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ANALYTICAL RELATIONS
FOR THE MATHEMATICAL EXPECTATION
AND VARIANCE OF A STANDARD DISTRIBUTED
RANDOM VARIABLE SUBJECTED
TO THE

√
𝑋 TRANSFORMATION

The mathematical expectation and the variance have been calculated for random physical vari-
ables with the standard distribution function that are transformed by functionally related direct
quadratic, 𝑋2, and inverse quadratic,

√
𝑋, dependences.
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1. Introduction

Linear and nonlinear transformations of physical
quantities form a basis for simulating the principles of
device operation. In particular, the direct quadratic
transformation

𝑌 = 𝛼𝑋2 (1)

and the inverse one

𝑌 = 𝛽
√
𝑋 (2)

are widely used, while developing models to describe,
e.g., the elastically deformed state of a static body by
the potential energy method, a moving body by the
kinetic energy method, electric heaters by the Joule
heat generation method, and so forth. If the corre-
sponding input parameters undergo random fluctua-
tions, then, in most cases, a statistical model of physi-
cal regularity can be constructed by studying the non-
linearly transformed quantity. Similar problems are
challenging, e.g., in optics and quantum mechanics,
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while simulating the wave processes with the help of
a trigonometric transformation of phase relations.

However, despite that the statistic-probabilistic
methods that are used to process the results of mea-
surements or calculations have been developed quite
well, the search for analytical relations that would
make it possible to simplify the algorithm of analyti-
cal estimation of the probabilistic and statistical pa-
rameters of the researched models always remains to
be an importnat task. For normally distributed sys-
tems, the basic quantities are the mathematical ex-
pectation 𝐸𝑋,𝑌 and the mean square variance (MSV)
𝜎𝑋,𝑌 =

√︀
𝐷𝑋,𝑌 , although, for the analysis of the

probability distribution law 𝐹 (𝑥) to be more com-
plete, regularities in the coefficients of asymmetry,
skewness, and others for the curves of the differential
function 𝑓(𝑥) = 𝑑𝐹 (𝑥)

𝑑𝑥 should be modeled.
When processing the results of a physical exper-

iment, the measured values of a physical quantity,
the random variable (RV) sample, are mainly sub-
jected to arithmetic, trigonometric, logarithmic, and
so on transformations. However, direct non-linear RV
transformations of the type 𝑌 = 𝑔(𝑋) = 𝑋2 or
cos𝑋, as well as the corresponding inverse transfor-
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mations 𝑍 = 𝑔−1(𝑋) =
√
𝑋 or arccos𝑋, respec-

tively, and other ones, unlike linear transformations
of the type 𝑎𝑋 + 𝑏, change the distribution density
𝑓(𝑥), which can make the algorithm of error calcu-
lation much more complicated and can dictate the
introduction of other distribution parameters. For a
normally 𝑁(𝑚𝑋 , 𝜎𝑋) distributed RV, one of such
problems was formulated in works [1, 2]. For the di-
rect, 𝑌 = 𝑔(𝑋) =

(︀
𝑋2, cos𝑋2

)︀
, and the inverse to

them, 𝑍 = 𝑔−1(𝑋) =
(︁√

𝑋, arccos𝑋
)︁
, transforma-

tions of the sample elements, the cited author pro-
posed the so-called “error propagation” rules. They
consist in a formal reduction of the indices in the so-
lutions of corresponding square equations. However,
a proper probabilistic and statistic substantiation of
the method was not given. In this work, analytical
formulas for the calculation of the basic probability
distribution parameters 𝐸𝑋,𝑌 and 𝜎𝑋,𝑌 for the trans-
formation 𝑍 = 𝑔−1(𝑋) =

√
𝑋 of a standard 𝑁(0, 𝜎𝑋)

distributed RV 𝑋, which is inverse to the quadratic
transformation 𝑌 = 𝑔(𝑋) = 𝑋2, have been substanti-
ated on the basis of fundamental points of probability
theory and mathematical statistics [3, 4].

2. Theoretical Analysis
of Statistical Averaging and Discussion
of the Results Obtained

Despite that the statistical model of quadratic trans-
formation has been repeatedly discussed in the lit-
erature (see, e.g., works [3, 4]), the analysis in most
cases was ended, when the distribution function for
the probability density of transformed RV had been
determined. Therefore, in order to apply the trans-
formation inverse to the quadratic one, let us find
the function 𝑓𝑊 (𝑤) describing the probability den-
sity distribution for the random variable 𝑊 .

Let the RV 𝑋 be subjected to the bi-lateral (−∞ <
< 𝑥 < +∞) quadratic transformation (1). Our task
consists in substantiating the variance 𝐷𝑌 = 𝐷√

𝑋

and the mean 𝑌 =
√
𝑋 for the inverse transforma-

tion (2). For this purpose, let us consequently apply
a two-stage transformation of the following type to
the RV𝑋:

𝑋
𝑌=

√
𝑋−−−−−→ RV

√
𝑋

𝑊=𝛼𝑌 4

−−−−−−→ RV𝑊. (3)

Here, the transformation function looks like

𝑦 = 𝛽
√
𝑥 (4)

at the first stage and

𝑤 = 𝛼𝑦4 (5)

at the second one. The transformation according to
algorithm (3) is ended by the quadratic transforma-
tion (1) of the RV𝑋. Therefore, let us analyze the
regularities of the quadratic transformation.

In the unlimited interval of values 𝑥 ∈ (−∞,+∞),
the function

𝑤 = 𝑔(𝑥) = 𝛼𝑥2 (6)

of the quadratic transformation (1) has two roots,

𝑥1 = −
√︂

𝑤

𝛼
at 𝑥 < 0, and 𝑥2 = +

√︂
𝑤

𝛼
at 𝑥 ≥ 0. (7)

Therefore, it is convenient to divide the inter-
val (−∞,+∞) into two subintervals, (−∞, 0) and
(0,+∞), in which function (6) is monotonic. There
are no negative 𝑤-values, and the set of points 𝑋1 ≤
≤ 𝑥 ≤ 𝑋2 is a set of 𝑔(𝑤) at 𝑤 ≥ 0. In the regions of
monotonicity, the function 𝑤 = 𝛼𝑥2 has the inverse
function

𝑔1(𝑤) = − 1√
𝛼

√
𝑤 (8)

and the first derivative

𝑑

𝑑𝑤
𝑔1(𝑤) = − 1

2
√
𝛼

1√
𝑤

(9)

in the interval (−∞, 0), as well as the inverse function

𝑔2(𝑤) = +
1√
𝛼

√
𝑤 (10)

and the first derivative

𝑑

𝑑𝑤
𝑔2(𝑤) = +

1

2
√
𝛼

1√
𝑤

(11)

in the interval (0,+∞). Then, according to the trans-
formation formula [3]

𝑓𝑊 (𝑤)=𝑓𝑋
[︀
𝑔−1(𝑤)

]︀ ⃒⃒⃒⃒ 𝑑

𝑑𝑤
𝑔−1(𝑤)

⃒⃒⃒⃒
=

𝑓𝑋
[︀
𝑔−1(𝑤)

]︀⃒⃒⃒
𝑑𝑤
𝑑𝑥

⃒⃒
𝑥=𝑔−1(𝑤)

⃒⃒⃒ ,
(12)

216 ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 3



Analytical Relations for the Mathematical Expectation and Variance

the probability density function 𝑓𝑊 (𝑤) transformed
by expression (6) has the form

𝑓𝑊 (𝑤) =
1

2
√
𝛼

1√
𝑤
𝑓𝑋

(︂
+

√︂
𝑤

𝛼

)︂
+

+
1

2
√
𝛼

1√
𝑤
𝑓𝑋

(︂
−
√︂

𝑤

𝛼

)︂
. (13)

In the case of the RV 𝑋 with the standard distribu-
tion function

𝑓𝑋(𝑥) =

√︂
𝑝

𝜋
exp

(︀
−𝑝𝑥2

)︀
(14)

(here, 𝑝 = 1
2𝜎2

𝑋
) transformed by law (6), the function

𝑓𝑊 (𝑤) looks like

𝑓𝑊 (𝑤) =
1

2
√
𝛼

√︂
𝑝

𝜋

1√
𝑤
𝑒−𝑝𝑤

𝛼 +
1

2
√
𝛼

1√
𝑤

√︂
𝑝

𝜋
𝑒−𝑝𝑤

𝛼 =

=

√︂
𝑝

𝜋𝛼

1√
𝑤

exp
(︁
− 𝑝

𝛼
𝑤
)︁
. (15)

As follows from Eq. (15), the quadratic transforma-
tion changes the distribution function for the RV 𝑋.

Despite that the function 𝑓𝑊 (𝑤) → ∞ at 𝑤 → 0,
it remains normalized:

𝐶𝑤

√︂
𝑝

𝜋𝛼

∞∫︁
0

𝑤−1/2 exp
(︁
− 𝑝

𝛼
𝑤
)︁
𝑑𝑤 =

= 𝐶𝑤

√︂
𝑝

𝜋𝛼

√︂
𝜋𝛼

𝑝
=1 ⇒ 𝐶𝑤 = 1, (16)

so that 𝐶𝑤 = 1, where the tabular integral (860.05)
from book [7] was used. Provided that the normaliza-
tion condition (16) is satisfied, the equation for the
variance 𝐷𝑊 reads

𝐷𝑊 =

∞∫︁
0

(︀
𝑤 − �̄�

)︀2
𝑓(𝑤)𝑑𝑤 =

=

∞∫︁
0

(︀
𝑤2 + �̄� 2 − 2𝑤�̄�

)︀
𝑓(𝑤)𝑑𝑤 =

=

∞∫︁
0

𝑤2𝑓(𝑤)𝑑𝑤+ �̄� 2

∞∫︁
0

𝑓(𝑤)𝑑𝑤− 2�̄�

∞∫︁
0

𝑤𝑓(𝑤)𝑑𝑤 =

= 𝑊 2 + �̄� 2 − 2�̄� 2 = 𝑊 2 − �̄� 2, (17)

which is typical of statistically independent RVs 1.
The integration limits in Eq. (17) are put in agree-
ment with the set of non-negative values of the RV
𝑤 ≥ 0 transformed by law (1).

Now, let us construct a system of equations for the
variances of the initial RV and the RV transformed
by the quadratic algorithm 𝑋 𝑊=𝛼𝑋2

−−−−−−→ RV 𝛼𝑋2:

𝐷𝑋 = 𝑋2 − �̄�2, (18a)

𝐷𝑊 = 𝑊 2 − �̄� 2, (18b)
or
𝐷𝑋 = 𝑋2 − �̄�2, (18c)

𝐷𝑊 = 𝑊 2 − 𝛼2
(︀
𝑋2
)︀2
, (18d)

�̄� = 𝐶𝑊

√︂
𝑝

𝜋𝛼

+∞∫︁
0

𝑤1/2 exp
(︁
− 𝑝

𝛼
𝑤
)︁
𝑑𝑤 =

=
1

2

𝛼

𝑝

√︂
𝑝

𝜋𝛼

√︂
𝜋𝛼

𝑝
= 𝛼𝜎2

𝑋 , (19)

where the tabular integral (860.04) from work [7] was
used. For a harmonic oscillator, 𝑊 = 1

2𝛼𝑥
2, so that

�̄� = 1
2𝛼𝜎

2
𝑋 . The mean of the square 𝑊 2 equals

𝑊 2 = 𝐶𝑊

√︂
𝑝

𝜋𝛼

+∞∫︁
0

𝑤3/2 exp
(︁
− 𝑝

𝛼
𝑤
)︁
𝑑𝑤 =

=
1 · 3
22

(𝑝/𝛼)
1/2

√
𝜋

√
𝜋

(𝑝/𝛼)
5/2

=
3

4

(︂
𝛼

𝑝

)︂2
= 3𝛼2𝜎4

𝑋 , (20)

where the tabular integral (860.06) from work [7] was
used. For a harmonic oscillator, 𝑊 2 = 3

4𝛼
2𝜎2

𝑋 , and
the MSV for the energy equals

√
𝑊 2 =

√
3
2 𝛼𝜎2

𝑋 .
The equation for the variance in the case of trans-

formation (6) looks like

𝐷𝑊 = 3𝛼2𝜎4
𝑋 −

(︀
𝛼𝜎2

𝑋

)︀2
= 2𝛼2𝜎4

𝑋 > 0 (21)

and satisfies the requirement that the variance is non-
negative. Therefore, the MSV 𝜎𝑊 equals

𝜎𝑊 =
√
2𝛼𝜎2

𝑋 . (22)

Let us compare the results obtained and the re-
sults known from the literature. For the normal

1 For independent RVs, the covariance equals zero [3–5]. The
correlation coefficient for two RVs can equal zero, even if
they are not independent. On the contrary, if the correlation
coefficient differs from zero, the two RVs cannot be indepen-
dent [6].
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𝑁(𝑚𝑋 , 𝜎2
𝑋) distributed RV 𝑋, the quadratic trans-

formation 𝑌 = 𝑋2 gives the following value for the
variance: 𝐷𝑋2 = 2𝐷2

𝑋 + 4𝐸2
𝑋𝐷𝑋 [1]. If the initial

RV 𝑋 has a standard distribution 𝑁(0, 𝜎2
𝑋), then

𝐷𝑋2 = 2𝜎4
𝑋 , which agrees with Eq. (21).

Now, let us simulate the quadratic transformation
RV 𝑊 → 𝛼𝑋2 as two consequent stages (3). The
fractional transformation 𝑌 =

√
𝑋 is used at the first

stage, and the transformation 𝑊 = 𝛼𝑌 4 at the second
one. The equation 𝑦 = 𝛽

√
𝑥 has no solutions in the

interval 𝑦 < 0, and the cumulative distribution func-
tion 𝐹 (𝑦) = 0. In the interval 𝑦 ≥ 0, we have

√
𝑥 ≤ 𝑦

𝛽

at −
(︁
𝑦
𝛽

)︁2
≤ 𝑥 ≤ +

(︁
𝑦
𝛽

)︁2
, and the equation 𝑦 = 𝛽

√
𝑥

has one root 𝑥 = + 𝑦2

𝛽2 at 𝑥 ≥ 0 [5], where the 𝑦-value
never becomes negative. The function 𝑦 = 𝛽

√
𝑥 has

the inverse function

𝑔−1(𝑥) =
𝑦2

𝛽2
, (23)

and the first derivative
𝑑𝑔−1(𝑥)

𝑑𝑦
=

2𝑦

𝛽2
. (24)

Therefore, the distribution function 𝑓𝑌 (𝑦) for the
transformed RV equals

𝑓𝑌 (𝑦) =
2𝑦

𝛽2
𝑓𝑋

(︂
𝑦2

𝛽2

)︂
. (25)

Since the initial RV 𝑋 is distributed according to the
law 𝑁(0, 𝜎𝑋), function (25) looks like

𝑓𝑌 (𝑦) =
2

𝛽2

√︂
𝑝

𝜋
𝑦 exp

(︂
− 𝑝

𝛽4
𝑦4
)︂
. (26)

The plot of function (26) starts from the point (0, 0)
and reaches a maximum at the point with the most
probable coordinate 𝑦max = 4

√︀
𝜎2
𝑋/2 or, in the co-

ordinate system of initial RV 𝑋, 𝑥max = (𝑦max)
2 =

=
2

√︁
𝜎2
𝑋

2 = 𝜎𝑋√
2
.

Let us substantiate the normalization condition
and determine the normalization constant 𝐶𝑌 for
function (26):

𝐶𝑌
2

𝛽2

√︂
𝑝

𝜋

∞∫︁
0

𝑦 exp

(︂
− 𝑝

𝛽4
𝑦4
)︂
𝑑𝑦 =

= 𝐶𝑌
2

𝛽2

√︂
𝑝

𝜋

1

4

(︂
𝑝

𝛽4

)︂−2/4

Γ

(︂
2

4

)︂
=

= 𝐶𝑌
1

2
= 1 ⇒ 𝐶𝑌 = 2. (27)

so that 𝐶𝑌 = 2, where the tabular integral (3.478
(1)) from book [8] was used. Then the equation for
the variance of type (17) for statistically independent
RVs transformed according to law (4) looks like

𝐷√
𝑋 =

∞∫︁
0

(︁√
𝑥−

√
𝑋
)︁2
𝑓(𝑦)𝑑𝑦 =

=

∞∫︁
0

(︂(︀√
𝑥
)︀2
+
√
𝑋

2

− 2
√
𝑥
√
𝑋

)︂
𝑓(𝑦)𝑑𝑦 =

=

∞∫︁
0

(︀√
𝑥
)︀2
𝑓(𝑦)𝑑𝑦 +

√
𝑋

2
∞∫︁
0

𝑓(𝑦)𝑑𝑦 − 2
√
𝑋 ×

×
∞∫︁
0

√
𝑥𝑓(𝑦)𝑑𝑦 =

(︁√
𝑋
)︁2
+
√
𝑋

2
∞∫︁
0

𝑓(𝑦)𝑑𝑦−2
√
𝑋

2

=

=
(︁√

𝑋
)︁2

−
√
𝑋

2

, (28)

where, according to Eq. (27), the means
√
𝑥 and

(
√
𝑥)

2 are calculated by the formulas

√
𝑋 =

4

𝛽2

√︂
𝑝

𝜋

+∞∫︁
0

𝑦2 exp

(︂
− 𝑝

𝛽4
𝑦4
)︂
𝑑𝑦 =

=
4

𝛽2

√︂
𝑝

𝜋

1

4

𝛽3

√
𝑝 4
√
𝑝
Γ

(︂
3

4

)︂
= 𝛽Γ

(︂
3

4

)︂
4
√
2√
𝜋

√
𝜎𝑋 , (29)

and(︁√
𝑋
)︁2

=
4

𝛽2

√︂
𝑝

𝜋

+∞∫︁
0

𝑦3 exp

(︂
− 𝑝

𝛽4
𝑦4
)︂
𝑑𝑦 =

=
4

𝛽2

√︂
𝑝

𝜋

1

4

𝛽4

𝑝
Γ

(︂
4

4

)︂
=

√︂
2

𝜋
𝛽2𝜎𝑋 ̸= 0, (30)

respectively.
Let us verify that the variance

𝐷√
𝑋 =

𝛽2𝜎𝑋√
2𝜋

− 𝛽2𝜎𝑋

(︃
Γ

(︂
3

4

)︂
4
√
2√
𝜋

)︃2
=

= 𝛽2𝜎𝑋

⎛⎝√︂ 2

𝜋
−

(︃
Γ

(︂
3

4

)︂
4

√︂
2

𝜋2

)︃2⎞⎠ > 0. (31)

is non-negative. For the standard 𝑁(0, 𝜎2
𝑋) dis-

tributed initial RV 𝑋 subjected to the transforma-
tion 𝑌 = 𝛽

√
𝑋, it is analytical relations (29)–(31)

that the author of work [1] tried to obtain. However,
the corresponding expressions derived in this work
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and in work [1] cannot be compared, because the lat-
ter cannot be applied to a standard 𝑁(0, 𝜎2

𝑋) dis-
tributed initial RV 𝑋. For a normal 𝑁(𝑚𝑋 , 𝜎2

𝑋) dis-
tributed initial RV 𝑋, the mathematical expectation
𝑚𝑋 ̸= 0. Therefore, the corresponding statistical av-
eraging becomes more complicated due to the appear-
ance of the product of three functions with random
variables in the integrands, which requires an addi-
tional theoretical study.

Let us finish the second stage of the two-stage
RV 𝑋 transformation (3) and determine regularities
for the probability density distribution function 𝑓𝑈 (𝑢)
of the RV 𝑌 = 𝛽

√
𝑋 transformed according to the

law 𝑈 = 𝛾𝑌 4. For simplicity, we put 𝛽 = 1. Then the
function 𝑢 = 𝑔(𝑦) = 𝛾𝑦4 has the inverse functions

𝑦 = ±
(︂
𝑢

𝛾

)︂1/4
, (32)

and the derivatives⃒⃒⃒⃒
⃒ 𝑑𝑑𝑢

(︂
𝑢

𝛾

)︂1/4 ⃒⃒⃒⃒⃒ =
⃒⃒⃒⃒
1

4
𝛾−1/4𝑢−3/4

⃒⃒⃒⃒
. (33)

A random variable 𝑋 was first transformed according
to the law 𝑌 =

√
𝑋, so that its domain of definition

is 𝑦 ≥ 0. Therefore, the function 𝑤 equals 𝑤 = 𝛼𝑦4 =
= 𝛾𝑦4, and the probability density function 𝑓𝑈 (𝑢)
looks like
𝑓𝑈 (𝑢) = 2

√︂
𝑝

𝜋

(︂
𝑢

𝛾

)︂1/4
1

4
𝛾−1/4𝑢−3/4 exp

(︂
− 𝑝

𝛾
𝑢

)︂
=

=
1√
𝜋

1

2𝜎𝑋
√
𝑤

exp

(︂
− 𝑤

2𝛼𝜎2
𝑋

)︂
= 𝑓𝑊 (𝑤). (34)

This result coincides with Eq. (15), which confirms
the correctness of the transformations and calcula-
tions made above.

Hence, if a standard 𝑁(0, 𝜎𝑋) distributed random
variable 𝑋 is subjected to a nonlinear transformation
of the radical type, 𝑌 =

√
𝑋, the mathematical ex-

pectation for the transformed quantity is equal to

√
𝑋 =

1
4
√
2
Γ

(︂
3

4

)︂√︂
2

𝜋
𝜎𝑋

∼= 0.691×

×
√︂

2

𝜋

√
𝜎𝑋

∼= 0.822
√
𝜎𝑋 ,

and the mean square variance to

𝜎√
𝑋 =

√︂
2

𝜋
𝜎𝑋

√︃
1− 1√

𝜋
Γ

(︂
3

4

)︂2
∼=

∼= 0.391

√︂
2

𝜋
𝜎𝑋

∼= 0.312
√
𝜎𝑋 .

3. Conclusion

The analytical relations obtained for the estimation of
the mathematical expectation, the variance, and the
mean square error of a standard 𝑁(0, 𝜎𝑋) distributed
random variable 𝑋 subjected to the transformation
𝑌 =

√
𝑋, which is inverse to the quadratic one 𝑍 =

𝑋2, have been substantiated for the first time. The
mathematical expectation equals

√
𝑋 ∼= 0.822

√
𝜎𝑋 ,

and the mean square variance 𝜎√
𝑋

∼= 0.312
√
𝜎𝑋 .
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АНАЛIТИЧНI СПIВВIДНОШЕННЯ
ОБЧИСЛЕННЯ МАТЕМАТИЧНОГО СПОДIВАННЯ
I СЕРЕДНЬОЇ КВАДРАТИЧНОЇ ПОХИБКИ
СТАНДАРТНО 𝑁(0, 𝜎𝑋) РОЗПОДIЛЕНОЇ
ВИПАДКОВОЇ ВЕЛИЧИНИ,
ПIДДАНОЇ ПЕРЕТВОРЕННЮ

√
𝑋

Р е з ю м е

Обчислено математичне сподiвання i дисперсiя фiзичних
величин iз випадковими значеннями, пiдпорядкованих
стандартному 𝑁(0, 𝜎𝑋) розподiлу та перетворенi функцiо-
нально пов’язаними залежностями прямим квадратичним
𝑋2 та оберненим вигляду

√
𝑋.
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