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AN EQUATION OF THE QUASILINEAR
THEORY WITH WIDE RESONANCE REGION

An equation of the quasilinear theory is derived. It is based on the same assumptions as the
well-known equation in [1]. However, it has another form of the quasilinear operator, which
does not contain the longitudinal wavenumber. Due to this, characteristics of the derived equa-
tion determine the routes of a quasilinear evolution of the particle distribution function, even
when the resonance region determined by the spectrum of longitudinal wavenumbers is wide. It
is demonstrated that during the ion acceleration by the ion cyclotron resonant heating, (i) the
change of the longitudinal ion energy can be considerable and (ii) the increase of the parti-
cle energy may well exceed the increase described by characteristics of the Kennel–Engelmann
equation (which are shown, in particular, in [10]), because these characteristics represent the
ways of the quasilinear diffusion only when the resonance region is narrow.
K e yw o r d s: quasilinear theory, resonance region, ion cyclotron resonant heating, resonance,
wave frequency, ion acceleration.

The effects of waves in plasmas on the particle distri-
butions in the phase space can be described by the
quasilinear (QL) theory. The equations of this the-
ory were derived and analyzed in many works. In the
simplest case where the approximation of a straight
magnetic field is valid, the QL equations in various
forms were derived many years ago. The most known
QL equation was proposed by Kennel and Engelmann
(K&E) [1]. Later, quasilinear equations involving the
inhomogeneity of the magnetic field of toroidal fu-
sion devices were derived and analyzed (see, e.g., [2–
8]). Nevertheless, many practical applications of the
QL theory are associated with the K&E equation,
because it often describes main features of the quasi-
linear distortion of the particle distribution function,
being at the same time rather simple. In particular,
studies of various scenarios of the Ion Cyclotron Res-
onant Heating (ICRH) are relied to a large extent on

c○ YA.I. KOLESNICHENKO, V.V. LUTSENKO,
T.S. RUDENKO, 2018

the theory in [9, 10], which is actually based on the
K&E equation.

The K&E theory describes the influence of waves
on the particles, which satisfy the resonance condition

𝜔𝑘 − 𝑙𝜔𝐵 − 𝑘‖𝑣‖ = 0, (1)

where 𝜔𝑘 is the wave frequency, 𝑘‖ is the longitudinal
wavenumber, 𝑣‖ is the particle longitudinal velocity,
𝜔𝐵 is the particle gyrofrequency, and 𝑙 is an inte-
ger. Depending on the waves destabilized or launched
by an antenna, Eq. (1) determines different resonance
regions in the 𝑣‖ space. For instance, when the waves
have wavenumbers in the range 𝑘‖min < 𝑘‖ < 𝑘‖max,
whereas their frequency is monochromatic (𝜔𝑘 = 𝜔)
and 𝜔𝐵 is given, the width of the resonance region
(Δ𝑣‖ ≡ 𝑣‖max − 𝑣‖min) is determined by the condi-
tion 𝑘‖min𝑣‖max = 𝑘‖max𝑣‖min, from which it follows
that Δ𝑣‖/𝑣‖min = Δ𝑘‖/𝑘‖min. Thus, the resonance
region is wide, when Δ𝑘‖/𝑘‖min is not small, which
is typically the case during ICRH.



An Equation of the Quasilinear Theory

Experiments with ICRH confirm that the reso-
nance region is wide: first, ICRH affects thermal par-
ticles with different pitch angles, which makes the
heating efficient. Second, ICRH often strongly accel-
erates a group of ions, by leading to the formation of a
high-energy tail on the distribution function of heated
ions. For instance, a non-Maxwellian tail consisting of
𝛼-particles with the energies up to several MeV was
observed in the JET tokamak [11]. Although ICRH
increases mainly the particle energy across the mag-
netic field, ℰ⊥, the longitudinal energy, ℰ‖, changes
considerably, too, when Δℰ⊥ ≫ 𝑇 , with 𝑇 being the
plasma temperature.

Thus, it is of importance to know the route in the
phase space of the QL process, when the resonance re-
gion is wide. However, characteristics of the QL equa-
tion in Refs. [1,9,10] (which determines the QL route)
are not applicable in this case. They are given by(︂
𝑣‖ −

𝜔𝑘
𝑘‖

)︂2
+ 𝑣2⊥ = const, (2)

where 𝑣⊥ is the particle velocity across the mag-
netic field. Equation (2) describes semicircles in the
(𝑣‖, 𝑣⊥) plane, which are shown in Fig. 4 in [9] and
Fig. 17-2 in [10]. This equation was obtained by in-
tegrating a differential equation in the assumption
of 𝜔𝑘/𝑘‖ = const. Therefore, it was emphasized in
[1, 9, 10] that only small parts of the circles around
𝑣‖ = 𝜔𝑘/𝑘‖ represent the direction of the quasilinear
diffusion. The rest, i.e., the main part of the charac-
teristics shown is meaningless.

In this work, a QL equation in a form convenient for
the study of QL processes with the arbitrary width of
the resonance region determined by the 𝑘‖ spectrum
is derived. Its characteristics describing the route of
acceleration of a group of ions during ICRH is con-
sidered and compared with K&E characteristics.

1. Quasilinear Equation

Let us write a particle distribution function in the
form 𝐹 = 𝑓0 + 𝑓 , where 𝑓0 and 𝑓 are the equilib-
rium and disturbed parts of the distribution, respec-
tively. The equilibrium distribution function depends
on the integrals of motion, which are the particle en-
ergy (ℰ) and the magnetic moment (𝜇𝑝). But when
the effects of inhomogeneity of the magnetic configu-
ration are negligible, we can take 𝑓0 ≡ 𝑓0(ℰ , ℰ⊥). The
perturbation 𝑓 is determined by the linearized colli-

sionless kinetic equation. It can be written as follows:

𝑓(𝑟,𝑣, 𝑡) =
∑︁
𝑘

𝑓𝑘𝑒
−𝑖𝜔𝑘𝑡+𝑖𝑘𝑟 =

= − 𝑒

𝑀

𝑡∫︁
−∞

(︂
�̃� +

1

𝑐
𝑣 × �̃�

)︂
∇𝑣𝑓0𝑑𝜏, (3)

where the integral is taken along particle orbits,
�̃� and �̃� are the perturbed parts of the elec-
tric field and magnetic field, respectively, 𝑣𝑥 =
= 𝑣⊥ cos𝛼, 𝑣𝑦 = 𝑣⊥ sin𝛼, �̇� = −𝜔𝐵 , 𝑘𝑥 = 𝑘⊥ cos𝜓,
𝑘𝑦 = 𝑘⊥ sin𝜓, 𝑒 is the electric charge, and M is the
particle mass. Then 𝑣 ·𝐸𝑘 = 𝑣⊥

(︀
𝐸+𝑒

−𝑖𝛼 + 𝐸−𝑒
𝑖𝛼
)︀
+

+ 𝑣‖𝐸‖, with 𝐸± = 𝐸𝑥± 𝑖𝐸𝑦. Using this relation and

𝑒−𝑖𝜉 sin(𝛼−𝜓) =
∑︁
𝑙

𝐽𝑙(𝜉)𝑒
−𝑖𝑙(𝛼−𝜓),

𝑒±𝑖𝛼𝑒−𝑖𝜉 sin(𝛼−𝜓) =
∑︁
𝑙

𝐽𝑙±1(𝜉)𝑒
−𝑖𝑙(𝛼−𝜓)𝑒±𝑖𝜓,

(4)

where 𝐽𝑙(𝜉) is the Bessel function, 𝜉 = 𝑘⊥𝜌⊥, 𝜌⊥ =
= 𝑣⊥/𝜔𝐵 is the Larmor radius, we obtain

𝑓𝑘 = −𝑒
∑︁
𝑙

𝑒𝑖𝜉 sin(𝛼−𝜓)−𝑖𝑙(𝛼−𝜓) ×

×
∞∫︁
0

𝑑𝑡1

(︂
𝐺 ·𝐸𝑘Π̂𝑓0 +𝐺⊥ ·𝐸⊥𝑘

1

𝑖𝜔𝑘

𝜕𝑓0
𝜕ℰ⊥

𝑑

𝑑𝑡

)︂
𝑒𝑖Ω𝑙𝑡1,

(5)
where Ω𝑙 = 𝜔𝑘 − 𝑙𝜔𝐵 − 𝑘‖𝑣‖,

𝐺 ·𝐸𝑘 = 𝐺⊥ ·𝐸⊥𝑘 + 𝑣‖𝐸‖𝐽𝑙, (6)

𝐺⊥ ·𝐸⊥𝑘 = 𝑣⊥
(︀
𝐸+𝐽𝑙−1𝑒

−𝑖𝜓 + 𝐸−𝐽𝑙+1𝑒
𝑖𝜓
)︀
, (7)

Π̂ =
𝜕

𝜕ℰ
+
𝑙𝜔𝐵
𝜔𝑘

𝜕

𝜕ℰ⊥
. (8)

Note that 𝐺⊥ ·𝐸⊥𝑘 can be written in the form

𝐺· ⊥ 𝐸⊥𝑘 =
𝑙𝐽𝑙
𝜉
𝑣⊥𝐸1 + 𝑖

𝜕𝐽𝑙
𝜕𝜉

𝑣⊥𝐸2, (9)

where 𝐸1 and 𝐸2 are vector components, 𝐸1 = 𝐸𝑘·𝑒1,
𝐸2 = 𝐸𝑘 · 𝑒2, the unit vectors are defined by 𝑒1 =
= 𝑘⊥/𝑘, 𝑒2 = 𝑒3 × 𝑒1, 𝑒3 = 𝐵0/𝐵0.

Assuming Ω𝑙 → Ω𝑙 + 𝑖0 (which corresponds to the
Landau rule), we calculate the integrals in (5):

∞∫︁
0

𝑑𝑡1𝑒
𝑖Ω𝑙𝑡1 = 𝑖

𝑃

Ω𝑙
+ 𝜋𝛿(Ω𝑙),

∞∫︁
0

𝑑𝑡1
𝑑

𝑑𝑡1
𝑒𝑖Ω𝑙𝑡1 = −1.

(10)
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Fig. 1. Characteristics determined by the K&E equation (2)
(dashed curves) and Eq. (20) (thick solid lines) in the (𝑣‖, 𝑣⊥)
space. In calculations, we took �̃� = 1.2 and 𝑙 = 1, so that
𝑣res‖ /𝑣ph = 1/6 according to (23)
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Fig. 2. The route of the QL acceleration of resonant ions
during ICRH (bold straight line) and the K&E characteristics
(2) (thin lines) in the (ℰ‖, ℰ⊥) space. In calculations, we took
�̃� = 1.2 and 𝑙 = 1, as in Fig. 1, but different wave phase veloc-
ities were used to calculate the different K&E characteristics.
Only those parts of the K&E characteristics that lie above the
points, where they touch the bold straight line, are shown. The
acceleration route is determined by Eq. (20), the arrow shows
the direction of the QL acceleration of particles with the initial
energies ℰ‖ = 1 and ℰ⊥ = 1 (the energy is convenient to be
normalized to the plasma temperature). It is assumed that the
spectrum of 𝑘‖ provides the wave-particle interaction for the
acceleration up to the energy ℰ⊥ = 100

It follows from Eqs. (5) and (10) that the distribution
function consists of the resonant and non-resonant
parts: 𝑓 = 𝑓𝑟 + 𝑓𝑛. The resonant part is

𝑓𝑘,𝑟 = −𝜋𝑒
∑︁
𝑙

𝑒𝑖𝜉 sin(𝛼−𝜓)−𝑖𝑙(𝛼−𝜓)𝐺 ·𝐸𝑘Π̂𝑓0𝛿(Ω𝑙).

(11)

Only this part of 𝑓𝑘 contributes to the equation,
which determines the evolution of the equilibrium dis-

tribution function caused by the waves:

𝜕𝑓0
𝜕𝑡

= − 𝑒

𝑀

∑︁
𝑘

∮︁
𝑑𝑡

𝜏𝐵
∇𝑣

(︂
𝐸𝑘 +

1

𝑐
𝑣 ×𝐵𝑘

)︂
𝑓*𝑘,𝑟, (12)

where 𝜏𝐵 is the gyroperiod, 𝑑𝑡/𝜏𝐵 = −𝑑𝛼/(2𝜋),

∇𝑣 =𝑀𝑣
𝜕

𝜕ℰ
+𝑀𝑣⊥

𝜕

𝜕ℰ⊥
+

𝐵 × 𝑣

𝐵𝑣2⊥

𝜕

𝜕𝛼
. (13)

Noting that 𝑑3𝑣 = 𝑀−2𝑑ℰ𝑑ℰ⊥𝑑𝛼/|𝑣‖|, we present
∇𝑣 ·𝐴, with 𝐴 = 𝐴(ℰ , ℰ⊥, 𝛼) being an arbitrary vec-
tor, in the following form:

∇𝑣 ·𝐴 =𝑀𝑣‖

(︂
𝜕

𝜕ℰ
𝐴 · 𝑣
𝑣‖

+
𝜕

𝜕ℰ⊥
𝐴 · 𝑣⊥

𝑣‖

)︂
+

+
𝜕

𝜕𝛼

𝐴 · (𝐵0 × 𝑣)

𝐵0𝑣2⊥
. (14)

Then, due to the relations

2𝜋∫︁
0

𝑑𝛼

2𝜋
𝑒𝑖𝜉 sin(𝛼−𝜓)−𝑖𝑙(𝛼−𝜓) = 𝐽𝑙(𝜉),

2𝜋∫︁
0

𝑑𝛼

2𝜋
𝑒𝑖𝛼𝑒𝑖𝜉 sin(𝛼−𝜓)−𝑖𝑙(𝛼−𝜓) = 𝐽𝑙±1(𝜉)𝑒

𝑖𝜓,

(15)

equation (12) can be written as

𝜕𝑓0
𝜕𝑡

= 𝑣‖
∑︁
𝑘,𝑙

Π̂𝑣−1
‖ 𝐷𝑘,𝑙Π̂𝑓0, (16)

where Π̂ is defined by (8) and

𝐷𝑘,𝑙 = 𝜋𝑒2|𝐺 ·𝐸𝑘|2𝛿(Ω𝑙). (17)

The characteristics of this equation are determined
by

Π̂𝑓0 = 0. (18)

For the fixed wave frequency, they are given by

𝑙𝜔𝐵ℰ − 𝜔𝑘ℰ⊥ = const, (19)

which transforms to the following relation in the vari-
ables (ℰ‖, ℰ⊥):

ℰ‖ −
(︂
𝜔𝑘

𝑙𝜔𝐵
− 1

)︂
ℰ⊥ = const. (20)
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An Equation of the Quasilinear Theory

A similar picture takes place in the framework of the
quasilinear theory dealing with times exceeding par-
ticle transit/bounce times, as shown in [3].

In contrast to this, according to Refs. [1, 9, 10], the
quasilinear evolution takes place along the curves de-
termined by (2).

Equation (2) represents characteristics of the equa-
tion

𝑘‖
𝜕𝑓0
𝜕𝑣‖

+ (𝜔𝑘 − 𝑘‖𝑣‖)
1

𝑣⊥

𝜕𝑓0
𝜕𝑣⊥

= 0, (21)

which can be written in the variables (ℰ , ℰ⊥) in the
form

Π̂𝑓0 +
Ω𝑙
𝜔𝑘

𝜕𝑓0
𝜕ℰ

= 0. (22)

The second term in this equation is actually the
second term of the integrand of Eq. (5), which is as-
sociated with the non-resonant part of the distribu-
tion function, 𝑓𝑘,𝑛. The inclusion of the non-resonant
term for the description of the QL evolution of reso-
nant particles leads to characteristics (2), which have
physical sense only in a vicinity of the particular res-
onance velocity.

Although Eq. (22) includes non-resonant term, it
coincides with Eq. (18) at the points of exact reso-
nance (Ω𝑙 = 0). Therefore, the slope of characteris-
tics at these points is the same in both cases. Ho-
wever, Eqs. (19), (20), and (2) determine different
curves. For instance, when 𝜔 = 𝑙𝜔𝐵 , Eq. (19) pre-
dicts 𝑣‖ = const, which together with the resonance
Ω𝑙 = 0 means that only 𝑣⊥ changes during the qua-
silinear evolution of particles with 𝑣‖ = 0. On the
other hand, it follows from (2) that 𝑣⊥ = const for
the particles with 𝑣‖ = 0.

Owing to the coincidence of the slopes of charac-
teristics at the resonance, both (20) and (2) predict
approximately the same character of the quasilinear
evolution, when the wave spectrum is sufficiently nar-
row. In order to demonstrate this, let us calculate
both families of characteristics for a given wave phase
velocity (𝑣ph = 𝜔𝑘/𝑘‖) in the (𝑣‖, 𝑣⊥) plane. Because
Eq. (20) for the characteristics of our QL equation
does not contain 𝑣ph, we need the following relation
obtained from the resonance condition (1):

𝑣ph = 𝑣res‖
�̃�

�̃� − 𝑙
, (23)

where �̃� = 𝜔/𝜔𝐵 , 𝑣res‖ is the resonance longitudinal
velocity. Then we obtain two families of characteris-
tics shown in Fig. 1. We observe a good agreement
between these families in a vicinity of 𝑣res‖ , although
the behaviors of the shown curves away from this ve-
locity are very different.

It is of interest to find the QL route of those ther-
mal ions that are strongly accelerated by ICRH. Let
us assume that the transversal energy of the parti-
cles increases by a factor of 100 (e.g., ℰ⊥ grows from
10 keV to 1 MeV). Because characteristics (20) are
straight lines in the plane (ℰ‖, ℰ⊥), it is convenient to
use the space of (ℰ‖, ℰ⊥). For the comparison, we will
also calculate characteristics (2). With this purpose,
we write (2) as

ℰ⊥ = ℰ‖
(︂
2
𝑣ph
𝑣‖

− 1

)︂
+ const, (24)

where we will eliminate the wave phase velocity by
means of the resonance relation (23). The results of
calculations are shown in Fig. 2. It follows from this
figure that ℰ‖ considerably, by a factor of 20, increases
during ICRH. The increase of ℰ⊥ described by the
K&E characteristic going through the starting point
(ℰ‖ = ℰ⊥ = 1) is much less than the prescribed mag-
nitude (one hundred). In addition, we conclude that
the envelop of the infinite number of K&E character-
istics coincide with the straight line representing the
direction of the QL evolution given by (20).

2. Summary and Conclusions

A QL equation with characteristics, which do not de-
pend on 𝑘‖, is derived. They determine the way in
the phase space independently of the 𝑘‖-spectrum
provided that the following conditions are satis-
fied. First, the wave frequency should be fixed dur-
ing the quasilinear evolution of the distribution func-
tion, which is the case during RF heating and under
some plasma instabilities. Second, the single 𝑙-term
in the QL equation should be mainly responsible for
the QL process. This implies that the wave frequency
should be close to a cyclotron harmonic 𝑙𝜔𝐵 with
𝑙 ∼ 1 or 𝜔 should be much less than 𝜔𝐵 (in the lat-
ter case, the 𝑙 = 0 term dominates); otherwise, 𝜔
well exceeds the distance between the cyclotron har-
monics, and, hence, the terms with various 𝑙 equally
contribute. Third, the resonance condition should be
satisfied. Fourth, the magnitude of 𝑘⊥𝜌⊥ should not
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reach the magnitudes, for which the Bessel functions
in the diffusion coefficient vanish. Fifth, the time of
the QL diffusion should be less than the times of
Coulomb collisions.

It is demonstrated that, during the ion accelera-
tion by ICRH, (i) the change of the longitudinal ion
energy can be considerable and (ii) the increase of
the particle energy may well exceed that described
by the characteristics of the K&E equation, because
these characteristics represent the ways of quasilinear
diffusion only when the resonance region is narrow.

It is found that the 𝑘‖-dependence in the QL char-
acteristics of Refs. [1, 9, 10] comes from the non-
resonant part of the distribution function 𝑓𝑘 [see
Eq. (5)] – the term, which does contribute to the QL
process. Therefore, characteristics (19) and (20) ap-
pear in a natural way. On the other hand, the 𝑘‖-
spectrum plays an important role, being responsible
for the fulfillment of the resonance condition: char-
acteristics (19) and (20) represent the route of the
QL process provided that the resonance condition is
satisfied. Note that, in reality, the 𝑘‖ spectrum is dis-
crete [𝑘‖ = (𝑚𝜄 − 𝑛)/𝑅 is determined by the mode
numbers 𝑚 and 𝑛]. This implies that the finite wave
amplitudes leading to broadening the 𝛿(Ω𝑙)-function
play an important role, by providing the overlap of
resonances with different longitudinal wavenumbers.

Only the resonant particles are affected by waves
in the QL theory [although non-resonant wave-par-
ticle interaction can lead to some effects, see, e.g.,
[12]. Therefore, because the the slope of K&E charac-
teristics at the resonance points coincides with that
given by (19) and (20), the K&E equation and the
equation derived in this work are equivalent. It is a
matter of convenience, which QL equation should be
used. As seen from Fig. 2, the envelope of the infinite
number of K&E characteristics calculated for differ-
ent wave phase velocities coincides with the straight
line determined by (20).

Note that, as we already mentioned at the be-
ginning of this work, the limited value of the cha-
racteristics in the form of circles was recognized in
[1]. Therefore, the authors of [1] “constructed” a new
characteristic equation instead of their equation (4.7)
[our equation (21)] and finally arrived at Eq. (4.11)
[our equation (20)]. In order to obtain (4.11), they
changed the coefficients in the differential equation
(4.7), by using the resonance condition, which is not
correct. Characteristic curves and resonance curves

are independent curves. Therefore, the procedure of
construction of the characteristic equation used in [1]
is not justified. For this reason, it was not clear a
priori, whether the characteristics given by Eq. (4.11)
are correct. This may explain why only the circles
[rather than curves described by (4.11)] were shown
in [1] and in subsequent T. Stix’s publications. On the
other hand, we actually have proved that Eq. (4.11)
is correct, because this equation [our Eq. (20)] repre-
sents a solution of (18), which directly follows from
the QL equation derived in this work.

It is known that the ion acceleration during ICRH
reduces the particle pitch 𝜒 ≡ 𝑣‖/𝑣 and eventually
can lead to the transformation of passing particles to
trapped ones. However, characteristics of our equa-
tion in the space (𝜆, ℰ), with 𝜆 = ℰ⊥/ℰ = 1−𝜒2, are
given by

ℰ(𝜆− 𝑙�̃�−1) = const. (25)

This equation predicts the existence of the separa-
trix 𝜆 = 𝑙�̃�−1 between the regions with 𝑑𝜆/𝑑ℰ > 0
(where the ICRH decreases 𝜒) and the region with
𝑑𝜆/𝑑ℰ < 0 (where the ICRH increases 𝜒). This opens
a possibility to improve the confinement of fast ions
(which is a problem for stellarators) by transforming
trapped fast particles (which may be not confined) to
passing ones by means of the ICRH [13].

However, a question may arise whether the approx-
imation of homogeneous magnetic field adopted in
our theory is applicable to plasmas in tokamaks and
stellarators. In this connection, we note that Eq. (25)
coincides with a corresponding equation of the works
employing the bounce/transit time averaging. This is
what one could to expect. The same equation can be
obtained, by using the symmetric properties of the
resonance term in the particle Lagrangian (i.e., not
using the quasilinear theory), like this was done in,
e.g., [14]. In addition, Eq. (25) follows from the orbit-
averaged QL equation in the general form proposed
by Kaufman [2], as shown in [6]. Of course, the inho-
mogeneity of the magnetic field plays, in reality, an
important role by leading to specific particle orbits,
restricting the region of the resonant wave-particle
interaction through resonance (1), which becomes lo-
cal, and by leading to the appearance of global (orbit-
averaged) resonances. All these factors, however, do
not affect the route of the quasilinear diffusion, but in-
fluence the magnitude of the diffusion coefficient. Ne-
vertheless, in some cases, the coefficient of diffusion
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in a homogeneous magnetic field coincides with that
in a tokamak field. For instance, as shown in [4],
the diffusion coefficient for passing the particles in
tokamaks in a certain case reduces to the Stix result
[10] obtained by the simple flux-surface averaging of
Eq. (17).

In summary, a QL theory equation equivalent to
the K&E equation is derived by means of a stream-
lined method. This equation has an advantage, by
directly giving QL routes valid even for wide res-
onance regions instead of the well-known circles in
the (𝑣‖, 𝑣⊥) plane [shown, in particular, in books by
T.H. Stix [10] (Fig. 17-2) and by A.I. Akhiezer et al.
[15] (Fig. 9.2.1)], which have sense only in a vicinity
of the particular wave phase velocity.
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РIВНЯННЯ КВАЗIЛIНIЙНОЇ ТЕОРIЇ
З ШИРОКОЮ РЕЗОНАНСНОЮ ОБЛАСТЮ

Р е з ю м е

Отримано рiвняння квазiлiнiйної теорiї, яке базується на
тих самих припущеннях, що i добре вiдоме рiвняння
Кеннеля–Енгельмана. Проте форма квазiлiнiйного опера-
тора у отриманому рiвняннi не мiстить поздовжнього хви-
льового числа. Завдяки цьому характеристики отримано-
го рiвняння визначають шлях квазiлiнiйної еволюцiї фун-
кцiї розподiлу частинок навiть у випадку широкої резонан-
сної областi, яка залежить вiд спектра поздовжнiх хвильо-
вих чисел. Продемонстровано, що пiд час прискорення iо-
нiв при iонно-циклотронному резонансному нагрiваннi, по-
перше, може значно змiнюватися поздовжня енергiя iонiв
i, по-друге, збiльшення енергiї частинок може перевищу-
вати значення, яке визначається характеристиками рiвнян-
ня Кеннеля–Енгельмана, оскiльки останнi описують шлях
квазiлiнiйної дифузiї лише у випадку вузької резонансної
областi.
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