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SCATTERING OF GINZBURG–FRANK
AND CHERENKOV TYPES UNDER SELF-FOCUSING
OF NANOSECOND LASER PULSES IN LIQUIDS 1

We study the dynamics of nonlinear optical processes such as self-focusing, self-phase mod-
ulation, and stimulated Raman scattering in Kerr-liquids under the nanosecond laser pulse
excitation. The results prove the existence of the transition Ginzburg–Frank-type effect, which
promotes the appearance of new spectral components of the laser radiation at the medium
boundary. The generation of extended anti-Stokes frequency-angular bands of stimulated Ra-
man scattering is explained. When the velocity of a self-focusing focal spot matches the phase
velocity of the non-linear polarization at the anti-Stokes Raman frequency and the phase ve-
locity of the scattered axial radiation, the most intense frequency-angular bands appear. They
are described by the equations typical of the Cherenkov radiation.
K e yw o r d s: self-focusing, self-phase modulation, stimulated Raman scattering.

1. Introduction

The self-focusing (SF) of laser pulses in the nanosec-
ond range in a Kerr medium leads to the movement
of a focal spot [1]. The focal spot speed 𝜐fp is defined
by the laser pulse envelope. At the front and back of
a pulse, 𝜐fp takes positive and negative values and is
not limited by the speed of light in vacuum [2].

In the practical aspect, SF creates a new situation –
the dynamics of nonlinear optical processes such as
the self-phase modulation (SPM) and the stimulated
Raman scattering (SRS), which cannot be achieved
within other technical methods.

Previously, we identified the stop point location of
a focal spot [3], possibility of Cherenkov-type radi-
ation of SRS under SF [4], effect of SF on angular
spectra of SRS [5], angle-selective inverted SRS [6],
frequency dependence of anti-Stokes SRS on the fo-
cal spot speed in the approach of “ideal thin lens”
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[7], transition effect of SPM [8], and physical mecha-
nism of anti-Stokes SRS of the Cherenkov type under
SPM [9].

Now, it is possible to state the principles of the
Ginzburg–Frank transition and the Cherenkov (or
Vavilov–Cherenkov) superluminal scattering [10] un-
der SF of nanosecond laser pulses in Kerr liquids.

2. Consideration and Analysis

A simplified scheme for describing the processes is
presented in Fig. 1. The focal spot has velocity [2]
𝜐fp = 𝜐fd𝜐g𝐿/(𝜐fd + 𝜐g𝐿), which can exceed the light
speed 𝑐 in vacuum (𝜐fd – velocity of focal 𝑧f distance
change, 𝜐g𝐿 – group speed of laser radiation).

The laser spot has velocity 𝜐fp = 𝜐fd = 0 for the
top of a laser pulse. At this stop-point of a laser spot,
classical SRS can be observed, which has asymmetric

1 The paper was presented at the XXIII Galyna Puchkovska
International School-Seminar “Spectroscopy of Molecules
and Crystals”.
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Fig. 2. Experimental frequency-angular spectrum of the Che-
renkov-type scattering (𝑎) in the coordinates angel (𝜃) – wave-
length (𝜆) and frequency-spatial spectrum of the transition-
type scattering (b) in the coordinates: lateral coordinate (𝑥) –
wavelength (𝜆) for a ruby laser at 20 ns, 0.5 J pulse in toluen

indicatrix for the parametric scattering. However, the
indicatrix asymmetry is another question.

When the focal spot is closer to the exit of a
cuvette, the Cherenkov-type superluminal scattering
can be observed for parametric SRS. The experimen-
tal frequency-angular spectrum of the Cherenkov-
type scattering is presented in Fig. 2, a for the first
anti-Stokes (1AS) SRS in toluene under the excita-
tion by a ruby laser in the coordinates: scattering
angle (𝜃) – wavelength (𝜆). As the focal spot crosses
the exit boundary of a cuvette, Ginzburg–Frank
transition-type scattering is observed for the laser
radiation. An experimental frequency-spatial spec-
trum of the transition-type scattering is presented in
Fig. 2, b for the ruby laser radiation (𝐿) in the coor-
dinates: lateral coordinate (𝑥) – wavelength (𝜆). The
maximum Stokes frequency shifts in reverse centime-
ters (cm−1) are indicated in Fig. 2.

A general qualitative similarity for the axial scat-
tering is observed. This is a result of the mutual SPM-
effect of the laser radiation. The maximum Stokes fre-
quency shift Δ𝜈1AS for the first anti-Stokes SRS is
about 3 times more than the laser shift Δ𝜈𝐿, because

𝜈1AS = 2𝜈L − 𝜈S and Δ𝜈1AS = 2Δ𝜈𝐿 +Δ𝜈S = 3Δ𝜈𝐿
(here 𝜈S is the Stokes component frequency). The
maximum Stokes frequency shift Δ𝜈2AS for the sec-
ond anti-Stokes SRS is about 7 times more than Δ𝜈𝐿,
seeing 𝜈2AS = 2𝜈1AS−𝜈𝐿, Δ𝜈2AS = 2Δ𝜈1AS+Δ𝜈𝐿 =
= 7Δ𝜈𝐿.

For the maximal value Δ𝜈𝐿 of the frequency
Stokes-shift caused by the transition effect for the
laser radiation, it is possible to derive the analytical
expression:

Δ𝜈𝐿 ≈ 𝜈𝐿Δ𝑛f {𝑧 = 𝐿} 𝜐fd {𝑧 = 𝐿}
𝑐

,

where 𝑧 is a longitudinal coordinate, Δ𝑛f {𝑧 = 𝐿}
is an increment of the refractive index at the focal
point at the distance 𝑧 = 𝐿 (at the medium bound-
ary), 𝜐fd {𝑧 = 𝐿} – a velocity of the focal point at the
medium boundary (without considering the difference
between times, which are necessary for the pulse frag-
ments to reach the focal point), and 𝑐 – the speed of
light.

The maximum energy density of axial (𝜃 = 0) 1AS
radiation is located at the frequency determined
by conditions, which are similar to those for the
Cherenkov radiation: equality of the phase veloci-
ties of electromagnetic waves 𝜐ph {𝜔} at the frequency
𝜔 and the phase velocity 𝜐ap0 of a polarization at
the anti-Stokes Raman frequency 𝜔𝑎. The axial fre-
quency shift in toluene is (𝜔 {𝜃 = 0} − 𝜔𝑎) /2𝜋𝑐 =
= −197 cm−1.

For 𝜃 ̸= 0 and 𝜐fp = 𝜐ap0, the frequency-angular
branches are related by the expression

cos 𝜃 ≈ 𝜐ph(𝜔)/𝜐ap0

that gives a parabola for cos 𝜃 ≈ 1− 𝜃2/2.

3. Conclusions

The Ginzburg–Frank (transition effect) – type and
Cherenkov (superluminal effect) – type radiations are
analyzed at the nanosecond laser pulse excitation in
the spectra of a laser and SRS.

1. At the transition effect, the maximum frequency
shift of the laser radiation appears, when the focal
point of self-focusing intersects the exit boundary of
the medium, and the phase delay of SFM before and
after the focal point is uncompensated.

2. The SRS Cherenkov-type radiation appears at
the coincidence of self-focusing focal point speed, the
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phase velocity of a nonlinear polarization at the anti-
Stokes Raman frequency and the phase velocity of
scattered SRS-radiation. This is a result of the su-
perluminal speed of the focal point and the velocity
of a nonlinear polarization.

It will be if interest to analyze the mutual im-
pact of the Ginzburg–Frank and Cherenkov effects
on SRS.
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А.I. Iванiсiк

РОЗСIЮВАННЯ ГIНЗБУРГА–ФРАНКА ТА
ЧЕРЕНКОВСЬКОГО ТИПIВ ЗА САМОФОКУСУВАННЯ
НАНОСЕКУНДНИХ ЛАЗЕРНИХ
IМПУЛЬСIВ У РIДИНАХ

Р е з ю м е

Дослiджено динамiку нелiнiйно-оптичних процесiв (само-
фокусування, фазова самомодуляцiя, вимушене комбiна-
цiйне розсiювання) у керiвських рiдинах за дiї наносекун-
дних лазерних iмпульсiв. Результати доводять наявнiсть
перехiдного ефекту типу Гiнзбурга–Франка, який поро-
джує новi спектральнi компоненти лазерного випромiню-
вання на межi середовища. Пояснено генерацiю протяжних
частотно-кутових смуг вимушеного комбiнацiйного розсiю-
вання. У випадку збiгання швидкостi фокальної точки з
фазовою швидкiстю нелiнiйної поляризацiї на антистоксо-
вiй комбiнацiйнiй частотi та фазовою швидкiстю розсiяно-
го аксiального випромiнювання виникають найiнтенсивнi-
шi смуги, якi описуються рiвняннями, характерними для
черенковського випромiнювання.
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