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INFLUENCE OF SHAPE SPREAD
IN AN ENSEMBLE OF METAL NANOPARTICLES
ON THEIR OPTICAL PROPERTIES

The theoretical basis of the work consists in that the dissipative processes in non-spherical
nanoparticles, whose sizes are smaller than the mean free path of electrons, are characterized
by a tensor quantity, whose diagonal elements together with the depolarization coefficients
determine the half-widths of plasma resonances. Accordingly, the averaged characteristics are
obtained for an ensemble of metal nanoparticles with regard for the influence of the nanopar-
ticle shape on the depolarization coefficients and the components of the optical conductivity
tensor. Three original variants of the nanoparticle shape distribution function are proposed on
the basis of the joint application of the Gauss and “cap” functions.
K e yw o r d s: nanosystem, optics, metal nanoparticles, averaged parameters.

1. Introduction
The optical properties of ensembles of metal nano-
particle are characterized by the presence of plasma
resonances in them. The number of these resonances,
their frequency positions, and decrements depend on
the metal nanoparticle shape (see, e.g., works [1, 2]).
It is rather difficult to create an ensemble of abso-
lutely identical nanoparticles. Therefore, while exper-
imentally studying the processes of light absorption
and scattering by real ensembles, effective (averaged)
optical characteristics are dealt with, as a rule. The
procedures of averaging the optical characteristics for
an ensemble of spheroidal metal nanoparticles were
described, for example, in works [3, 4].

While studying the influence of the shape of metal
nanoparticles on their optical properties, the authors
of previous papers supposed that dissipative processes
in nanoparticles are characterized by a scalar pa-
rameter, the high-frequency conductivity. However,
we have demonstrated [2, 5, 6] that if the size of
non-spherical nanoparticles is smaller than the mean
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free path of an electron, the optical conductivity
is no more a scalar quantity, but acquires a tensor
character. The diagonal elements of this tensor to-
gether with the depolarization coefficients determine
the half-widths of plasma resonances [2, 8]. In this
case, averaging over the nanoparticle shapes cannot
be reduced to averaging over the depolarization coef-
ficients [3]. Therefore, in this work, theoretical foun-
dations forming the basis for the research of optical
properties of an ensemble of elliptic metal nanopartic-
les, including the components of the optical conduc-
tivity tensor, the components of the depolarization
tensor, and the absorption coefficient, which were ob-
tained earlier [2, 5, 6, 8], are expounded consistently
and in brief. Each stage of research is illustrated by
graphic dependences.

The theoretical basis is used to obtain the averaged
characteristics for an ensemble of metal nanoparticles
with regard for the influence of nanoparticle shapes on
the depolarization coefficients and the components of
the optical conductivity tensor. The influence of the
nanoparticle shape on the conductivity is taken into
account in the averaging procedure for the first time.
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2. Formulation of the Problem

Let us consider an ensemble of ellipsoidal metal nano-
particles in a dielectric matrix. The nanoparticles are
assumed to have the same volume, being some differ-
ent in shape. Our task consists in elucidating in the
framework of this model how the nanoparticle shape
spread affects the averaged optical characteristics of
the ensemble such as the coefficients of light absorp-
tion and scattering. To simplify the model and to ob-
tain a final result, we assume that the nanoparticles
are ellipsoids of rotation (spheroids). In this case, the
nanoparticle shape can be characterized by a single
parameter (the eccentricity or the ratio between the
curvature radii). Therefore, the distribution function
of nanoparticles over their shape will depend on this
parameter only.

Hence, let an ensemble of metal nanoparticles
be irradiated with a monochromatic electromagnetic
wave. The electric field of the wave looks like

E = E0 𝑒
𝑖(kr−𝜔 𝑡), (1)

where E0, 𝜔, and k are the amplitude, frequency,
and wave vector, respectively, of the field; and the
coordinates and time are denoted by r and 𝑡, respec-
tively. The electromagnetic wave length 𝜆 = 2𝜋𝑐/𝜔 is
assumed to be much larger than the characteristic size
of nanoparticles,

𝜆 ≫ max {𝑅𝑖} (𝑖 = 1, 2, 3), (2)

where 𝑅𝑖 are the curvature radii. In this case, the
electric field induced in an ellipsoidal metal particle
by the external wave field (1) is uniform, being con-
nected to the external field E0 by means of the rela-
tion [7, 8]

𝐸𝑖
in =

𝐸𝑗
0

1 + 𝐿𝑗 (𝜖𝑗𝑗 − 1)
, (3)

where 𝐿𝑗 are the principal values of the depolarization
tensor components, and 𝜀𝑗𝑗 are the diagonal compo-
nents of the dielectric permittivity tensor. In the case
of ellipsoidal metal particles and in the optical spec-
tral interval, the components 𝜀𝑗𝑗 can be written in
the form [7, 8]

𝜖𝑗𝑗 = 1−
𝜔2
𝜌

𝜔2
+ 𝑖

4𝜋

𝜔
𝜎𝑗𝑗(𝜔) ≡ 𝜖′ + 𝑖

4𝜋

𝜔
𝜎𝑗𝑗(𝜔), (4)

where 𝜔𝑝 = (4𝜋𝑛0𝑒
2/𝑚)1/2 is the plasma frequency,

𝑒 the elementary charge, 𝑚 the electron mass, and 𝑛0

the electron concentration.
In works [2,5,6], it was shown that, in the case of a

non-spherical nanoparticle, whose dimensions are less
than the electron free path, the optical conductivity
parameter transforms from the scalar quantity to the
tensor one. In the dipole approximation (2), when the
internal field Ein in the metal particle is known and
looks like Eq. (3), we can determine the influence of
this field on the electron distribution function over
the velocities. As was shown in works [2, 5, 6], a cor-
rection to the equilibrium Fermi distribution function
induced by the field Ein has the form

𝑓1 (r,𝜗) = −𝑒Ein𝜗
𝜕𝑓0
𝜕𝜀

(︂
1− 𝑒−𝜈 𝑡0

𝜈

)︂
, (5)

where 𝜈 = 𝜈 − 𝑖𝜔, where 𝜈 is the frequency of elec-
tron collisions in the nanoparticle bulk, and 𝑡0 is the
characteristic of the linearized (in the field) kinetic
equation

𝑡0 =
1

𝜗′2

{︁
r′𝜗′ +

√︀
(𝑅2 − 𝑟′2)𝜗′2 + r′𝜗′

}︁
. (6)

Here, r′ and 𝜗′ are the coordinate and velocity vec-
tors, respectively, in a deformed coordinate systems,
where the ellipsoid has a spherical shape [2,6]. The re-
lations between the deformed and non-deformed com-
ponents are very simple:

𝜗′
𝑖 =

𝑅𝑖

𝑅
𝜗𝑖, 𝑥′

𝑖 =
𝑅𝑖

𝑅
𝑥𝑖, (7)

where

𝑅 = (𝑅1𝑅2𝑅3)
1/3

is the ellipsoid curvature radius.
Expression (5) does not include a contribution of

eddy currents to the absorption (magnetic absorp-
tion). This mechanism was considered in works [2, 5]
in detail, taking the scattering of electrons both in
the bulk and at the cluster surface into account. In
the visible frequency interval, the contribution of the
magnetic absorption is small as compared to the elec-
trical one. Therefore, the former is neglected. More
information concerning the magnetic absorption can
be found, for example, in work [9].
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With the help of the distribution function, we can
find the density of the high-frequency current gener-
ated by the external field (1) in a nanoparticle:

j =
2𝑒

(2𝜋~)3

∫︁
𝜗 𝑓1(r,𝜗) 𝑑

3(𝑚𝜗). (8)

Knowing the current density vector j(r, 𝑡), it is easy
to determine the electric dipole moment d0 of a metal
nanoparticle from the relation

𝜕

𝜕𝑡
d0(𝑡) =

∫︁
𝑉

𝑑3𝑟 j(r, 𝑡), (9)

The optical characteristics of metal nanoparticles and
their ensembles, including the corresponding coeffi-
cients of light absorption and scattering, can be ex-
pressed, in the general case, in terms of the known
vectors j (r, 𝑡) and d0. For instance, the coefficient of
light absorption by a metal particle with the volume
𝑉, which is located in a matrix with the dielectric
constant 𝜀𝑚, equals

𝐾 (𝜔) =

=
1

2
Re

∫︁
𝑉

𝑑r (j (r, 𝜔)E*
𝑚 (r, 𝜔))/

(︁ 𝑐

8𝜋

√
𝜖𝑚|𝐸(0)|2

)︁
. (10)

If the interaction between the dipoles induced by the
wave in different nanoparticles can be neglected (it
depends on the nanoparticle concentration), the ab-
sorption coefficient for an ensemble of metal nanopar-
ticles is reduced to the sum of absorption contribu-
tions from separate particles.

The scattering cross-section can be determined in
a similar way. In particular, the average (over the os-
cillation period) radiation intensity generated by an
electric dipole into the solid angle 𝑑Ω at the distance
𝑅0 from the nanoparticle equals [7]

𝑑𝑊𝑠 =
𝑐

8𝜋
| [E′ ×H′] |𝑅2

0
𝑑Ω =

𝑐

8𝜋
|H′|2 𝑅2

0 𝑑Ω. (11)

where E′ and H′ are the electric and magnetic compo-
nents, respectively, of the wave emitted by the dipole
(𝐸′ = 𝐻 ′),

H′ =
𝜔2

𝑐2𝑅0
(n× d0), (12)

and the unit vector n defines the direction of obser-
vation. The ratio between quantity (11) and the irra-
diation flux intensity determines the scattering cross-
section.

Above, we briefly described a procedure of ob-
taining the optical characteristics for metal nano-
particles and the expressions for the absorption co-
efficient and the scattering cross-section, proceed-
ing from finding the influence of an electromagnetic
wave on the velocity distribution function of elec-
trons. One may get acquainted with the construction
of the theory of light absorption and scattering by el-
liptic metal nanoparticles in works [2, 5, 6, 8] in more
details.

3. Optical Parameters
of an Ensemble of Elliptic
Metal Nanoparticles

Below, an ensemble of spheroidal (ellipsoids of ro-
tation) metal nanoparticles will be considered. This
form is the simplest asymmetric one, because its de-
gree of asymmetry is characterized by a single di-
mensionless parameter, the eccentricity or the ratio
between the curvature radii. We are interested first
of all in how the dispersion of nanoparticle shapes
affects the optical characteristics of the ensemble (re-
call that the nanoparticle shape governs the number
of plasma resonances and their frequencies). In this
connection and for simplicity, let us analyze a collec-
tion of nanoparticles with the same volume 𝑉 , but
with different eccentricities 𝑒𝑝.

The coefficient of light absorption by a single
spheroidal metal nanoparticle can be obtained from
Eq. (10) making use of the following expression for
the energy absorbed by such nanoparticles [2],

𝐾 (𝜔) =
4𝜋

3
𝑉
𝜖
3/4
𝑚

𝑐
×

×
{︂

2𝜎⊥

[𝜖𝑚 + 𝐿⊥ (𝜖′ − 𝜖𝑚)]
2
+ (4𝜋 𝐿⊥𝜎⊥/𝜔)

2 +

+
𝜎‖[︀

𝜖𝑚 + 𝐿‖ (𝜖′ − 𝜖𝑚)
]︀2

+
(︀
4𝜋𝐿‖𝜎‖/𝜔

)︀2}︂,
𝜔 ∈ [𝜔1, 𝜔2]. (13)

in which the averaging over the orientations of
the spheroids’ symmetry axes was already carried
out. The notations 𝜎⊥ and 𝜎‖ in Eq. (13) are used
for the components of the optical conductivity ten-
sor. In the coordinate system where the axis 𝑂𝑍 is
directed along the symmetry axis of the spheroid, the
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diagonal components of the optical conductivity ten-
sor are

𝜎𝑥𝑥 = 𝜎𝑦𝑦 ≡ 𝜎⊥; 𝜎𝑧𝑧 ≡ 𝜎‖. (14)

Analogously,

𝐿𝑥 = 𝐿𝑦 ≡ 𝐿⊥; 𝐿𝑧 = 𝐿‖, (15)

where the main components of the depolarization ten-
sor equal

𝐿𝑥 = 𝐿𝑦 =
1

2
(1− 𝐿𝑧) ≡ 𝐿⊥; 𝐿⊥ =

1

2
(1− 𝐿‖);

𝐿𝑧 ≡ 𝐿‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 𝑒2𝑝
2𝑒3𝑝

[ln

(︂
1 + 𝑒𝑝
1− 𝑒𝑝

)︂
− 2𝑒𝑝],

for 𝑅‖ > 𝑅⊥,

1 + 𝑒2𝑝
𝑒3𝑝

(𝑒𝑝 − arctan 𝑒𝑝),

for 𝑅‖ < 𝑅⊥,

(16)

where 𝑒2𝑝 ≡
⃒⃒⃒
1−𝑅2

⊥/𝑅
2
‖

⃒⃒⃒
, and 𝑅⊥ and 𝑅‖ are the

semiaxes of the spheroid.
In works [2, 5], it was shown that, unlike the

spherical shape, for a non-spherical metal nanopar-
ticle smaller than the electron free path, the optical
conductivity becomes a tensor. In the cited works,
the components of this tensor were also studied for
ellipsoid-like nanoparticles both in the general case
and in various limiting cases.

We are interested in the expressions for non-zero
components 𝜎⊥ and 𝜎‖ of the optical conductivity
tensor for spheroidal nanoparticles. The considera-
tion is confined to the case where the influence of
the particle shape on the optical conductivity tensor
components is maximum. This situation takes place
if the surface electron scattering dominates. Expres-
sion (5) makes allowance for both the bulk electron
scattering (the parameter 𝜈) and the surface electron
scattering (the characteristic 𝑡0). Purely surface scat-
tering of electrons is formally obtained by putting
𝜈 → 0, but, actually, the inequality 𝜈 ≪ 𝑣F/𝑅 is
meant, i.e. the frequency of electron collisions in the
bulk is supposed to be small in comparison with the
frequency of electron bouncing from wall to wall. For
details of the calculation of Eq. (8), see works [2, 5].

As a result, we obtain

𝜎⊥ =
3𝜎0

16
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
1− 𝑒2𝑝

)︀1/3
𝑒3𝑝

[︀
𝑒𝑝

(︀
1 + 2𝑒2𝑝

)︀
−

(︀
1− 4𝑒2𝑝

)︀
×

×
(︀
1− 𝑒2𝑝

)︀−1/2
arcsin 𝑒𝑝

]︀
for 𝑅⊥ < 𝑅‖,(︀

1 + 𝑒2𝑝
)︀1/3

𝑒3𝑝

[︂
−𝑒𝑝

(︀
1− 2𝑒2𝑝

)︀
+
(︀
1 + 4𝑒2𝑝

)︀
×

×
(︀
1 + 𝑒2𝑝

)︀−1/2
ln
(︁
𝑒𝑝+

√︁
1 + 𝑒2𝑝

)︁]︂
for 𝑅⊥ > 𝑅‖,

(17)

𝜎‖ =
3𝜎0

8
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
1− 𝑒2𝑝

)︀1/3
𝑒3𝑝

[︀
−𝑒𝑝

(︀
1− 2𝑒2𝑝

)︀
+
(︀
1− 𝑒2𝑝

)︀−1/2 ×

× arcsin 𝑒𝑝
]︀

for 𝑅⊥ < 𝑅‖,

(1 + 𝑒2𝑝)
1/3

𝑒3𝑝

[︂
𝑒𝑝

(︀
1 + 2𝑒2𝑝

)︀
−

(︀
1 + 𝑒2𝑝

)︀−1/2 ×

× ln
(︁
𝑒𝑝 +

√︁
1 + 𝑒2𝑝

)︁]︂
for 𝑅⊥ > 𝑅‖,

(18)

where

𝜈𝑠 = 𝜐F/2𝑅 (19)

is the frequency of the electron bouncing from wall to
wall in a spherical particle with the volume equal to
the volume of ellipsoidal particle, 𝜐 the Fermi velocity,
and 𝑅 the radius. In the case of spherical nanopartic-
les (at 𝑒𝑝 → 0), formulas (17) and (18) reproduce the
well-known result

𝜎0 =
3𝑛0𝑒

2

2𝑚𝜔2
𝜈𝑠 =

𝑛0𝑒
2

𝑚𝜔2

(︂
3

4

𝜐F
𝑅

)︂
. (20)

Formulas (17) and (18) do not contain omitted oscil-
lating terms arising due to the resonance between the
external electromagnetic wave and electron bounc-
ing frequencies. In the visible spectral interval, this
resonance is not actual (for more details, see works
[10, 11]).

As one can see from Eqs. (16), (17), and (18), the
particle shape governs (through the particle eccentric-
ity) not only the principal values of the depolarization
tensor components, but also the principal values of
the optical conductivity tensor. Therefore, when av-
eraging over the shape spread, the both dependences
have to be taken into account.

As was already said above, expression (13) de-
scribes the absorption coefficient for an arbitrary
spheroidal metal nanoparticle with the volume 𝑉
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Fig. 1. Dependence of the eccentricity 𝑒𝑝 =
√︀

|1− 𝜌2𝑒| on the
parameter 𝜌𝑒 = 𝑅⊥/𝑅‖

Fig. 2. Dependence 𝐾 (𝜔, 𝜌𝑒) of the coefficient of light ab-
sorption by a spheroidal metal nanoparticle on its form (the
parameter 𝜌𝑒) and the light frequency 𝜔

and the parameter 𝑒𝑝 (or 𝜌𝑒). Expression (13) al-
ready takes into account the averaging over the ori-
entations of the spheroid symmetry axis. Figure 1
demonstrates that the relation between the eccentric-
ity 𝑒𝑝 =

√︁
|1−𝑅2

⊥/𝑅
2
‖| and the ratio of the curvature

radii is ambiguous. Therefore, in what follows, it is
more convenient to average the optical characteris-
tics over the parameter 𝜌𝑒 = 𝑅⊥/𝑅‖ and use expres-
sion (13) for the coefficient of light absorption by a
spheroidal metal nanoparticle in the form

𝐾 (𝜔, 𝜌𝑒) =
4𝜋𝜖

3/2
𝑚

3𝑐

{︂
2𝜎⊥ (𝜔, 𝜌𝑒)/

/
{︀
[𝜖𝑚 + 𝐿⊥ (𝜌𝑒) (𝜖

′ − 𝜖𝑚)]
2
+

+(4𝜋 𝐿⊥ (𝜌𝑒)𝜎⊥ (𝜔, 𝜌𝑒) /𝜔)
2}︀

+

+𝜎‖ (𝜔, 𝜌𝑒) /
{︀[︀
𝜖𝑚 + 𝐿‖ (𝜌𝑒) (𝜖

′ − 𝜖𝑚)
]︀2

+

+
(︀
4𝜋 𝐿‖ (𝜌𝑒)𝜎‖ (𝜔, 𝜌𝑒) /𝜔

)︀2}︀}︂
,

𝜔 ∈ [𝜔1𝜔2], 𝜌𝑒 ∈ [0,∞). (21)

In Fig. 2, the dependence of the light absorption co-
efficient 𝐾 on the particle shape (the parameter 𝜌𝑒)
and the light frequency 𝜔 is shown. Two ridges on
the surface correspond to two plasma resonances. At
𝜌𝑒 = 1, those ridges intersect each other, which cor-
responds to the plasma resonance in a spherical na-
noparticle.

Let the distribution function of metal nanoparticles
over their shapes look like

Φ(𝜌𝑒) = 𝑁𝑃 (𝜌𝑒).

Here, 𝑁 is the nanoparticle concentration, and the
quantity 𝑃 (𝜌𝑒) is the probability that an ensemble of
𝑁 nanoparticles contains a nanoparticle, whose form
is characterized by the parameter 𝜌𝑒 (below, the sub-
script 𝑒 is omitted). This probability is normalized to
unity, so that
∞∫︁
0

𝑃 (𝜌) 𝑑𝜌 = 1.

In this case, the effective value of the total absorption
coefficient equals

𝐾(𝜔) =

∞∫︁
0

𝐾(𝜔, 𝜌)𝑃 (𝜌) 𝑑𝜌. (22)

4. Selection of Expression
for the Function 𝑃 (𝜌)

The function 𝑃 (𝜌), which describes the probability to
find a nanoparticle with a given 𝜌-value (𝜌 ∈ [0,∞))
in a unit volume, can be interpreted as the probabil-
ity density for the function 𝐾 (𝜔, 𝜌), and the function
𝐾 (𝜔) as the shape-averaged coefficient of total ab-
sorption for the ensemble of nanoparticles.

As a first step to construct 𝑃 (𝜌), let us consider the
normal (Gauss) distribution law, which is widely ap-
plied when solving practical problems. According to
this law, the probability density for a normally dis-
tributed random variable is expressed by the formula

𝑃𝑔(𝑥) =
1

𝜎𝑔

√
2𝜋

exp

(︂
− (𝑥− 𝑎𝑔)

2

2𝜎2
𝑔

)︂
,

𝑥 ∈ (−∞,+∞),

(23)
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where 𝑎𝑔 and 𝜎𝑔 are the mathematical expecta-
tion and the mean square deviation, respectively,
of the random variable. It is important to empha-
size that the support of the Gauss function (23) in-
cludes the entire number axis, i.e. 𝑥 ∈ (−∞,+∞). At
the same time, the support of the sought function
𝑃 (𝜌) is the non-negative semiaxis, 𝜌 ∈ [0,∞). There-
fore, in order to adequately make allowance for the
presence of oblate nanoparticles with 𝑅⊥ ≥ 𝑅‖ → 0
in the ensemble, the application of the Gauss
function

𝑃1(𝜌) = 𝛼1 exp[−𝛽1(𝜌− 𝑎)2], 𝜌 ∈ (𝑎,∞), 𝑎 ≥ 0 (24)

in the interval 𝜌 ∈ (𝑎,∞) is justified.
A second step to construct the function 𝑃 (𝜌) con-

sists in selecting an expression 𝑃0(𝜌) with the support
𝜌 ∈ [0, 𝑎], in which the main contribution to the aver-
aging of 𝐾 (𝜔, 𝜌) is provided by prolate nanoparticles
with 𝑅‖ ≥ 𝑅⊥ → 0. In particular, the expression for
𝑃0(𝜌) should satisfy three general requirements:

1. 𝑃0(𝜌) must be continuous at the point 𝜌 = 𝑎,
i.e. 𝑃0(𝑎) = 𝑃1(𝑎);

2. 𝑃0(𝜌) must be sufficiently smooth, i.e. 𝑃0(𝜌) ∈
∈ 𝐶(𝑚)(0, 𝑎), where 𝑚 ≥ 2, since the Gauss function
is infinitely differentiable;

3. the condition 𝑃0(0) = 0 must be obeyed by anal-
ogy with 𝑃1(𝜌), when lim𝜌→∞ 𝑃1(𝜌) = 0.

Those requirements are satisfied by the “cap” func-
tion [13]

𝑃𝛾(𝑥) =

{︃
𝐶𝛾 exp[−𝛾2/(𝛾2 − 𝑥2)], |𝑥| < 𝛾,

0, |𝑥| ≥ 𝛾,
(25)

where the constant 𝐶𝛾 is chosen so that
∫︀
𝜔𝛾(𝑥)𝑑𝑥 =

= 1, i.e.

𝐶𝛾 =

⎛⎝2 𝛾 1∫︁
0

exp
[︀
−(1− 𝜉2)−1

]︀
𝑑𝜉

⎞⎠−1

.

This function is infinitely differentiable (𝑃𝛾(𝑥) ∈
∈ 𝐶(∞)(−𝛾, 𝛾)). However, unlike the Gauss function,
its support is finite, supp𝑃𝛾(𝑥) = (−𝛾, 𝛾), i.e. the
function is compact. These properties make the func-
tion 𝑃𝛾(𝑥) very attractive, while solving a large num-
ber of specific problems [14].

As an example of the joint application of the Gauss
[Eq. (24)] and “cap” [Eq. (25)] functions, let us con-
struct the function (see Fig. 3)

𝑃I(𝜌) = 𝑃0I(𝜌) + 𝑃1I(𝜌), (26)

Fig. 3. An example of the function 𝑃I(𝜌) as a combination of
the cap function (27) in the interval 𝜌 = [0, 1] and the Gauss
function (28) in the interval 𝜌 = (1,+∞). The half-width of
the function 𝜁I = 1.29044

where

𝑃0I(𝜌) =

=

{︃
0.771606 exp[−(𝜌−1)2/(1− (𝜌−1)2)], 𝜌 ∈ [0, 1],

0, 𝜌 /∈ [0, 1],
(27)

𝑃1I(𝜌) =

=

{︃
0.771606 exp[−1,63754(𝜌−1)2], 𝜌 ∈ (1,+∞),

0, 𝜌 ∈ (−∞, 1].
(28)

Note that the expression proposed for the function
𝑃 (𝜌) is based on the heuristic principle. The applica-
tion of the latter significantly simplifies the solution
of a rather complicated problem concerning the in-
fluence of the metal nanoparticle shape dispersion on
the total absorption coefficient.

Surely, the heuristic approach does not guarantee
that the selected expression for the function 𝑃 (𝜌) is
optimal. Moreover, in effect, this trick does not guar-
antee at all that the expected result will quantita-
tively coincide with the experiment. Nevertheless, we
may assert a priori that the worth of the joint ap-
plication of the Gauss [Eq. (24)] and “cap” [Eq. (25)]
functions consists in that a solution was proposed,
which turns out to be optimal for a theoretical study
of the qualitative picture obtained, when averaging
over the nanoparticle shape spread. As an argument
in favor of the selected variant, it can be the his-
tograms of nanoparticle size distribution [15].

A necessary requirement for obtaining adequate
quantitative results for the problem under consid-
eration is the presence of experimentally measured
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Fig. 4. Probability functions 𝑃𝑖 (𝜌) describing the presence of
nanoparticles with definite shapes in the ensemble

data for the effective value of the total absorption
coefficient 𝐾 (𝜔). The knowledge of this value makes
it possible to interpret relation (22) written in the
form

∞∫︁
0

𝐾 (𝜔, 𝜌)𝑃 (𝜌) 𝑑𝜌 = 𝐾 (𝜔)

as an integral Fredholm equation of the first kind, in
which the functions 𝐾 (𝜔, 𝜌) and 𝐾 (𝜔) are known,
whereas the function 𝑃 (𝜌) is to be determined. The
solution of the Fredholm equation of the first kind
is a rather complicated task, because this is an ill-
posed (in the Hadamard sense) problem [12]. Briefly
speaking, the problem is well-posed if it has a so-
lution, and this solution is unique and continuously
depends on the input data. If one of those conditions
is not satisfied, the peoblem is ill-posed or, simply,
incorrect.

One should bear in mind that, for a well-posed
problem, small errors in the initial data are not cru-
cial, because their impact on the solution is insignif-
icant. A completely different situation arises if there
are small errors in the input data for an ill-posed
problem, because its solution is very sensitive to er-
rors. In the case of optical experimental researches,
it is the third condition that most often is not satis-
fied. Its analysis brings us to the following conclusion:
Insignificant changes in the input data for 𝐾 (𝜔, 𝜌) or
𝐾 (𝜔) may result in arbitrarily large changes in the
output data for 𝑃 (𝜌). The main method to study the
integral equation of the first kind is the regulariza-
tion one. A detailed example of its implementation
was considered in work [14].

5. Results of Computational
Experiment and Their Interpretation

In the corresponding computational experiments, the
following parameter values were used as input ones:

𝜔𝑝 = 1.37× 1016 s−1; 𝜐 = 3.39× 1013 s−1;

𝑅 = 2.0× 10−6 cm; 𝑐 = 3.0× 1010 cm · s−1;

𝑣F = 1.39× 108 cm · s−1; 𝑛 = 1022;

𝑚 = 10−27 g; 𝜖𝑚 = 16.

As a first result of computations, the three-dimen-
sional representation of the dependence 𝐾(𝜔, 𝜌) for
the absorption coefficient of a spheroidal metal na-
noparticle with an arbitrary shape in the intervals
𝜔 ∈ [8 × 1014, 8 × 1015] and 𝜌 ∈ [0, 10] should be
exhibited. A fragment of this dependence in a vicinity
of the spherical nanoparticle is shown in Fig. 2. Pre-
liminarily, we obtained computational formulas for
calculating the components 𝜎⊥(𝜔, 𝜌) and 𝜎‖(𝜔, 𝜌) of
the optical conductivity tensor for a spheroidal shape
and the principal values for the depolarization tensor
components 𝐿⊥ and 𝐿‖.

The main result of the computational experiment
includes the effective values for the total absorption
coefficients

𝐾𝑖 (𝜔) =

∞∫︁
0

𝐾 (𝜔, 𝜌)𝑃𝑖 (𝜌) 𝑑𝜌 (29)

found for various functions 𝑃𝑖(𝜌), 𝑖 = I, II, III. The
latter evaluate the probability for the nanoparticles
with a specific shape to exist in the ensemble. The
plots of the functions 𝑃𝑖(𝜌) are depicted in Fig. 4,
and the specific expressions for the functions 𝑃II(𝜌)
and 𝑃III(𝜌) are as follows:

𝑃II(𝜌) = 𝑃0II(𝜌) + 𝑃1II(𝜌), (30)

𝑃0II(𝜌) =

=

⎧⎪⎨⎪⎩
0.391277 exp

{︀
− 0.097151[1 + (𝜌− 1)2]/

/[1− (𝜌− 1)2]
}︀
, 𝜌 ∈ (0, 1],

0, 𝜌 /∈ (0, 1],

(31)

𝑃1II(𝜌) =

=

{︃
0.391277 exp[−1.63754(𝜌−1)2], 𝜌 ∈ (1,+∞),

0, 𝜌 ∈ (−∞, 1].
(32)
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Fig. 5. Averaged coefficientsof total absorption 𝐾𝑖 (𝜔),
𝑖 = I, II, III, normalized to the nanoparticle concentration 𝑁

𝑃III(𝜌) = 𝑃0III(𝜌) + 𝑃1III(𝜌), (33)

𝑃0III(𝜌) =

=

{︃
0.385803 exp[−(𝜌−2)2/(4− (𝜌−2)2)], 𝜌 ∈ [0, 2],

0, 𝜌 /∈ (0, 2],
(34)

𝑃1III(𝜌) =

=

{︃
0.385803 exp[−0.409384(𝜌−2)2], 𝜌 ∈ (2,+∞),

0, 𝜌 ∈ (−∞, 2].
(35)

Figure 5 demonstrates plots for the effective
values of the total absorption coefficients 𝐾𝑖 (𝜔),
𝑖 = I, II, III, which, according to Eq. (29), correlate
with the values of the functions 𝑃𝑖(𝜌).

The nanoparticle shape is responsible for both the
principal values of the depolarization tensor compo-
nents 𝐿⊥ and 𝐿‖, and the principal values of the op-
tical conductivity tensor 𝜎⊥ and 𝜎‖. Therefore, when
averaging the absorption coefficient 𝐾 (𝜔, 𝜌) over the
nanoparticle shape spread, the visualization of the
dependences ⌢

𝜎⊥(𝜌) = 𝜎⊥(𝜔0, 𝜌)/𝜎0(𝜔0) and ⌢
𝜎‖(𝜌) =

= 𝜎‖(𝜔0, 𝜌)/𝜎0(𝜔0), in our opinion, is reasonable
(Fig. 6).

After having compared the dependence of the coef-
ficient of light absorption by a spheroidal metal nano-
particle on its shape (the parameter 𝜌𝑒) and the light
frequency 𝜔 shown in Fig. 2 with the plots for the av-
erage total absorption coefficients 𝐾𝑖 (𝜔) depicted in
Fig. 5, we arrive at a conclusion that those values dif-
fer by about two orders of magnitude. Nevertheless,
the discussed dependences are characterized by some
general features. For our conclusions to be more spe-
cific, let us consider the plots of the functions 𝐾𝑖 (𝜔)

Fig. 6. Transverse (solid curve) and longitudinal (dashed
curve) components of the optical conductivity tensor

Fig. 7. Projections of the maximum values of the orthogo-
nal, 𝐾

(max)
⊥ (𝜌), and parallel, 𝐾

(max)
‖ (𝜌), components of the

coefficient 𝐾 (𝜔, 𝜌) of light absorption by a spheroidal metal
nanoparticle on the plane (𝐾, 𝜌), and the half-widths of the
functions 𝑃𝑖(𝜌), 𝑖 = I, II, III

(Fig. 5) in more details. There arises a simple ques-
tion: Why do the plots have the exhibited dependence
on the light frequency 𝜔? To answer it, let us intro-
duce two functions, 𝐾

(max)
⊥ (𝜌) and 𝐾

(max)
‖ (𝜌), into

consideration. They correspond to the first and sec-
ond, respectively, summands in Eq. (21), being the
projections of the maximum values of the orthogonal
and parallel, respectively, components of the light ab-
sorption coefficient 𝐾 (𝜔, 𝜌) by a spheroidal metal na-
noparticle onto the plane (𝐾, 𝜌) (see Fig. 7). In other
words, 𝐾(max)

⊥ (𝜌) and 𝐾
(max)
‖ (𝜌) are the projections

of the surface ridges corresponding to two plasma res-
onances (Fig. 2) onto the plane (𝐾, 𝜌).

They are described by the expressions

𝐾
(max)
⊥,‖ (𝜌) =

=
𝜒⊥,‖ 𝜔

2
𝑝

[𝜖𝑚 + 𝐿⊥,‖(𝜌) (1− 𝜖𝑚)]𝐿⊥,‖(𝜌)𝜎⊥,‖(𝜔⊥,‖, 𝜌)
,

(36)
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Fig. 8. Projections of the maximum values of the orthogonal,
𝐾

(max)
⊥ (𝜔), and parallel, 𝐾(max)

‖ (𝜔), components of the coeffi-
cient 𝐾 (𝜔, 𝜌) of light absorption by a spheroidal metal nano-
particle on the plane (𝐾,𝜔) in the interval 𝜔 ∈ (2.2×1015 s−1,

3.47× 1015 s−1)

Fig. 9. Dependences of the orthogonal, 𝜔⊥, and parallel, 𝜔‖,
resonance frequencies on the parameter 𝜌

Fig. 10. Projections of the maximum values of the orthog-
onal, 𝐾(max)

⊥ (𝜔), and parallel, 𝐾(max)
‖ (𝜔), components of the

coefficient 𝐾 (𝜔, 𝜌) of light absorption by a spheroidal metal
nanoparticle on the plane (𝐾,𝜔) in the interval 𝜔 ∈ (1014 s−1,

9.2× 1015 s−1)

where

𝜒‖ =
𝜖
3/2
𝑚

12𝜋 𝑐
, 𝜒⊥ = 2𝜒‖,

and

𝜔2
⊥,‖(𝜌) =

𝐿⊥,‖(𝜌)𝜔
2
𝑝

𝜖𝑚 + 𝐿⊥,‖(𝜌) (1− 𝜖𝑚)

are the frequencies of plasma resonances [1]. Formulas
(36) are a rather simple consequence of the modified
representation (21) for the coefficient 𝐾 (𝜔, 𝜌), i.e.

𝐾(𝜔, 𝜌) ≡ 𝐾⊥(𝜔, 𝜌) +𝐾‖(𝜔, 𝜌),

𝐾⊥ (𝜔, 𝜌) =
4𝜋 𝜖

3/2
𝑚

3𝑐
×

× 2𝜔4𝜎⊥ (𝜔, 𝜌) /𝑔2⊥(𝜌)

(𝜔2 − 𝜔2
⊥)

2 + [4𝜋 𝐿⊥(𝜌)𝜎⊥(𝜔, 𝜌)/𝑔⊥(𝜌)]2𝜔2
,

𝐾‖ (𝜔, 𝜌) =
4𝜋 𝜖

3/2
𝑚

3𝑐
×

×
𝜔4𝜎‖ (𝜔, 𝜌) /𝑔

2
‖(𝜌)

(𝜔2 − 𝜔2
‖)

2 + [4𝜋 𝐿‖(𝜌)𝜎‖(𝜔, 𝜌)/𝑔‖(𝜌)]2𝜔2
,

𝑔⊥,‖(𝜌) ≡ 𝜖𝑚 + 𝐿⊥,‖(𝜌) (1− 𝜖𝑚),

𝐾
(max)
⊥,‖ (𝜌) = 𝐾⊥,‖(𝜔⊥,‖(𝜌), 𝜌).

Three segments in Fig. 7 demonstrate the half-
widths of the functions 𝑃𝑖(𝜌). The abscissa coordi-
nates of the segment ends accurately correspond to
the calculated values

𝜌(𝜁I)𝑎 = 0.360169; 𝜌
(𝜁I)
𝑏 = 1.65060;

𝜌(𝜁II)𝑎 = 0.131587; 𝜌
(𝜁II)
𝑏 = 2.62707;

𝜌(𝜁III)𝑎 = 0.720338; 𝜌
(𝜁III)
𝑏 = 3.301210.

Here, 𝜌
(𝜁𝑖)
𝑎 and 𝜌

(𝜁𝑖)
𝑏 are the initial and final points

of the segments 𝜁𝑖 (𝑖 = I, II, III). The ordinates
of the segments were selected arbitrarily to make
the analysis of the results obtained more conve-
nient. The first thing drawing attention in Figs. 7,
8, and 10 is a small support of the orthogonal com-
ponent (the ridge) of the light absorption coefficient
𝐾⊥ (𝜔, 𝜌). Really, as follows from our calculations,
the function 𝐾

(max)
⊥ (𝜌) is determined in the inter-

val 𝜌 ∈ (0, 1.414) (Fig. 7), whereas the support of
the function 𝐾

(max)
⊥ (𝜔) is the interval 𝜔 ∈ (2.138×

× 1015 s−1, 3.47× 1015 s−1) (see Figs. 8 and 10). On
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the other hand, calculations by the expression de-
scribing the dependence of the plasma resonance fre-
quencies on the nanoparticle shape demonstrate that
the intervalof transverse resonance frequency 𝜔⊥(𝜌)
is confined by the values 𝜔⊥(0) = 3.3227 × 1015 s−1

and 𝜔⊥(1.41401) = 2.138 × 1015 s−1 (Fig. 9). Con-
ditionally, we call plasma oscillations in the direc-
tion perpendicular to the spheroid axis and, accord-
ingly, to longitudinal oscillations, as “transverse” res-
onances. Thus, the support of the function 𝐾

(max)
⊥ (𝜔)

consists of two sections: the resonance section, 𝜔𝑟 ∈
∈ (2.138 × 1015 s−1, 3.3227 × 1015 s−1), and the
deflation 1 section, 𝜔𝑑 ∈ (3.3227 × 1015 s−1, 3.47×
× 1015 s−1), in which a sharp recession of 𝐾(max)

⊥ (𝜔)
to background 𝐾 (𝜔, 𝜌)-values takes place. Another
important point consists in that there is one plasma
resonance in 𝐾‖ (𝜔, 𝜌) at 𝜔 > 3.47× 1015 s−1.

By comparing the relative arrangement of the plots
of the functions 𝐾

(max)
⊥ (𝜌) and 𝐾

(max)
‖ (𝜌) with the

half-widths 𝜁𝑖 of the functions 𝑃𝑖(𝜌), 𝑖 = I, II, III, we
arrive at the following conclusions.

∙ The main factor affecting the function 𝑃I(𝜌) is
the orthogonal component of the coefficient 𝐾 (𝜔, 𝜌)
of light absorption by a spheroidal metal nanopar-
ticle (see 𝐾

(max)
⊥ (𝜌) and 𝜁I in Fig. 7). Therefore, ten-

tatively speaking, the curve 𝐾I (𝜔) in the resonance
𝜔𝑟-interval (Fig. 5) is similar to its prototype 𝑃I(𝜌)
at 𝜌 < 1.414. A noticeable change in the character of
the 𝐾I (𝜔)-curve (Fig. 5) is observed in the deflation
𝜔𝑑-interval.

∙ When the function 𝑃II(𝜌) is mapped by the opera-
tor 𝐾, the amplitude value 𝐾II (2.0× 1015) decreases
together with the amplitude of 𝑃II(1.0). A substan-
tial change in the 𝐾II (𝜔)-plot is observed in the de-
flation section 𝜔𝑑 and in its right-hand side vicinity,
where the influence of 𝐾(max)

‖ (𝜌) (at 𝜌 > 1.414) and
𝐾max

‖ (𝜔) (at 𝜔 > 3.47× 1015 s−1) is appreciable.
∙ The function 𝐾III (𝜔) obtained for the average

value of the total absorption coefficient is the most
adequate for a real situation. It completely describes
the influence of both the transversal, 𝐾⊥ (𝜔, 𝜌), and
longitudinal, 𝐾‖ (𝜔, 𝜌), components of the light ab-
sorption coefficient on 𝑃III(𝜌).

1 Deflation (from the Latin deflatio): in geology, this is a pro-
cess of erosion and removal of loose rock particles by the
wind. Small particles of clay, silt, and sand sizes are suscep-
tible to deflation.

6. Conclusions
To summarize, the results of theoretical research con-
cerning the optical characteristics of an ensemble of
spheroidal metal nanoparticle – these are the com-
ponents 𝜎⊥ and 𝜎‖ of the optical conductivity ten-
sor, the principal values of the depolarization tensor
components 𝐿⊥ and 𝐿‖, and the absorption coeffi-
cient – have been presented. The averaged character-
istics were obtained, by considering the influence of
the nanoparticle shape on both the depolarization co-
efficients and the optical conductivity tensor compo-
nents. While performing the averaging procedure, the
influence of the nanoparticle shape on the conductiv-
ity is taken into consideration for the first time.

The results of computational experiments are
also presented. Specific valueswere used as input
data. Recall that the number of plasma resonances, as
well as their frequencies and decrements, depends on
the nanoparticle shape. In particular, there is a sin-
gle plasma resonance in the case of spherical particles,
two in the case of spheroids, and three for elliptical
particles. The result of our calculations inserted a cor-
rection: in the case of spheroidal nanoparticles, there
are two plasma resonances in the finite frequency
interval (𝜔 ∈ (2.138 × 1015 s−1, 3.47 × 1015 s−1),
Fig. 10). Beyond this interval, only one plasma reso-
nance in 𝐾‖ (𝜔, 𝜌) takes place.

Three variants are proposed for the functions 𝑃𝑖(𝜌),
𝑖 = I, II, III, which describe the distribution of nano-
particles over their shapes. Note that the proposed
variant of the expression for the function 𝑃𝑖(𝜌) is
based on the joint application of the Gauss and “cap”
functions, which significantly simplifies the solution
of rather a complicated problem concerning the in-
fluence of the shape spread in an ensemble of metal
nanoparticles on the total absorption coefficient. We
may assert that, additionally, the joint application of
the Gauss and “cap” functions turns out to be opti-
mal, when theoretically studying the qualitative pic-
ture of averaging over the shape spread.

The averaged values of the total absorption coeffi-
cients 𝐾𝑖 (𝜔), 𝑖 = I, II, III, are determined for each
variant of the function 𝑃𝑖(𝜌) (Fig. 5). The function
𝐾III (𝜔) calculated for the average value of the total
absorption coefficient is found to be the most ade-
quate to the real situation. It completely describes
the influence of both the transverse, 𝐾⊥ (𝜔, 𝜌), and
longitudinal, 𝐾‖ (𝜔, 𝜌), components of the light ab-
sorption coefficient on 𝑃III(𝜌).
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ВПЛИВ ДИСПЕРСIЇ ФОРМ
АНСАМБЛЮ МЕТАЛЕВИХ НАНОЧАСТИНОК
НА ЇХ ОПТИЧНI ВЛАСТИВОСТI

Р е з ю м е

Теоретичну основу роботи становить положення, що при
розмiрах наночастинок, менших за довжину вiльного про-
бiгу електрона i несферичнiй їх форми, дисипативнi про-
цеси всерединi наночастинок характеризуються тензорною
величиною. Дiагональнi елементи цього тензора разом з ко-
ефiцiєнтами деполяризацiї визначають пiвширини плазмо-
вих резонансiв. На основi цього отриманi усередненi хара-
ктеристики з урахуванням впливу форми наночастинок як
на коефiцiєнти деполяризацiї, так i на компоненти тензо-
ра оптичної провiдностi. Запропоновано три оригiнальних
варiанти функцiй, побудованих на основi спiльного вико-
ристання функцiй Гауса i “шапочки”, якi задають розподiл
наночастинок за формою.
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