for a
resonance feature in the ICS of the scattering. Thus,
the identification of a resonance and the determina-
tion of its parameters requires considerable additional
efforts.

Table 2 contains the parameters of the resonances
that were revealed in a vicinity of 4 eV, when ana-
lyzing the results of BSR31 calculations. Figures 7
to 9 illustrate the main stages of this analysis for
the above-mentioned partial waves 2𝐺, 2𝐷, and
2𝑃 𝑜. Each of the figures includes three panels. The
upper panel demonstrates the fragments of the en-
ergy dependences of partial cross-sections for the
51𝑆 → 51𝑃 𝑜 and 51𝑆 → 61𝑆 transitions. The en-
ergy dependence of the sum of characteristic phases
for the relevant partial wave (in 𝜋-units) is shown in
the middle panel, and the energy derivative of this
dependence is exhibited in the lower panel.

It should be recalled that a certain resonance struc-
ture in the energy dependence of the partial cross-
section is interpreted as a “true” resonance, if two ac-
companying factors are available: (i) the phase has a
jump of about 𝜋 in the energy interval, where the fea-
ture in the partial cross-section manifests itself, and

Table 2. Resonance parameters
for the 𝑒-Sr collisions in a vicinity of 4 eV

No. Configuration Term Energy, eV Width, meV

1 5𝑠6𝑠(3𝑆)5𝑑 2𝐷 3.719 162
2 5𝑠5𝑝(1𝑃 )4𝑓 2𝐺 4.087 559
3 4𝑑2(1𝐷)5𝑝 2𝑃 𝑜 4.146 17
4 4𝑑5𝑝2(1𝐷) 2𝐷 4.147 50
5 5𝑠6𝑝2(1𝐷) 2𝐷 4.207 27
6 5𝑠6𝑝(1𝑃 𝑜)4𝑓 2𝐺 4.216 33
7 5𝑠6𝑝(1𝑃 𝑜)5𝑑 2𝑃 𝑜 4.216 16
8 5𝑠6𝑝(1𝑃 𝑜)4𝑓 2𝐷 4.222 3.4
9 5𝑠5𝑑2(1𝐷) 2𝐷 4.242 1.3

10 5𝑠5𝑑2(1𝐺) 2𝐺 4.263 46

Fig. 8. The same as in Fig. 7, but for 2𝐷 wave

Fig. 9. The same as in Fig. 7, but for 2𝑃 𝑜 wave
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Fig. 10. Lorentzian fitting of the energy derivative of the
phase sum for the 2𝐺 partial wave in an energy interval of
4.15–4.32 eV: the derivative of the phase sum calculated in the
BSR31 approximation (1 ); the resulting fitting curve (2 ); fit-
ting Lorentzians for resonances with peaks at energies of 4.216
and 4.264 eV, respectively (3, 4 ) (Table 2)

(ii) the derivative of the phase has a Lorentzian shape
at the indicated energies. As was marked above, the
position of the Lorentzian maximum on the energy
scale is considered to be the energy of the reso-
nance with the width 2/(𝑑𝛿/𝑑𝐸). This “perfect” pic-
ture can be violated (i) if new scattering channels
become open, i.e. near the excitation thresholds for
the target-atom states and (ii) if the scattering cross-
sections include wide-shape resonances, for which the
phase jump rearly reaches a value of about 𝜋.

In particular, in Fig. 7, the energy dependence of
the phase sum for the partial 2𝐺 wave in the near-
threshold energy region is depicted. Its behavior has
a typical character (see, e.g., works [1, 6]), when a
wide shape resonance (in our case, 5𝑠5𝑝(1𝑃 𝑜)4𝑓 2𝐺)
is suppressed by the opening of new collision chan-
nels at 4.17–4.22 eV. The 2𝐺 phase starts to grow
above 3.6 eV and increases by almost 0.7𝜋. The phase
analysis in this energy region also revealed a two-
peak structure in the energy derivative of the phase
sum for the 2𝐺 wave. This structure can be approx-
imated rather accurately by a pair of Lorentzians
(Fig. 10). It should be emphasized that the power-
ful 5𝑠5𝑝(1𝑃 𝑜)4𝑓 2𝐺 resonance at 4.087 eV is located
above the “parent” 5𝑠5𝑝(1𝑃 𝑜) state, and it can be
considered as a shape resonance. At the same time,
two other states, 5𝑠6𝑝(1𝑃 𝑜)4𝑓 2𝐺 (at 4.216 eV) and

5𝑠5𝑑2 (1𝐺) 2𝐺 (at 4.264 eV), lie below the excita-
tion thresholds of their “parent” states 5𝑠6𝑝(1𝑃 𝑜) and
5𝑠5𝑑(1𝐷), respectively, and are classified as Feshbach
resonances.

Hence, our researches of the resonance structure in
the excitation ICS of the 51𝑆 → 51𝑃 𝑜 transition in a
vicinity of 4 eV confirm, in general, the conclusions
made in the work by Kazakov et al. [14] that the levels
located above the threshold of the 63𝑆 state are ex-
cited through the formation of a short-lived negative
Sr− ion. The authors of work [14] assumed that, be-
sides cascade transitions, a contribution to the struc-
ture observed near 4 eV can be given by a state of
the negative Sr− ion with the configuration 5𝑠5𝑝6𝑠
(𝐸0 = 3.92±0.03 eV). However, as was shown above,
it is the above-threshold shape resonance in the 2𝐺
wave that is “responsible” for the discussed struc-
ture. This resonance cannot appear due to the contri-
bution made by the 5𝑠5𝑝6𝑠 configuration states. Most
likely, it is a result of the formation of a quasista-
tionary state of the Sr− ion with the 5𝑠5𝑝 (1𝑃 𝑜)4𝑓
configuration.

Cascade transitions from the 61𝑆 level are another
important factor that affects the formation of the con-
vex peculiarity in the energy dependence of the ICS
for the 51𝑃 𝑜 excitation in the energy interval 3.8–
4.2 eV. From Fig. 5, one can see that (i) the contribu-
tion of the partial 2𝐷 wave prevails in the integral ex-
citation cross-section of the 51𝑆 → 61𝑆 transition and
completely determines its shape at the indicated ener-
gies, and (ii) the convex structure observed in the en-
ergy dependence of the 2𝐷 partial cross-section has a
typical form of shape resonance (see, e.g., work [25]),
which is associated with the formation of the qua-
sistationary 5𝑠6𝑠(1𝑆)5𝑑 2𝐷 state of the negative Sr−
ion. However, the absence of a jump in the 2𝐷 phase
at energies of 3.8–4.2 eV (Fig. 8) does not allow this
feature to be considered as a “true” resonance. In our
opinion, such a phase behavior is a combined result of
several factors: (i) a rather considerable inaccuracy at
the determination of the relative arrangement of en-
ergy levels for the 63𝑆 and 61𝑆 states, which reaches
0.12 eV in the case concerned; (ii) a high correlation
degree of the resonance processes that are sensitive to
the slightest computational mismatches; and (iii) the
presence of the 2𝐷-shape resonance [5𝑠6𝑠(3𝑆)5𝑑 2𝐷]
162 meV in widthat an energy of 3.719 eV, which
occurs at the excitation threshold of the obscured
5𝑠6𝑠(1𝑆)5𝑑 2𝐷 shape resonance. In this case, the con-
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clusion suggests itself that a detailed calculation for
the target structure is required with the application
of the BSR soft package [9].

4. Conclusions

The energy dependence of the experimental excita-
tion cross-section of the 51𝑆 → 51𝑃 𝑜 transition in
a Sr atom by the electron impact [13, 14] includes a
pronounced structure in an energy interval at about
4 eV. Till now, this structure has not obtained an
adequate theoretical interpretation. Since deviations
from the smooth behavior of the integral excitation
cross-section [13] of the 51𝑃 𝑜 level begins at about
3.79 eV, we supposed that this peculiarity is a re-
sult of the cascade-transition contribution from the
61𝑆 level and the opening of new excitation chan-
nels (see Fig. 1). However, deviations from the mono-
tonic growth of the excitation function experimen-
tally manifested itself already at an energy of about
3.66 eV [14], which is close to the excitation poten-
tial of the 63𝑆 level (3.59 eV). The authors of work
[14] also asserted that the pronounce structure in the
ICS is a result of the contributions made not only by
cascade transitions, but also by the states of the neg-
ative Sr− ion with the 5𝑠5𝑝6𝑠 configuration (at about
3.92 eV).

In this work, the ICS for the electron-impact ex-
citation of the 51𝑃 𝑜 level of a Sr atom has been
studied in the subthreshold energy interval, by us-
ing the BSR31 approximation. It is shown the follow-
ing. (i) A convex feature in a vicinity of about 4 eV
in the experimental EFs for the 51𝑆 − 51𝑃 𝑜 transi-
tion [13, 14] is associated, first of all, with the con-
tribution of 2𝐺 resonances in the cross-section of the
direct 51𝑃 𝑜 excitation, as well as the cascade con-
tribution from the 61𝑆 level. (ii) The main contri-
bution to the discussed ICS structure of the direct
51𝑃 𝑜 excitation in a vicinity of 4 eV is made by
the shape resonance 5𝑠5𝑝(1𝑃 𝑜)4𝑓 2𝐺 with a maxi-
mum at about 4.1 eV with two imposed narrow Fes-
hbach resonances 5𝑠6𝑝(1𝑃 𝑜)4𝑓 2𝐺 and 5𝑠5𝑑2(1𝐺) 2𝐺
(at 4.216 and 4.264 eV, respectively). (iii) The domi-
nating contribution to the excitation ICS of the 61𝑆
level is given by the obscured 5𝑠6𝑠(1𝑆)5𝑑 2𝐷 shape
resonance, which turns out destroyed by a few accom-
panying resonance formations in the same 2𝐷 partial
wave. In other words, the convex feature in a vicinity
of 4 eV, which was revealed in the energy dependences

of the cross-sections of a Sr-atom 51𝑃 𝑜 excitation by
the electron impact [13, 14], has a resonance origin
and is governed, to a large extent, by highly corre-
lated processes of the formation and decay of quasis-
tationary states of the negative Sr− ion, which are
difficult to be described theoretically.

The authors express their gratitude to Prof. A. Za-
tsarinny and Prof. K. Bartschat (Drake University,
Des Moines, Iowa, USA) for their help in carrying
out calculations and fruitful discussion.
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ЗБУДЖЕННЯ РЕЗОНАНСНОГО ПЕРЕХОДУ
51𝑆 − 51𝑃 𝑜 АТОМА Sr ЕЛЕКТРОННИМ УДАРОМ

Р е з ю м е

Викладено основнi аспекти нової версiї методу 𝑅-матрицi з
𝐵-сплайнами (BSR), що ґрунтується на використаннi неор-
тогональних орбiталей. Наближення BSR використане для
розрахункiв резонансної структури iнтегральних перерiзiв
переходу 51𝑆 → 51𝑃 𝑜 при розсiяннi електронiв на атомi
стронцiю в областi енергiй до 10 еВ. Для точного представ-
лення хвильових функцiй мiшенi використовувався багато-
конфiгурацiйний метод Хартрi–Фока з неортогональними
орбiталями. Розклад у випадку сильного зв’язку включав
31 зв’язаний стан атома стронцiю – вiд основного i аж до
стану 5𝑠5𝑓 1𝐹 𝑜. Отримано добре узгодження розрахованих
перерiзiв з наявними експериментальними даними i дана
вичерпна теоретична iнтерпретацiя останнiх. Обговорено
структуру резонансної особливостi в перерiзах розсiяння 𝑒-
Sr в околi енергiї 4 еВ.
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