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ANALYTICAL APPROACH
FOR CALCULATING THE CHEMOTAXIS
SENSITIVITY FUNCTION

We consider the chemotaxis problem for a one-dimensional system. To analyze the interac-
tion of bacteria and an attractant, we use a modified Keller–Segel model, which accounts for
the attractant absorption. To describe the system, we use the chemotaxis sensitivity function,
which characterizes the nonuniformity of the bacteria distribution. In particular, we investi-
gate how the chemotaxis sensitivity function depends on the concentration of an attractant at
the boundary of the system. It is known that, in the system without absorption, the chemotaxis
sensitivity function has a bell shape maximum. Here, we show that the attractant absorption
and special boundary conditions for bacteria can cause the appearance of an additional maxi-
mum in the chemotaxis sensitivity function. The value of this maximum is determined by the
intensity of absorption.
K e yw o r d s: chemotaxis, attractant, bacteria, absorption.

1. Introduction

It is well known that when a bacterium like E. coli
is placed in some substance (which is called at-
tractant) with the concentration gradient, then
the bacterium moves toward the attractant gradi-
ent. This phenomenon is known as the chemotaxis
[1–6]. Although many interesting and significant re-
sults have been obtained in this area (e.g., see [7–22]),
we are going to pay some attention to the process
of the bacteria redistribution in the presence of an
attractant.

Frequently, we do not need to know the exact spa-
tial distribution of bacteria in the system. What we
need is just some numerical characteristics that could
be measured in an experiment. One of them is the
chemotaxis sensitivity function [6]. Namely, we will
focus our attention on the one-dimensional system
with an attractant that is injected into the system
at the left boundary. Technically, it could be done by
placing a capillary with the attractant [6]. The sys-
tem also contains bacteria which can interact with the
attractant. To investigate the system, we will use the
methodological approach that was developed in [6]. In
particular, our main goal will be the chemotaxis sensi-
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tivity function, which characterizes the nonuniformity
of the bacteria distribution. As was shown in [6], this
function depends on the attractant concentration in
a nontrivial way. Those results were obtained for the
system with the linear distribution of an attractant,
that can be realized in the case where bacteria do
not absorb the attractant. Here, we consider a more
complex situation. But first of all, we will make some
comments about how we are to define the chemotaxis
sensitivity function.

Consider a one-dimensional system, whose spatial
coordinate 𝑥 can change from 0 to 𝐿 (i.e. 0 ≤ 𝑥 ≤
≤ 𝐿). Let it be that a function 𝑏(𝑥) determines the
spatial distribution of bacteria. We also assume that
the system contains an attractant, and it is injected
into the system at the left boundary with the help of
some special capillary. The capillary, as is supposed,
is placed within the region 0 ≤ 𝑥 ≤ 𝑟𝑐, where 𝑟𝑐
is the size of the capillary. At the right boundary
of the system, the concentration of the attractant is
fixed at a level lower than it is at the left bound-
ary. Then the concentration of bacteria should be the
highest at the left boundary, within the region of the
capillary.

For the above-described one-dimensional system,
the chemotaxis sensitivity function can be defined as
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follows [6]:

𝐹 =
𝐿𝑃 𝑏

𝑟𝑐
− 1. (1)

The parameter 𝑃 𝑏 in formula (1) is the probability to
find a bacterium within the region 0 ≤ 𝑥 ≤ 𝑟𝑐, and it
is determined like this:

𝑃 𝑏 =

𝑟𝑐∫︀
0

𝑏(𝑥)𝑑𝑥

𝐿∫︀
0

𝑏(𝑥)𝑑𝑥

. (2)

Actually, in formula (1), we have the ratio of the prob-
ability 𝑃 𝑏 for a bacterium to be within the region of
the capillary, to the probability 𝑟𝑐

𝐿 for a bacterium
to be within the region of the capillary, if bacteria
are distributed uniformly in the system. Thus, the
chemotaxis sensitivity function is a numerical char-
acteristics giving some notion of the bacteria dis-
tribution. If bacteria are distributed uniformly, then
𝐹 = 0. In the general case, it can be of any sign. The
greater the chemotaxis sensitivity function (by the
modulus), the more nonuniform is the bacteria dis-
tribution.

It is also notable that, in the limiting case where
𝑟𝑐 ≪ 𝐿, we can rewrite the expression for the chemo-
taxis sensitivity function as [6]

𝐹 =
𝐿𝑏(0)

𝐿∫︀
0

𝑏(𝑥)𝑑𝑥

− 1. (3)

Thus, to calculate the chemotaxis sensitivity func-
tion, it is enough to know the total amount of bac-
teria in the system and the concentration of bacteria
at the left boundary.

Next, we consider a model that describes the one-
dimensional system with bacteria and an attrac-
tant. It is assumed that bacteria are redistributed ac-
cording to the attractant gradient, and the attractant
is absorbed by bacteria. As was mentioned above, to
characterize such a system, we will use the chemotaxis
sensitivity function.

2. Basic Model

To calculate the chemotaxis sensitivity function for
the system with bacteria that absorb the attractant,
we use a model of the Keller–Segel kind [23–25]. As

is known, the classical Keller–Segel model is based on
the nonlinear partial differential equations [23]

𝜕𝑡𝑎(𝑡, r) = 𝐷𝑎Δ𝑎(𝑡, r) + 𝑓1(𝑎, 𝑏), (4)
𝜕𝑡𝑏(𝑡, r) = 𝐷 𝑏Δ𝑏(𝑡, r) + 𝑓2(𝑎, 𝑏), (5)

where 𝜕𝑡 denotes the partial derivative with re-
spect to time 𝑡, 𝑏(𝑡, r) stands for the bacteria con-
centration, and 𝑎(𝑡, r) is the attractant concentra-
tion. The parameters 𝐷𝑎 and 𝐷 𝑏 are the diffusion
coefficients. The function 𝑓1(𝑎, 𝑏) accounts for the ab-
sorption and the secretion of the attractant, and the
function 𝑓2(𝑎, 𝑏) defines the chemotactic flow of bac-
teria. If these functions are specified (as well as the
boundary and initial conditions), then we can solve
the system of equations (4)–(5), at least in a nu-
merical form [26–34]. As was mentioned above, the
function 𝑓1(𝑎, 𝑏) describes the attractant absorption
(the attractant secretion will be accounted by the
boundary conditions). Our assumptions concerning
this function are as follows:

∙ the intensity of the attractant absorption is pro-
portional to the bacteria density;

∙ at low attractant concentration, the intensity of
the attractant absorption is proportional to the at-
tractant concentration;

∙ at high attractant concentrations, the intensity
of the attractant absorption does not depend on the
attractant concentration.

All these allow us to consider the function 𝑓1(𝑎, 𝑏)
to be like this:

𝑓1(𝑎, 𝑏) = −𝑘1
𝑎𝑏

𝑎1 + 𝑎
, (6)

where 𝑘1 and 𝑎1 are phenomenological parameters
of the model. Our basic assumption for the function
𝑓2(𝑎, 𝑏) is that the bacteria flux 𝑗 𝑏 is determined by
the bacteria concentration, its gradient, and the gra-
dient of the attractant. In particular, we use the fol-
lowing formula for the bacteria flux:

𝑗 𝑏 = −𝐷 𝑏∇𝑏+ 𝑏𝜙(𝑎)∇𝑎. (7)

The first term in Eq. (7) determines the flow of bac-
teria due to the diffusion, and, thus, 𝐷 𝑏 stands for
the diffusion coefficient. The second term determines
the bacteria flow caused by the inhomogeneity of the
attractant distribution. It is supposed that this par-
ticular term is proportional to the bacteria concen-
tration and to the attractant gradient. This term de-
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pends also on the attractant concentration in a non-
linear way. To account this dependence, we use the
function 𝜙(𝑎).

Thus, we can rewrite the equation that determines
the temporal evolution of the bacteria distribution. In
particular, we have the following:

𝜕𝑡𝑏 = 𝐷 𝑏Δ𝑏−∇
(︁
𝑏𝜙(𝑎)∇𝑎

)︁
. (8)

In the stationary case, we get the equation, which ties
the bacteria distribution and the attractant distribu-
tion:

𝐷 𝑏Δ𝑏−∇
(︁
𝑏𝜙(𝑎)∇𝑎

)︁
= 0. (9)

It can be reduced to the first-order differential equa-
tion of the form

𝐷 𝑏∇𝑏− 𝑏𝜙(𝑎)∇𝑎 = 0. (10)

For the one-dimensional geometry (where 0 ≤ 𝑥 ≤ 𝐿),
this equation with the boundary condition

𝑗 𝑏
⃒⃒
𝑧=0

= 0 (11)

(which means the zero bacteria flux at the left bound-
ary) produces the next formula determining the rela-
tion between the bacteria concentration 𝑏(𝑥) and the
attractant concentration 𝑎(𝑥):

𝑏(𝑥) = 𝐴 exp

(︂
1

𝐷 𝑏

∫︁
𝜙(𝑎)𝑑𝑎

)︂
. (12)

The constant of integration 𝐴 should be determined
by another boundary condition for the bacteria dis-
tribution, which we will consider and discuss later.

To make some quantitative analysis, we have to
specify the function 𝜙(𝑎) (and by it, the function
𝑓2(𝑎, 𝑏)). Here, we take into account that the chemo-
taxis bacteria flow is proportional to the attractant
gradient at low attractant concentrations, it is de-
creased (down to zero) with increasing the attractant
concentration, and it is also proportional to the bac-
teria concentration. According to this, we can present
the function 𝑓2(𝑎, 𝑏) in the form

𝑓2(𝑎, 𝑏) = 𝑘2∇
(︂

𝑏∇𝑎

(𝑎2 + 𝑎)2

)︂
(13)

with phenomenological parameters 𝑘2 and 𝑎2. Thus,
the function 𝜙(𝑎) is as follows:

𝜙(𝑎) =
𝑘2

(𝑎2 + 𝑎)2
. (14)

Fig. 1. Bacteria concentration as a function of the attractant
concentration. It is taken that 𝑎 = 𝑎2 × 10𝑝. The solid line
shows the dependence by formula (15). The points (squares)
correspond to the dependence that is presented with formula
(16). It is also taken that 𝑁 ≈ 38.56 and 𝑐2/𝑐1 ≈ 166.67

Then relation (12) between the bacteria and attrac-
tant concentrations can be rewritten like this:

𝑏(𝑥) = 𝐴 exp

(︂
− 𝑘2
𝐷 𝑏

1

𝑎2 + 𝑎

)︂
. (15)

Equation (15) gives the relation between the bacte-
ria and attractant concentrations. We can compare
it to the similar relation that was obtained in [6] in
the particular case with a linear distribution of the
attractant in the system (the system without absorp-
tion). It is of the form [6]

𝑏(𝑥) = 𝐴

(︂
𝑐1 + 𝑎(𝑥)

𝑐2 + 𝑎(𝑥)

)︂𝑁
, (16)

where 𝐴 is a normalization constant (just the same
as in Eq. (15)), 𝑐1,2 and 𝑁 are parameters of the
model used in [6]. Formally, relations (15) and (16)
are different. Nevertheless, numerical estimations for
the dimensionless parameter 𝑁 give that 𝑁 ≫ 1 for
the real systems. So, if we perform the limiting tran-
sition 𝑁 → ∞, then formula (16) yields:

𝑏(𝑥) ≈ 𝐴 exp

(︂
−𝑁

𝑐2 − 𝑐1
𝑐2 + 𝑎(𝑥)

)︂
. (17)

We see that if 𝑐2 = 𝑎2 and 𝑘2 = 𝐷 𝑏𝑁(𝑐2 − 𝑐1),
then Eqs. (15) and (17) determine the same depen-
dences. To estimate and to compare the dependences
that are given by Eqs. (15) and (16), we use the fol-
lowing values for the parameters (according to the
data in [6]): 𝑁 ≈ 38.56 and 𝑐2/𝑐1 ≈ 166.67. Figure 1
presents the bacteria concentration as a function of
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the attractant concentration, which is calculated ac-
cording to formulae (15) and (16). For the attractant
concentration, it is taken that 𝑎 = 𝑎2 × 10𝑝. As we
can easily see from Fig. 1, formulae (15) and (16) give
actually the same dependences.

3. Attractant Distribution

In view of the previous results, we get the following
differential equation for the stationary distribution of
the attractant:

𝐷𝑎Δ𝑎(𝑥)−𝑘1𝐴 exp

(︂
−𝑘2
𝐷 𝑏

1

𝑎2 + 𝑎

)︂
𝑎(𝑥)

𝑎1 + 𝑎(𝑥)
=0. (18)

It should be supplemented with some boundary con-
ditions for the attractant concentration, and with
an additional condition for the bacteria distribution
function. We consider the boundary conditions for
the attractant distribution, when the attractant con-
centration is fixed at the boundaries. This means that

𝑎(𝑥 = 0) = 𝐶0, (19)
𝑎(𝑥 = 𝐿) = 𝐶1, (20)

and the parameters 𝐶0 and 𝐶1 (we assume that 𝐶0 ≥
≥ 𝐶1) are given.

Our next step deals with redefining some parame-
ters. In particular, for the sake of simplicity, we use
the substitutions 𝑥 = 𝐿𝑧 and 𝑎(𝑥) = 𝑎2𝑠(𝑧). Then we
get the following equation:

𝑠′′(𝑧)− 𝛼𝐴 exp

(︂
− 𝛽

1 + 𝑠(𝑧)

)︂
𝑠(𝑧)

𝜆+ 𝑠(𝑧)
= 0, (21)

where we have used the parameters 𝛼 = 𝑘1𝐿
2

𝐷𝑎𝑎2
, 𝛽 =

= 𝑘2

𝐷 𝑏𝑎2
and 𝜆 = 𝑎1

𝑎2
. The boundary conditions are

transformed to these ones:

𝑠(𝑧 = 0) =
𝐶0

𝑎2
≡ 𝛾0, (22)

𝑠(𝑧 = 1) =
𝐶1

𝑎2
≡ 𝛾1. (23)

In this case, the chemotaxis sensitivity function 𝐹 is
determined by the relation

𝐹 =
𝑏(0)

1∫︀
0

𝑏(𝑧)𝑑𝑧

− 1, (24)

where the bacteria distribution is given by the expres-
sion

𝑏(𝑧) = 𝐴 exp

(︂
− 𝛽

1 + 𝑠(𝑧)

)︂
. (25)

Thus, to solve the problem and to find the value of
the chemotaxis sensitivity function (basing on some
additional restriction imposed on the bacteria distri-
bution function 𝑏(𝑧)), we have to specify the constant
𝐴 in relation (25), to solve then Eq. (21) with the
boundary conditions (22) and (23), and, after that,
to calculate the chemotaxis sensitivity function 𝐹 ac-
cording to relation (24).

4. Chemotaxis Sensitivity Function

Next, we consider the chemotaxis sensitivity function
and, in particular, clarify how it depends on the at-
tractant concentration at the left boundary of the sys-
tem. It is understood that the chemotaxis sensitivity
function reads

𝐹 =
𝑏(0)

1∫︀
0

𝑏(𝑧)𝑑𝑧

− 1 =
exp

(︁
− 𝛽

1+𝛾0

)︁
1∫︀
0

exp
(︁
− 𝛽

1+𝑠(𝑧)

)︁
𝑑𝑧

− 1, (26)

and it is formally independent of 𝐴. Nevertheless, the
solution for the bacteria distribution 𝑠(𝑧) is deter-
mined by Eq. (21), which contains the parameter 𝐴.
So, the chemotaxis sensitivity function depends im-
plicitly on how we determine 𝐴. It depends, in turn,
on the restriction we apply for the concentration 𝑏(𝑧)
of bacteria. Here, we will consider three regimes that
specify the distribution of bacteria:

∙ the concentration of bacteria at the right bound-
ary is fixed;

∙ the total amount (or mass) of bacteria in the sys-
tem is fixed;

∙ the concentration of bacteria at the right bound-
ary is changed with changing the attractant concen-
tration, to supply the parameter 𝐴 to be fixed.

Fixing the bacteria concentration at the right
boundary, 𝑏(1) = 𝐵1, gives the restriction

𝐴 exp

(︂
− 𝛽

1 + 𝛾1

)︂
= 𝐵1. (27)

Let the value of the parameter 𝐵1 be given. Then, to
solve the problem, we have to solve Eq. (21), which
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is transformed, in this case, to the following:

𝑠′′(𝑧)−𝛼𝐵1exp

(︂
𝛽

1+𝛾1

)︂
exp

(︂
− 𝛽

1 + 𝑠(𝑧)

)︂
𝑠(𝑧)

𝜆+𝑠(𝑧)
=0.

(28)

Then, knowing the distribution 𝑠(𝑧), we calcu-
late the chemotaxis sensitivity function according to
Eq. (24). Figure 2 illustrates how the chemotaxis sen-
sitivity function depends on the attractant concentra-
tion at the left boundary of the system. In particular,
we take 𝛾0 = 10𝑝 and 𝛾1 = 𝜉𝛾0, where 𝜉 = 0.75 is
fixed, and the parameter 𝑝 changes from −3 to 3. We
also took 𝜆 = 10 and 𝛽 = 38.56.

As we can see, the dependence of the chemotaxis
sensitivity function on the attractant concentration at
the left boundary (more precisely, on the parameter
𝑝) has a bell shape maximum. The value of the max-
imum depends on the parameters of the model. But
the matter of fact is that the maximum exists, and
that it is the only maximum.

Fixing the total amount of bacteria in the system∫︀ 1

0
𝑏(𝑧) = 𝐵2 gives the following restriction:

𝐴

1∫︁
0

exp

(︂
− 𝛽

1 + 𝑠(𝑧)

)︂
𝑑𝑧 = 𝐵2. (29)

In this case, to find the chemotaxis sensitivity func-
tion, we have actually to solve a system of equa-
tions. The first one is Eq. (21). It contains the pa-
rameter 𝐴. On the other hand, this parameter is to
satisfy relation (29), which contains, in turn, the solu-
tion 𝑠(𝑧) of Eq. (21). Numerical calculations for this
problem show that the dependence of the chemotaxis
sensitivity function on the attractant concentration
(at the left boundary) is the same qualitatively as in
the previous case (when we fix the bacteria concentra-
tion at the right boundary). Figure 3 compares these
two cases. It contains the plots for the chemotaxis
sensitivity functions that were calculated a) with a
fixed bacteria concentration at the right boundary,
and b) with a fixed total amount of bacteria in the
system.

The third scenario is when we change the con-
centration of bacteria at the right boundary syn-
chronously with changing the attractant concentra-
tion at the left boundary. In particular, we take the

Fig. 2. Dependence of the chemotaxis sensitivity function on
the attractant concentration at the left boundary. It is taken
that 𝛾0 = 10𝑝, 𝛾1 = 𝜉 𝛾0, 𝜆 = 10, and 𝛽 = 38.56. The dotted
line is for the value 𝛼𝐵1 = 1, the dashed line is for the value
𝛼𝐵1 = 10, and the solid line is for the value 𝛼𝐵1 = 100

Fig. 3. Dependence of the chemotaxis sensitivity function on
the attractant concentration at the left boundary. It is taken
that 𝛾0 = 10𝑝, 𝛾1 = 𝜉 𝛾0, 𝜆 = 10, and 𝛽 = 38.56. The dashed
line is for the value 𝛼𝐵1 = 10 (the bacteria concentration at
the right boundary is fixed), and the solid line is for the value
𝛼𝐵2 = 100 (the total amount of bacteria is fixed)

following boundary condition for the bacteria con-
centration:

𝑏(1) = 𝐵3 exp

(︂
− 𝛽

1 + 𝛾1

)︂
. (30)

This gives the condition 𝐴 = 𝐵3 for solving Eq.
(21). Figure 4 shows how the chemotaxis sensitivity
function looks like in this case. The most important
thing is that it may have two maxima. In particular,
increasing the value of the product 𝛼𝐵3 leads to the
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Fig. 4. Dependence of the chemotaxis sensitivity function on
the attractant concentration at the left boundary. It is taken
that 𝛾0 = 10𝑝, 𝛾1 = 𝜉 𝛾0, 𝜆 = 10, and 𝛽 = 38.56. The dotted
line is for the value 𝛼𝐵3 = 100, the dashed line is for the value
𝛼𝐵3 = 500, and the solid line is for the value 𝛼𝐵3 = 1000

Fig. 5. Chemotaxis sensitivity function and the bacteria to-
tal amount. It is taken that 𝛾0 = 10𝑝, 𝛾1 = 𝜉 𝛾0, 𝜆 = 10,
𝛽 = 38.56, the value 𝛼𝐵3 = 1000. The dotted line shows
the concentration of bacteria at the right boundary, the solid
line shows the total amount of bacteria in the system, and
the dashed line demonstrates how the chemotaxis sensitivity
function depends on the attractant concentration at the left
boundary of the system. The bacteria concentration is taken
without multiplier 𝐵3 (which is a constant)

appearance of an additional maximum at high con-
centrations of the attractant. So, it is clear that this
effect is caused by the attractant absorption. It is also
notable that the way we take the boundary condition
for bacteria is of importance. Figure 5 illustrates how
the total amount of bacteria and the bacteria concen-
tration at the right boundary are changed with chang-

Fig. 6. Attractant distribution 𝑠(𝑧)/𝛾0 for the different values
of the parameter 𝑝 (it is taken that 𝛾0 = 10𝑝, 𝛾1 = 𝜉 𝛾0, 𝜆 = 10,
𝛽 = 38.56, and the value 𝛼𝐵3 = 1000): the solid line is for the
value 𝑝 = 0, the dashed line is for the value 𝑝 = 0.9, the dash-
dotted line is for the value 𝑝 = 1.3, the solid line with triangular
markers is for the value 𝑝 = 2, and the dotted line is for the
value 𝑝 = 4

Fig. 7. Bacteria distribution 𝑏(𝑧)/𝑏(0) for the different values
of the parameter 𝑝 (it is taken that 𝛾0 = 10𝑝, 𝛾1 = 𝜉 𝛾0,
𝜆 = 10, 𝛽 = 38.56, the value 𝛼𝐵3 = 1000): the solid line is
for the value 𝑝 = 0, the dashed line is for the value 𝑝 = 0.9,
the dash-dotted line is for the value 𝑝 = 1.3, the solid line with
triangular markers is for the value 𝑝 = 2, and the dotted line
is for the value 𝑝 = 4

ing the attractant concentration at the left boundary
of the system. All these characteristics are normal-
ized to the 𝐵3 constant. For the sake of simplicity,
Fig. 5 also contains the plot for the chemotaxis sen-
sitivity function. What we can see is that the region
of the second additional maximum coincides with the
region, where the bacteria concentration is increased.
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5. Discussion

So, when we fix the bacteria concentration at the right
boundary or the total amount of bacteria in the sys-
tem, then the chemotaxis sensitivity function has a
bell shape maximum. It has a quite obvious expla-
nation [6]. Matter of fact is that when we increase
the attractant concentration, then the gradient of the
attractant concentration is increased as well. Due to
increasing the gradient, the bacteria distribution be-
comes more nonuniform, and, thus, the chemotaxis
sensitivity function is increased. But, at high levels of
the attractant concentration, the bacteria reaction on
the attractant gradient is decreased. In other words,
bacteria “do not feel” the gradient, when the attrac-
tant concentration is significant. Thus, the bacteria
distribution becomes more uniform, and the chemo-
taxis sensitivity function is decreased. From physio-
logical point of view, this can be explained in the
way a bacterium behaves in the system with an at-
tractant. What we know is that every bacterium has
receptors which can interact with an attractant (e.g.,
see [6] and references therein). The amount of re-
ceptors that are in interaction with the attractant
determines the methylation level of the bacterium
[6]. Any bacterium moves straight with a constant
velocity. But, from time to time, it changes the direc-
tion of its motion. These acts are called tumbles. It is
generally accepted that the new direction of motion
is selected randomly. The frequency of tumbles de-
pends on the methylation level of the bacterium. The
greater the methylation level, the smaller the tum-
ble frequency. Actually, this is the simplified mecha-
nism of how bacteria behave within the system with
an attractant. It is clear that if the attractant con-
centration is high enough, then the methylation level
can be at the highest possible level. Thus, bacteria
cannot react to the changes of the attractant concen-
tration [6].

In our model, the effect of the bell shape chemo-
taxis sensitivity function can be explained, if we
account for the relation between the bacteria and
attractant concentrations (see equation (15) and
Fig. 1). It gives that when the attractant concentra-
tion is high, then the bacteria concentration is at the
saturation level. The further increase of the attrac-
tant concentration does not change the bacteria con-
centration. Thus, the presence of the gradient of the
attractant concentration is not tested by bacteria.

The situation with two maxima of the chemotaxis
sensitivity function is explained in the way that when
we change the bacteria concentration at the right
boundary, then we actually change the total amount
of bacteria in the system. If bacteria did not absorb
an attractant, then the change of their total amount
would not affect the attractant distribution. In turn,
it would not change the bacteria distribution. Due
to the attractant absorption, increasing the total
amount of bacteria in the system changes the at-
tractant distribution. The situation is illustrated in
Fig. 6, where the plots are presented for the attrac-
tant distribution 𝑠(𝑧)/𝛾0 for different values of the
parameter 𝑝. In particular, we can see that, at the
value 𝑝 = 0, the distribution is almost linear. With
the further increase of the parameter 𝑝, the distribu-
tion becomes more nonlinear, but then it comes back
to the almost linear trend. Say, for the value 𝑝 = 4
(the solid line in Fig. 6), the attractant distribution
is very close to the distribution for the value 𝑝 = 0
(the dotted line in Fig. 6).

The bacteria distribution is changed in a slightly
different way. Figure 7 contains plots for the bacteria
distribution 𝑏(𝑧)/𝑏(0) in the system for some values
of the parameter 𝑝. For example, for 𝑝 = 0 (the solid
line in Fig. 7), it decreases monotonously from the
left boundary to the right boundary. With increasing
the value of the parameter 𝑝, the slope of the curve is
decreased (in Fig. 7, see the dashed line for 𝑝 = 0.9)
simultaneously with appearing the minimum in the
distribution (in Fig. 7, see the dash-dotted line for
𝑝 = 1.3 and the solid line with triangular markers for
𝑝 = 2). Then decreasing the value of the minimum
gives the almost homogeneous distribution of bacte-
ria in the system (in Fig. 7, see the dotted line for
𝑝 = 4).
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АНАЛIТИЧНИЙ ПIДХIД
ЩОДО РОЗРАХУНКУ ФУНКЦIЇ
ЧУТЛИВОСТI ХЕМОТАКСИСУ

Р е з ю м е

Дослiджується проблема хемотаксису для одновимiрної си-
стеми. Аналiз взаємодiї бактерiй з атрактантом виконується
на основi модифiкованої моделi Келлера–Зегеля. Для опису
системи використовується функцiя чутливостi хемотаксису,
яка є характеристикою неоднорiдностi розподiлу бактерiй.
Зокрема, вивчається питання про те, як функцiя чутливо-
стi хемотаксису залежить вiд концентрацiї атрактанту на
границях системи. Вiдомо, що системи без абсорбцiї атра-
ктанту описуються функцiєю чутливостi хемотаксису з ма-
ксимумом куполоподiбної форми. В данiй роботi показано,
що абсорбцiя атрактанту та спецiальнi граничнi умови мо-
жуть зумовити виникнення додаткового максимуму у фун-
кцiї чутливостi хемотаксису. Величина такого максимуму
визначається iнтенсивнiстю абсорбцiї атрактанту.
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