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ENERGY SPECTRA CORRELATION
OF VIBRATIONAL AND ELECTRONIC EXCITATIONS
ANDTHEIRDISPERSION INGRAPHITE ANDGRAPHENE

The correlation between the vibrational and electron excitation modes in the energy spectra
of single-layer graphene and crystalline graphite, as well as the dispersion dependences of
those modes, has been studied. The methods of the theory of projective representations of the
point and spatial symmetry groups are used for the first time in order to interpret those cor-
relations. The correlations of vibrational and electron excitation spectra and the compatibility
conditions for irreducible projective representations in the descriptions of quantum states of
graphene and crystalline graphite at various points of their Brillouin zones are determined. For
the projective representations of all projective classes belonging to the hexagonal system, stan-
dard factor-systems are constructed for the first time. In particular, the factor-systems for
electron states are first determined. The results obtained are used to calculate, also for the
first time, the correct spinor multiplication tables, i.e. the multiplication tables for elements in
double symmetry groups. The developed method is applied to classify all high-symmetry points
in the Brillouin zones of single-layer graphene and crystalline graphite with respect to the
symmetry type of vibrational excitations.
K e yw o r d s: spinor representation of symmetry groups, factor-system, dispersion of elemen-
tary excitations.

1. Introduction

The study of the energy spectra of collective vibra-
tional and electron excitations in crystals and one-
and biperiodic nanostructures, as well as their disper-
sion, always attracted large attention of the scientific
community, because such researches are classified as
fundamental and undoubtedly possess both practical
and theoretical values. Nevertheless, today, there is
neither a complete understanding of the dispersion of
collective excitations nor their theoretical or symmet-
ric interpretation, even for such a widely researched
structure as crystalline graphite. The classes of pro-
jective representations, according to which the wave
functions of vibrational and electron states at vari-
ous points of the Brillouin zone in graphite are trans-
formed, remain unknown. The changes in the degen-
eration character of the energy spectrum of excita-
tions and their correlation with the respective excita-
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tions in single-layer graphene are not determined. At
present, there are no clear ideas concerning a cor-
rect construction of factor-systems belonging to dif-
ferent projective classes, as well as their reduction
to the standard form, which determines the shape of
dispersion curves and the energy state degeneration
multiplicity.

In this paper, the methods have been developed
for determining the projective classes themselves and
their changes at the Brillouin zone boundaries, as well
as the irreducible projective representations, accord-
ing to which the wave functions of the researched
quantum-mechanical systems are transformed. For
the first time, the methods for constructing factor-
systems that characterize a certain projective class
and their reduction to the standard form are pre-
sented, a new classification of projective classes for
hexagonal structures is proposed, and a correct ta-
ble for the symmetry transformations of the wave
functions of quantum states with a half-integer spin,
i.e. spinors, is determined. The symmetry analysis of
the dispersion of vibrational and electron excitations
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Fig. 1. Prism of reindicated 𝐻-rotations

is first carried out for the 𝜋-bands of graphite crys-
tals, and their correlations with the electron 𝜋-bands
in single-layer graphene are discussed.

2. System of H-Rotations
of the Group 6/𝑚𝑚𝑚(𝐷6ℎ)

Similarly to works [1, 2], we introduce a right-handed
oblique coordinate system with the axis 𝑍 directed
upward and the axis 𝑌 directed to the right (the an-
gle between the 𝑋 and 𝑌 axes equals 120∘) for H-
rotations (the rotational elements of both the first
and second kinds) of the group 6/𝑚𝑚𝑚(𝐷6ℎ). We
also use the digital notation for the elements, but
their ordinal numbers are somewhat changed. This
change is made for a more convenient representation
of the “block” character of the tables. This character
is determined by the internal structure of the group
6/𝑚𝑚𝑚(𝐷6ℎ), namely, by the fact that the group
𝐷6ℎ is a direct product of the groups 𝐷6 and 𝐶𝑖, i.e.
𝐷6ℎ = 𝐷6×𝐶𝑖, and the group 𝐷6, in turn, is a direct
product of groups 𝐷3 and 𝐶2, i.e. 𝐷6 = 𝐷3×𝐶2. The
group 𝐷3 contains an invariant subgroup, which can
be used to construct its factor group, the latter being
isomorphic to the group 𝐶2. According to this “com-
position principle”, the “principal” axis that deter-
mines symbols in the notation of irreducible represen-
tations of the group 𝐷6ℎ is the element 𝑐3, i.e. the ro-
tation around the third-order axis in the higher-rank
subgroup in the case where the highest-rank subgroup
is the first in all expressions for direct products. The
meaning of H-rotations is explained in Fig. 1. As was

done in works [1, 2], the inversion rotations have a
priority over the mirror ones.

3. Crystal Structures, Brillouin
Zones, and Basic Symmetry Elements

Figure 2, 𝑎 demonstrates a standard unit cell in the
crystal lattice of Bernal graphite 𝛾 − 𝐶 [3]. The cor-
responding standard diagram of its spatial symme-
try group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ) is shown in Fig. 2, 𝑏. Fi-
gure 2, 𝑐 illustrates the position and orientation of
symmetry elements of the point group 6/𝑚𝑚𝑚(𝐷6ℎ).

Figure 3 exhibits the Brillouin zone of the 𝛾 − 𝐶
graphite crystals and its symmetry points. The lat-
ter are marked by letters in Herring’s notation for
hexagonal structures [4]. The Wigner–Seitz unit cell
and the Brillouin zone for single-layer graphene 𝐶𝐿1

are demonstrated in Figs. 4, 𝑎 and 4, 𝑏, respectively.
In Fig. 4, 𝑎, the solid lines are used to schematically

mark a unit cell of graphene 𝐶𝐿1, show the primitive
translation vectors a1 and a2, and indicate the orien-
tation of graphene symmetry elements in the three-
dimensional space that was used in calculations. The
dashed lines illustrate the corresponding orientations
of the reciprocal lattice vectors b1 and b2 on an ar-
bitrary scale and the positions of reciprocal lattice
sites in the reciprocal space. In Fig. 4, 𝑏, on the con-
trary, the solid lines are used to show the reciprocal
lattice vectors, and the dashed ones to demonstrate
the direct lattice vectors. The unit cells (the Wigner–
Seitz cells) of the graphene layer in the coordinate
(Fig. 4, 𝑎) and reciprocal (Fig. 4, 𝑏) spaces (in the
latter case, this cell coincides with the first Brillouin
zone) are tinted grey. It is of interest that those cells
are rotated by an angle of 𝜋/2 with respect to each
other (or by an angle of 30∘, taking into account that
the rotation by 60∘ is a symmetry element in the both
cases). In Fig. 4, 𝑏, the high-symmetry points 𝐾 and
𝑀 in the Brillouin zone of graphene are also indi-
cated. The equivalent points are marked by one or
two primes.

The spatial symmetry group of the crystalline
graphite lattice, 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ), is non-symmor-
phic. It is determined by the basic (main) elements,
which can be chosen as follows:
ℎ1 = (0|𝑒), ℎ2 = (0|𝑐3), ℎ3 = (0|𝑐23), ℎ4 = (0|(𝑢2)1),

ℎ5 = (0|(𝑢2)2), ℎ6 = (0|(𝑢2)3), ℎ7 =
(︁a1
2

⃒⃒⃒
𝑐2

)︁
,

ℎ8 =
(︁a1
2

⃒⃒⃒
𝑐56

)︁
, ℎ9 =

(︁a1
2

⃒⃒⃒
𝑐6

)︁
, ℎ10 =

(︁a1
2

⃒⃒⃒
(𝑢′

2)1

)︁
,
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a b c
Fig. 2. Structure of the standard unit cell of crystalline graphite 𝛾−𝐶 (𝑎), the standard diagram of the spatial symmetry
group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ) (𝑏). arrangement and orientation of the elements of the point symmetry group 6/𝑚𝑚𝑚(𝐷6ℎ)

(𝑐). The circles indicate the positions of carbon atoms

ℎ11 =
(︁a1
2

⃒⃒⃒
(𝑢′

2)2

)︁
, ℎ12 =

(︁a1
2

⃒⃒⃒
(𝑢′

2)3

)︁
, ℎ13 = (0|𝑖),

ℎ14 = (0|𝑖𝑐3), ℎ15 = (0|𝑖𝑐23), ℎ16 = (0|𝑖(𝑢2)1),

ℎ17 = (0|𝑖(𝑢2)2), ℎ18 = (0|𝑖(𝑢2)3), ℎ19 =
(︁a1
2

⃒⃒⃒
𝑖𝑐2

)︁
,

ℎ20 =
(︁a1
2

⃒⃒⃒
𝑖𝑐56

)︁
, ℎ21 =

(︁a1
2

⃒⃒⃒
𝑖𝑐6

)︁
, ℎ22 =

(︁a1
2

⃒⃒⃒
𝑖(𝑢′

2)1

)︁
,

ℎ23 =
(︁a1
2

⃒⃒⃒
𝑖(𝑢′

2)2

)︁
, ℎ24 =

(︁a1
2

⃒⃒⃒
(𝑢′

2)3

)︁
,

where a1 is the primitive vector of the crystal lattice
directed along the axis 𝑂𝑍 (𝑂𝑧). At the same time,
the spatial symmetry group of the crystalline lattice
of single-layer graphene, 𝑃6/𝑚𝑚𝑚(𝐷𝐺80) [5] or the
triperiodic group 𝐷1

6ℎ, whose diagram coincides with
that of the biperiodic spatial group of single-layer
graphene, is symmorphic, and all its “rotational” el-
ements – the symmetry elements of the point group
6/𝑚𝑚𝑚(𝐷6ℎ) – do not contain nontrivial (partial)
translations.

4. New Classification of Projective
Classes for Projective Representations
of Group 6/𝑚𝑚𝑚(𝐷6ℎ) and Construction
of Corresponding Standard Factor-Systems

The determination of the representations 𝐷{k},
i.e. the irreducible representations of the spatial

Fig. 3. Brillouin zone of 𝛾 −𝐶 graphite crystals and its sym-
metry points

group 𝐺 with an irreducible star {k} of the wave vec-
tor k, is reduced to the finding of projective represen-
tations for the point group of equivalent directions 𝐹k

of the wave-vector group 𝐺k, the subgroup of group
𝐺. The groups 𝐹k are possible subgroups of the point
symmetry group of equivalent directions 𝐹 , which
characterizes the crystalline class of the crystal lat-
tice. A general method to construct irreducible rep-
resentations of the wave-vector group 𝐷k, which are
also called small representations, in the form of pro-
jective representations of the point groups of equiv-
alent directions of the wave-vector groups 𝐹k, which
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a

b
Fig. 4. Wigner–Seitz unit cells (𝑎) and Brillouin zone of single-layer graphene 𝐶𝐿1 (𝑏)

are isomorphic to the factor groups of the group 𝐺k

with respect to the infinite translation-invariant sub-
group, is described in work [6].

We recall that the projective or ray representations
are those representations that satisfy the relation

𝐷(𝑟2)𝐷(𝑟1) = 𝜔(𝑟2, 𝑟1)𝐷(𝑟2𝑟1), (1)

where 𝑟𝑖 is a “rotational” (of the first or second kind)
element of the group 𝐹k, and 𝜔(𝑟2, 𝑟1) is a set of ℎ2

complex, in the general case, numerical coefficients (ℎ
is the order of group), which is called a factor-system
and has the following properties:

|𝜔(𝑟2, 𝑟1)| = 1 (2)

and

𝜔(𝑟3, 𝑟2𝑟1)𝜔(𝑟2, 𝑟1) = 𝜔(𝑟3, 𝑟2)𝜔(𝑟3𝑟2, 𝑟1). (3)

If 𝐷(𝑟) is a certain projective representation belong-
ing to the factor-system 𝜔(𝑟2, 𝑟1), then any other pro-
jective representation

𝐷′(𝑟) =
𝐷(𝑟)

𝑢(𝑟)
, (4)

where 𝑢(𝑟) is an arbitrary single-valued function on
the group 𝐿 and |𝑢(𝑟)| = 1, is also a projective rep-

resentation of the group 𝐿, but with another factor-
system 𝜔′(𝑟2, 𝑟1), i.e.

𝐷′(𝑟2)𝐷
′(𝑟1) = 𝜔′(𝑟2, 𝑟1)𝐷

′(𝑟2𝑟1),

where

𝜔′(𝑟2, 𝑟1) =
𝜔(𝑟2, 𝑟1)𝑢(𝑟2𝑟1)

𝑢(𝑟1)𝑢(𝑟2)
. (5)

All factor-systems related by expression (5) are called
projective-equivalent (or 𝑝-equivalent). A set of all 𝑝-
equivalent factor-systems is called the class of factor-
systems. This is also true for the corresponding pro-
jective representations.

The group 6/𝑚𝑚𝑚 has eight classes of projective
representations. They are classified by means of a sys-
tem of three coefficients – 𝛼, 𝛽, and 𝛾 – which take
a value of 1 or −1. Each coefficient is determined by
the relation

[𝜔(𝑟𝑗 , 𝑟𝑖)]
−1𝜔(𝑟𝑖, 𝑟𝑗) =

𝜔(𝑟𝑖, 𝑟𝑗)

𝜔(𝑟𝑗 , 𝑟𝑖)

for the corresponding pair of commuting elements 𝑟𝑖
and 𝑟𝑗 selected from the group generators or the el-
ements belonging to different classes containing the
generators. As commuting elements for the group
6/𝑚𝑚𝑚, it is convenient to choose, e.g., the following
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group generators: 𝑎 = 𝑟1 = (𝑢2)1, 𝑏 = 𝑟2 = 𝑐2, and
𝑐 = 𝑟3 = 𝑖. In this case,

𝛼 =
𝜔(𝑎, 𝑏)

𝜔(𝑏, 𝑎)
=

𝜔[(𝑢2)1, 𝑐2]

𝜔[𝑐2, (𝑢2)1]
,

𝛽 =
𝜔(𝑎, 𝑐)

𝜔(𝑐, 𝑎)
=

𝜔[(𝑢2)1, 𝑖]

𝜔[𝑖, (𝑢2)1]
,

𝛾 =
𝜔(𝑏, 𝑐)

𝜔(𝑐, 𝑏)
=

𝜔(𝑐2, 𝑖)

𝜔(𝑖, 𝑐2)
.

For the classification and notation of the factor-
system classes and, respectively, the classes of projec-
tive representations in the group 6/𝑚𝑚𝑚, it is con-
venient to choose the following system:

∙ class 𝐾0: 𝛼 = 1, 𝛽 = 1, 𝛾 = 1;
∙ class 𝐾1: 𝛼 = −1, 𝛽 = 1, 𝛾 = 1;
∙ class 𝐾2: 𝛼 = 1, 𝛽 = −1, 𝛾 = 1;
∙ class 𝐾3: 𝛼 = −1, 𝛽 = −1, 𝛾 = 1;
∙ class 𝐾4: 𝛼 = 1, 𝛽 = 1, 𝛾 = −1;
∙ class 𝐾5: 𝛼 = −1, 𝛽 = 1, 𝛾 = −1;
∙ class 𝐾6: 𝛼 = 1, 𝛽 = −1, 𝛾 = −1;
∙ 𝐾7: 𝛼 = −1, 𝛽 = −1, 𝛾 = −1.
This system is substantially different from that pro-

posed in work [6] by both the definitions of the coef-
ficients and their values.

The irreducible representations of the wave-vector
group 𝐷k contain an infinite number of members
𝐷k(ℎ) for the elements ℎ ∈ 𝐺k. Every element ℎ can
be expressed in the form ℎ = (𝛼+ a|𝑟), where 𝑟 is a
“rotational” element from the set forming the group
𝐹k, 𝛼 is the vector of a nontrivial translation cor-
responding to the rotational element 𝑟, and a is the
vector of a trivial translation by the periods of Bra-
vais lattice.

The matrices 𝐷k(ℎ) and their characters 𝜒𝐷k(ℎ) are
determined from the formulas

𝐷k(ℎ) = 𝑒−𝑖𝑘(𝛼+a)𝑤(𝑟)𝐷(𝑟) (6)

and
𝜒𝐷k(ℎ) = 𝑒−𝑖𝑘(𝛼+a)𝑤(𝑟)𝜒𝐷(𝑟), (7)

respectively. Here, in the case of representations that
describe states neglecting their spin (with an in-
teger spin), 𝑤(𝑟) = 𝑢(𝑟) ≡ 𝑢1,k(𝑟) is a func-
tion that transforms the factor-system 𝜔(𝑟2, 𝑟1) ≡
≡ 𝜔1,k(𝑟2, 𝑟1), which is determined by the properties
of the spatial group of the crystal, to the standard
form. In the case of representations describing the

states making allowance for their spin (with a half-
integer spin), 𝑤(𝑟) = 𝑢𝑠(𝑟) ≡ 𝑢1,k(𝑟)𝑢2(𝑟) is a func-
tion that transforms the factor-system 𝜔(𝑟2, 𝑟1) =
= 𝜔𝑠(𝑟2, 𝑟1) = 𝜔1,k(𝑟2,𝑟1)𝜔2(𝑟2, 𝑟1), which is deter-
mined by the spinor transformations in the spatial
group, and 𝑢2(𝑟) is a function that transforms the
factor-system 𝜔2(𝑟2, 𝑟1), which is determined by the
spinor transformations at the symmetry group oper-
ations with the group of wave-vector directions 𝐹k,
to the standard form 𝜔′

2(𝑟2, 𝑟1). In addition, 𝐷(𝑟)
are irreducible representations corresponding to the
standard factor-systems of the projective class, to
which the factor-system 𝜔(𝑟2, 𝑟1) belongs, and 𝜒𝐷(𝑟)

are the characters of irreducible projective represen-
tations 𝐷(𝑟).

The factor-system 𝜔1(𝑟2, 𝑟1) ≡ 𝜔1,k(𝑟2, 𝑟1) is con-
structed according to the formula [6]

𝜔1,k(𝑟2, 𝑟1) = exp
[︀
𝑖(k− 𝑟−1

2 k)𝛼1

]︀
, (8)

so that no difficulty arises at any point in the Brillouin
zone. It is also easy to determine the projective class,
to which this factor-system belongs [6].

The transformation of spinors, i.e. the wave func-
tions of states with a half-integer spin, is character-
ized by double-valued representations. For their con-
struction, the Bethe method is often applied [7]. It is
based on the introduction of an additional, abstract
from the geometric viewpoint, symmetry element 𝑞,
which commutes with all symmetry operations and is
interpreted as a rotation of the quantum-mechanical
system by an angle of 2𝜋 around an arbitrary axis
l. This element changes the sign of the spinor, which
characterizes the quantum states, into the opposite
one. That is why the corresponding representation of
the symmetry group is called two-valued. The next
step in the Bethe method consists in the construction
of a double group containing 2𝑛 elements: 𝑛 “rota-
tional” symmetry elements 𝑟 and 𝑛 additional ele-
ments 𝑞𝑟. Next, the irreducible representations of the
double group are found. Those of them, which are ad-
ditional to the representations of the ordinary group,
are the sought two-valued representations of the or-
dinary symmetry group. This method of constructing
two-valued representations does not take into account
that the latter should be projective representations of
the ordinary symmetry group, and there is no need
to construct a double abstract Bethe group for their
construction. We only need to determine the factor-
systems 𝜔2(𝑟2, 𝑟1), which reflect the transformations
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of the wave functions of quantum-mechanical systems
with a half-integer spin.

The factor-system 𝜔2(𝑟2, 𝑟1) is defined as follows:

𝜔2(𝑟2, 𝑟1) =

{︂
1 if 0 6 𝜗 < 2𝜋,
−1 if 2𝜋 6 𝜗 < 4𝜋,

(9)

where 𝜗 is the angle of the rotation corresponding
to the element product 𝑟2𝑟1. The projective class, to
which the factor-system belongs, can also be easily
determined [6].

Let us define a standard factor-system for the pro-
jective representations of the projective class 𝐾𝑖.

As the standard factor-systems for projective repre-
sentations of various projective classes 𝐾𝑖 of noncom-
mutative (non-Abelian) point symmetry groups of the
order ℎ, we will call the factor-systems 𝜔′(𝑟2, 𝑟1) con-
sisting of real coefficients equal to 1 or −1 and con-
taining the maximum number of periods in the el-
ements 𝑟2, which form adjacent classes forming the
factor-groups according to the corresponding invari-
ant subgroups.

Let us take into account the following circum-
stances. First, the standard factor-systems for the
representations of the projective class 𝐾0 completely
consist of the coefficients equal to 1. Secondly, the
matrices of the irreducible representations corre-
sponding to standard factor-systems are known for
both the class 𝐾0 (in this case, they coincide with
ordinary vector representations) and the class 𝐾1

(in this case, they can be easily calculated accord-
ing to the transformations of the angular momentum
with a half-integer quantum number 𝑗). Therefore,
the construction of irreducible projective represen-
tations of the class 𝐾1 of complete spatial symme-
try groups – in particular, spinor representations –
is reduced to the construction of the factor-systems
𝜔2(𝑟2, 𝑟1), the determination of the forms for the stan-
dard factor-systems of the class 𝐾1, and the deter-
mination of the functions 𝑢2(𝑟) that transform the
factor-systems 𝜔2(𝑟2, 𝑟1) to the 𝑝-equivalent standard
form 𝜔′

2(𝑟2, 𝑟1).

5. Construction of Factor-Systems
𝜔2(𝑟2, 𝑟1) that Describe the Transformation
of Spinors under the Action of Symmetry
Operations, and their Reduction to the
Standard Form 𝜔′

2(𝑟2, 𝑟1)

Let us construct a factor-system 𝜔2(𝑟2, 𝑟1) that de-
scribes the transformation of spin variables for the

symmetry group 6/𝑚𝑚𝑚 (𝐷6ℎ). As the 6/𝑚𝑚𝑚
group generators, we select the elements

𝑎 = 𝑐3, 𝑏 = (𝑢2)1, 𝑐 = 𝑐2, 𝑑 = 𝑖. (10)

This choice of generators makes allowance for the
composition principle. According to the latter, the
group 6/𝑚𝑚𝑚 can be represented as the direct prod-
uct of the groups 622 and 1̄ (i.e. 6/𝑚𝑚𝑚 = 622× 1̄);
then, the group 622 as the direct product of the
groups 32 and 2 (i.e. 622 = 32 × 2), and the group
32 as the direct product of groups 3 and 2′ (i.e.
32 = 3× 2′).

By applying the generating relations, which are sat-
isfied by the selected generating elements, let us cal-
culate all values for𝜔2(𝑟2, 𝑟1). It is important that, for
this operation, we should use the generating relations
for the double group (6/𝑚𝑚𝑚)′:

𝑎6 = 𝑒, 𝑏4 = 𝑒, 𝑐4 = 𝑒, 𝑑2 = 𝑒,
𝑎𝑏 = 𝑞𝑏𝑎2, 𝑎𝑐 = 𝑐𝑎, 𝑎𝑑 = 𝑑𝑎,
𝑏𝑐 = 𝑞𝑐𝑏, 𝑏𝑑 = 𝑑𝑏, 𝑐𝑑 = 𝑑𝑐.

(11)

While finding algebraic expressions for the elements
of the double group (6/𝑚𝑚𝑚)′ in terms of its gen-
erating elements, let us apply the following relation,
which is general for the elements of the infinite double
group of rotations 𝐾 ′ [6, 8]:

𝑓−1𝑐l(𝛼)𝑓 = 𝑐𝑓−1l(𝛼). (12)

Here, 𝑐l(𝛼) means a rotation by the angle 𝛼 around
the axis l, and 𝑓 is an arbitrary rotation in the dou-
ble rotation group, with the unity operation being
considered as a rotation by an angle of 4𝜋. It is re-
lation (12) that allows the generating permutation
relations indicated above and the algebraic expres-
sions for the elements of the double group in terms
of its generating elements [8] to be obtained. For ex-
ample, for the double-group element (𝑢2)2, we obtain
𝑐3(𝑢2)1𝑞𝑐

2
3 = (𝑢2)2, which brings us to the expres-

sion

(𝑢2)2 = 𝑞𝑎𝑏𝑎2 = 𝑞𝑞𝑏𝑎2𝑎2 = 𝑏𝑎4 = 𝑞𝑏𝑎. (13)

Note that another choice of generating elements
can be used, but then the generating relations for
them will also be changed. One can easily see that,
provided the generating elements (11), the follow-
ing algebraic expressions are obtained for the ele-
ments of the double group (6/𝑚𝑚𝑚)′: 𝑒 = 𝑑0𝑐0𝑏0𝑎0,
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𝑐3 = 𝑑0𝑐0𝑏0𝑎1, 𝑐23 = 𝑑0𝑐0𝑏0𝑎2, (𝑢2)1 = 𝑑0𝑐0𝑏1𝑎0,
(𝑢2)2 = 𝑞𝑑0𝑐0𝑏1𝑎1, (𝑢2)3 = 𝑑0𝑐0𝑏1𝑎2, 𝑐2 = 𝑑0𝑐1𝑏0𝑎0,
𝑐56 = 𝑑0𝑐1𝑏0𝑎1, 𝑐6 = 𝑞𝑑0𝑐1𝑏0𝑎2, (𝑢′

2)1 = 𝑑0𝑐1𝑏1𝑎0,
(𝑢′

2)2 = 𝑞𝑑0𝑐1𝑏1𝑎1, (𝑢′
2)3 = 𝑑0𝑐1𝑏1𝑎2, 𝑖 = 𝑑1𝑐0𝑏0𝑎0,

𝑖𝑐3 = 𝑑1𝑐0𝑏0𝑎1, 𝑖𝑐23 = 𝑑1𝑐0𝑏0𝑎2, 𝑖(𝑢2)1 = (𝜎𝑑)1 =
= 𝑑1𝑐0𝑏1𝑎0, 𝑖(𝑢2)2 = (𝜎𝑑)2 = 𝑞𝑑1𝑐0𝑏1𝑎1, 𝑖(𝑢2)3 =
= (𝜎𝑑)3 = 𝑑1 𝑐0 𝑏1 𝑎2, 𝑖𝑐2 = 𝜎ℎ = 𝑑1 𝑐1 𝑏0 𝑎0, 𝑖 𝑐56 =
= 𝑑1𝑐1𝑏0𝑎1, 𝑖𝑐6 = 𝑞𝑑1𝑐1𝑏0𝑎2, 𝑖(𝑢′

2)1 = (𝜎′
𝑑)1 =

= 𝑑1𝑐1𝑏1𝑎0, 𝑖(𝑢′
2)2 = (𝜎′

𝑑)2 = 𝑞𝑑1𝑐1𝑏1𝑎1, 𝑖(𝑢′
2)3 =

= (𝜎′
𝑑)3 = 𝑑1𝑐1𝑏1𝑎2. The factor-system 𝜔2(𝑟2, 𝑟1) cal-

culated in such a way for the group 6/𝑚𝑚𝑚 is pre-
sented in Table 1. It belongs to the projective class
𝐾1, because 𝛼 = −1, 𝛽 = 1, and 𝛾 = 1 for it. The
subscripts in parentheses near the coefficient values
for the factor-system 𝜔2(𝑟2, 𝑟1) correspond to the
multiplication table for the elements of the group
6/𝑚𝑚𝑚 (numbers in the parentheses indicate the nu-
merical notation of the elements corresponding to the
products 𝑟2𝑟1).

It should be noted that O.V. Kovalev [1, 2] made
an attempt to construct this factor-system in the
form of a multiplication table for the spinors in the
group 6/𝑚𝑚𝑚. However, his attempt can be consid-
ered as a failure, because 216 of 576 values tabulated
in works [1, 2] have the opposite sign. The matter is
that the expression for the spinor wave function of a
quantum-mechanical system with a half-integer spin
contains an additional factor 𝑐 [9]. This factor can
accept either of two values: +1 or −1. Really, when
being rotated by an angle of 2𝜋 around any axis, the
spinor changes its sign to the opposite one. This is
the essence of the two-valued character of the repre-
sentation matrix for every “rotational” symmetry el-
ement. Without restricting the general character of
consideration, such a behavior is allowed only for
the “rotational” generating symmetry elements of the
crystalline class group. For other symmetry elements
that are products of various powers of group gener-
ators, this factor cannot anymore accept any of two
values. It always accepts the value following from the
relation that defines this element. In other words, the
arbitrary choice of the “internal” spinor sign for group
generators does not affect the values of coefficients of
the factor-system. Unfortunately, in works [1, 2], the
sign of a spinor at a transformation with the help
of any “rotational” group element of the crystalline
class was determined by algebraic expressions for the
geometric image of the element in the ordinary, one-
valued at rotations, three-dimensional space; i.e. for

every of the nongenerate “rotational” group elements,
it was determined arbitrarily.

The calculation of the factor-system 𝜔2(𝑟2, 𝑟1)
within our method is correct because, firstly, using
transformation (5) and the coefficients 𝑢2(𝑟) indi-
cated in the lower part of Table 1 and calculated by
formulas (13.3), (14.18), and (14.19) in work [6], it
is reduced to the 𝑝-equivalent block-symmetric form,
which corresponds to the definition of the standard
factor-system, i.e. the factor-system 𝜔′

2(𝑟2, 𝑟1). Se-
cond, when transforming the matrices of irreducible
projective representations and their characters corres-
ponding to the standard factor-system (they can be
obtained independently by the method presented in
work [6] for the extended group construction, i.e. a
representation group, where they are determined by
its unique irreducible representations and are comple-
mentary to the ordinary irreducible vector represen-
tations [6]) according to formula (4), the same coef-
ficients 𝑢2(𝑟) bring about the matrices and the char-
acters of spinor representations that are identical to
those obtained by means of the double group with
the use of the Bethe method. Therefore, the factor-
system 𝜔′

2(𝑟2, 𝑟1) is a true standard factor-system of
the projective class 𝐾1 of the group 6/𝑚𝑚𝑚.

Knowing the form of the standard factor-system
𝜔′
2(𝑟2, 𝑟1) for the class 𝐾1, we can construct standard

factor-systems and, hence, irreducible projective rep-
resentations for all projective classes. It will be done
below.

Since the factor-systems 𝜔2(𝑟2, 𝑟1) and 𝜔′
2(𝑟2, 𝑟1)

for the symmetry group 6/𝑚𝑚𝑚 belong to the pro-
jective class 𝐾1, the standard factor-system 𝜔′

2(𝑟2, 𝑟1)
for this group coincides with the standard factor-
system 𝜔′

(1)(𝑟2, 𝑟1)[𝜔
′
2(𝑟2, 𝑟1) ≡ 𝜔′

(1)(𝑟2, 𝑟1)], where
the parenthesized subscript of the standard factor-
system means its projective class. The standard ex-
pression for the factor-system 𝜔2(𝑟2, 𝑟1), which is de-
noted as 𝜔′

2(𝑟2, 𝑟1) [for the group 6/𝑚𝑚𝑚, we have
𝜔′
2(𝑟2, 𝑟1) = 𝜔′

(1)(𝑟2, 𝑟1)], is shown in Table 2. In Ta-
ble 2, an additional partitioning of the symmetry el-
ements of the group 6/𝑚𝑚𝑚 is used: horizontally
into blocks 𝑎, 𝑏, 𝑐, and 𝑑; and vertically into blocks
𝑎(𝑎1, 𝑎2), 𝑏(𝑏1, 𝑏2), 𝑐(𝑐1, 𝑐2), and 𝑑(𝑑1, 𝑑2). This par-
titioning allows a compact form (it is applied below)
to be used to write down factor-systems, in which
the coefficients with the same value in every block
are substituted by the value of one coefficient, which
is the same for all coefficients in the block. In Ta-
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ble 2 and below, continuous lines are used to mark
the contours of such blocks with the coefficients hav-
ing a value of −1.

6. Characters of Irreducible
Representations of the Double Group
(6/𝑚𝑚𝑚)′ and the Irreducible Projective
Representations of the Group 6/𝑚𝑚𝑚,
Which Correspond to Two-Valued Projective
Representations of the Class 𝐾1, Spinor
Ones and Those Corresponding
to the Standard Factor-System

The characters of irreducible representations of the
double group (6/𝑚𝑚𝑚)′(𝐷′

6ℎ) are quoted in Ta-
ble 3. It is their complementary single-valued irre-
ducible representations (complementary to ordinary
vector single-valued nonnegative representations of
the group 6/𝑚𝑚𝑚, which can be obtained from the
representations of the group (6/𝑚𝑚𝑚)′ by a sim-
ple cancellation of the element 𝑞 from all relations)
that are two-valued projective or spinor representa-
tions of the group 6/𝑚𝑚𝑚. The spinor representa-
tions are marked by the symbols 𝐸′

1, 𝐸′
2, and 𝐸′

3 in
the Mulliken notation or by the symbols Γ7, Γ8, and
Γ9 in the Koster notation, where the letter Γ denotes
not only their membership to a certain point group
(in the given case, this is the group 6/𝑚𝑚𝑚), but
also to the coinciding group of directions of the wave-
vector group of point Γ in crystals or periodic nanos-
tructures. In the form of projective representations,
these irreducible representations and their characters
can also be obtained by formulas (6) and (7), where
𝐷(𝑟) and 𝜒𝐷(𝑟) are projective representations and
their characters, respectively, which correspond to the
standard factor-systems of those classes that include
the factor-systems 𝜔(𝑟2, 𝑟1).

The characters of irreducible representations of the
projective classes 𝐾0 (ordinary single-valued or vector
ones) and 𝐾1 (two-valued projective or spinor ones)
are quoted in Table 4. It is easy to see that the char-
acters of irreducible projective representations of the
class 𝐾1 of the group 6/𝑚𝑚𝑚 coincide with the char-
acters of spinor irreducible representations of the dou-
ble group (6/𝑚𝑚𝑚)′.

The characters of the projective representations of
the projective class 𝐾1 that correspond to the stan-
dard factor-system 𝜔′

(1)(𝑟2, 𝑟1) can be obtained, as
was mentioned above, by the method of construct-
ing a group of representations for the group 6/𝑚𝑚𝑚

[6] or, which is much simpler, using formula (4)
with the substituted values for the coefficients 𝑢2(𝑟),
which bring the factor-system 𝜔2(𝑟2, 𝑟1) to the stan-
dard form 𝜔′

(1)(𝑟2, 𝑟1). The characters of the irre-
ducible projective representations of the projective
classes 𝐾0 and 𝐾1 of the group 6/𝑚𝑚𝑚 that cor-
respond to the standard factor-systems 𝜔′

(0)(𝑟2, 𝑟1)

and 𝜔′
(1)(𝑟2, 𝑟1), respectively, are quoted in Ta-

ble 5, with the characters of two-dimensional pro-
jective representations that correspond to the stan-
dard factor-system 𝜔′

(1)(𝑟2, 𝑟1), being designated by
the symbol 𝑃 .

7. Factor-Systems Associated
with the Structure of Spatial Symmetry
Groups. Their Construction and Reduction
to the Standard Form. Determination
of Projective Classes for Vibrational
and Electron Excitations at Various
Points in the Brillouin Zone

Now, let us use formula (8) to construct the factor-
system 𝜔1,𝐴(𝑟2, 𝑟1). The latter is determined by the
properties of the spatial symmetry group of a graphite
crystal and is responsible for single-valued irreducible
projective representations of point 𝐴. The corre-
sponding result is presented in Table 6. After calcu-
lating the values of the coefficients 𝛼, 𝛽, and 𝛾, one
can easily see that the constructed factor-system be-
longs to the projective class 𝐾5. The values of the
function on the group 𝑢1,𝐴(𝑟), which bring the factor-
system 𝜔1,𝐴(𝑟2, 𝑟1) to the standard form 𝜔′

1,𝐴(𝑟2, 𝑟1),
can be easily found by the method described in work
[6, formulas (14.33)] and in works [10–12]. They are
exhibited in the lower part of Table 6.

Table 7 illustrates the standard factor-system
of the projective class 𝐾5, i.e. the factor-system
𝜔′
1,𝐴(𝑟2, 𝑟1) ≡ 𝜔′

(5)(𝑟2, 𝑟1), which can be easily obtai-
ned making use of the values of the function 𝑢1,𝐴(𝑟)
and formula (5). The characters of one-valued irre-
ducible projective representations for point 𝐴 are also
easy to be obtained, if we know the values of the func-
tion 𝑢1,𝐴(𝑟) and the characters of irreducible projec-
tive representations of the class 𝐾5 corresponding to
the standard factor-system of the class 𝐾5, which are
given in Table 8 [6]. The single-valued irreducible pro-
jective representations for point 𝐴 are given in Table 9
(the first three irreducible projective representations).

It is easy to get convinced that the two-valued
(spinor) irreducible projective representations at
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Table 3. Characters of irreducible representations of the double group (6/𝑚𝑚𝑚)′ (𝐷′
6ℎ)

(6/𝑚𝑚𝑚)′ (𝐷′
6ℎ) 𝑒 𝑞

𝑐3,
𝑞𝑐23

𝑐23,
𝑞𝑐3

3𝑢2,
3𝑞𝑢2

𝑐2,
𝑞𝑐2

𝑐56,
𝑞𝑐6

𝑐6,
𝑞𝑐56

3𝑢′
2

3𝑞𝑢′
2

𝑖 𝑞𝑖
𝑖𝑐3,
𝑞𝑖𝑐23

𝑖𝑐23,
𝑞𝑖𝑐3

3𝜎𝑑,
3𝑞𝜎𝑑

𝜎ℎ,
𝑞𝜎ℎ

𝑖𝑐56,
𝑞𝑖𝑐6

𝑖𝑐6,
𝑞𝑖𝑐56

3𝜎′
𝑑,

3𝑞𝜎′
𝑑

Γ+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Γ−
1 𝐴−

1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Γ+
2 𝐴+

2 1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1

Γ−
2 𝐴−

2 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

Γ+
3 𝐴+

3 1 1 1 1 −1 1 1 1 −1 1 1 1 1 −1 1 1 1 −1

Γ−
3 𝐴−

3 1 1 1 1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1

Γ+
4 𝐴+

4 1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 1

Γ−
4 𝐴−

4 1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1

Γ+
5 𝐸+

1 2 2 −1 −1 0 2 −1 −1 0 2 2 −1 −1 0 2 −1 −1 0
Γ−
5 𝐸−

1 2 2 −1 −1 0 2 −1 −1 0 −2 −2 1 1 0 −2 1 1 0
Γ+
6 𝐸+

2 2 2 −1 −1 0 −2 1 1 0 2 2 −1 −1 0 −2 1 1 0
Γ−
6 𝐸−

2 2 2 −1 −1 0 −2 1 1 0 −2 −2 1 1 0 2 −1 −1 0
Γ+
7 (𝐸′

1)
+ 2 −2 1 −1 0 0

√
3 −

√
3 0 2 −2 1 −1 0 0

√
3 −

√
3 0

Γ−
7 (𝐸′

1)
− 2 −2 1 −1 0 0

√
3 −

√
3 0 −2 2 −1 1 0 0 −

√
3

√
3 0

Γ+
8 (𝐸′

2)
+ 2 −2 1 −1 0 0 −

√
3

√
3 0 2 −2 1 −1 0 0 −

√
3

√
3 0

Γ−
8 (𝐸′

2)
− 2 −2 1 −1 0 0 −

√
3

√
3 0 −2 2 −1 1 0 0

√
3 −

√
3 0

Γ+
9 (𝐸′

3)
+ 2 −2 −2 2 0 0 0 0 0 2 −2 −2 2 0 0 0 0 0

Γ−
9 (𝐸′

3)
− 2 −2 −2 2 0 0 0 0 0 −2 2 2 −2 0 0 0 0 0

Table 4. Characters of single- and two-valued irreducible projective representations of point Γ

Projec-
tive
class

Indication
of an irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝜎𝑑 𝜎ℎ 𝑖𝑐56 𝑖𝑐6 3𝜎′

𝑑

𝐾0 Γ+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Γ−
1 𝐴−

1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

Γ+
2 𝐴+

2 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

Γ−
2 𝐴−

2 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
Γ+
3 𝐴+

3 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1

Γ−
3 𝐴−

3 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1
Γ+
4 𝐴+

4 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1
Γ−
4 𝐴−

4 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1

Γ+
5 𝐸+

1 2 −1 −1 0 2 −1 −1 0 2 −1 −1 0 2 −1 −1 0
Γ−
5 𝐸−

1 2 −1 −1 0 2 −1 −1 0 −2 1 1 0 −2 1 1 0
Γ+
6 𝐸+

2 2 −1 −1 0 −2 1 1 0 2 −1 −1 0 −2 1 1 0
Γ−
6 𝐸−

2 2 −1 −1 0 −2 1 1 0 −2 1 1 0 2 −1 −1 0

𝐾1 Γ+
7 (𝐸′

1) 2 1 −1 0 0
√
3 −

√
3 0 2 1 −1 0 0

√
3 −

√
3 0

Γ−
7 (𝐸′

1) 2 1 −1 0 0
√
3 −

√
3 0 −2 −1 1 0 0 −

√
3

√
3 0

Γ+
8 (𝐸′

2) 2 1 −1 0 0 −
√
3

√
3 0 2 1 −1 0 0 −

√
3

√
3 0

Γ−
8 (𝐸′

2) 2 1 −1 0 0 −
√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

Γ+
9 (𝐸′

3) 2 −2 2 0 0 0 0 0 2 −2 2 0 0 0 0 0
Γ−
9 (𝐸′

3) 2 −2 2 0 0 0 0 0 −2 2 −2 0 0 0 0 0
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Table 5. Characters of irreducible projective representations of the projective classes
𝐾0 and 𝐾1 of the group 6/𝑚𝑚𝑚 corresponding to the standard factor-systems 𝜔′

(0)
(𝑟2, 𝑟1) and 𝜔′

(1)
(𝑟2, 𝑟1)

Projec-
tive
class

Indication
of an irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐1 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝜎𝑑 𝜎ℎ 𝑖𝑐56 𝑖𝑐6 3𝜎′

𝑑

𝐾0 Γ+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Γ−
1 𝐴−

1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

Γ+
2 𝐴+

2 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

Γ−
2 𝐴−

2 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
Γ+
3 𝐴+

3 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1

Γ−
3 𝐴−

3 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1
Γ+
4 𝐴+

4 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1
Γ−
4 𝐴−

4 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1

Γ+
5 𝐸+

1 2 −1 −1 0 2 −1 −1 0 2 −1 −1 0 2 −1 −1 0
Γ−
5 𝐸−

1 2 −1 −1 0 2 −1 −1 0 −2 1 1 0 −2 1 1 0
Γ+
6 𝐸+

2 2 −1 −1 0 −2 1 1 0 2 −1 −1 0 −2 1 1 0
Γ−
6 𝐸−

2 2 −1 −1 0 −2 1 1 0 −2 1 1 0 2 −1 −1 0

𝐾1 (𝑃
(1)
1 )+ 2 −1 −1 0 0

√
3𝑖 −

√
3𝑖 0 2 −1 −1 0 0

√
3𝑖 −

√
3𝑖 0

(𝑃
(1)
1 )− 2 −1 −1 0 0

√
3𝑖 −

√
3𝑖 0 −2 1 1 0 0 −

√
3𝑖

√
3𝑖 0

(𝑃
(1)
2 )+ 2 −1 −1 0 0 −

√
3𝑖

√
3𝑖 0 2 −1 −1 0 0 −

√
3𝑖

√
3𝑖 0

(𝑃
(1)
2 )− 2 −1 −1 0 0 −

√
3𝑖

√
3𝑖 0 −2 1 1 0 0

√
3𝑖 −

√
3𝑖 0

(𝑃
(1)
3 )+ 2 2 2 0 0 0 0 0 2 2 2 0 0 0 0 0

(𝑃
(1)
3 )− 2 2 2 0 0 0 0 0 −2 −2 −2 0 0 0 0 0

point 𝐴 belong to the projective class 𝐾4. Really,
by multiplying the corresponding values of the con-
stants 𝛼, 𝛽, and 𝛾, we obtain that, in our case,
𝐾1 × 𝐾5 = 𝐾1 × 𝐾5 = 𝐾1𝐾5 = 𝐾4. The standard
factor-system of the class 𝐾4 is the factor-system
𝜔′
(4)(𝑟2, 𝑟1)

1 with the coefficients 𝜔′
(4)(𝑟2, 𝑟1) =

= 𝜔′
(1)(𝑟2, 𝑟1)𝜔

′
(5)(𝑟2, 𝑟1). The corresponding charac-

ters of the two-valued (spinor) projective representa-
tions at point 𝐴, which are related to the projective
class 𝐾4, are given in Table 9 (the remaining three ir-
reducible projective representations). The characters
of those irreducible projective representations can be
obtained by multiplying the values of the products
𝑢1,𝐴(𝑟)𝑢2(𝑟) and the values of the characters of ir-
reducible projective representations of class 𝐾4 that
correspond to the standard factor-system of the class
𝐾4 (they are presented in Table 8 [6]).

1 It is easy to see that 𝜔′
(4)

(𝑟2, 𝑟1) = 𝜔′
2,𝐴(𝑟2, 𝑟1) =

= 𝜔′
1,𝐴 (𝑟2, 𝑟1)𝜔′

2 (𝑟2, 𝑟1) = 𝜔′
(5)

(𝑟2, 𝑟1)𝜔′
(1)

(𝑟2, 𝑟1) =

=𝜔′
(1)

(𝑟2, 𝑟1)𝜔′
(5)

(𝑟2, 𝑟1), where 𝜔′
2,𝐴(𝑟2, 𝑟1) is a standard

factor-system for the corresponding two-valued projective
representations at point 𝐴.

Now, it is easy to determine the form of stan-
dard factor-systems for other projective classes of
the group 6/𝑚𝑚𝑚. The standard factor-systems for
all eight projective classes of the group 6/𝑚𝑚𝑚 are
quoted in Table 10.

In the absence of external magnetic fields, addi-
tional conditions are imposed on the wave functions
of states and, as a result, the representations. Those
conditions are associated with the invariance with re-
spect to the time inversion. Provided that they are
satisfied, an additional degeneration may arise for
some states.

8. Symmetry of Lattice Vibrations
and Electron 𝜋-Bands, and Their Dispersion
in Single-Layer Graphene 𝐶𝐿1

and Crystalline Graphite 𝛾 − 𝐶

The representations of fundamental vibrations in
crystal lattices (Γlat. vibr) and the electron 𝜋-bands
at 𝑘 = 0 (Γ𝜋) for single-layer graphene 𝐶𝐿1 and
crystalline graphite 𝛾 − 𝐶 are determined by the
same point group 6/𝑚𝑚𝑚(𝐷6ℎ). In the case of single-
layer graphene, this group describes csymmetry of
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Table 8. Characters of irreducible projective representations of the projective classes 𝐾5 and 𝐾4

of the group 6/𝑚𝑚𝑚 corresponding to the standard factor-systems of those classes 𝜔′
(5)

(𝑟2, 𝑟1) and 𝜔′
(4)

(𝑟2, 𝑟1)

Projec-
tive
class

Indication
of an irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐1 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝜎𝑑 𝜎ℎ 𝑖𝑐56 𝑖𝑐6 3𝜎′

𝑑

𝐾5 𝑃
(5)
1 2 2 2 0 0 0 0 0 0 0 0 2 0 0 0 0

𝑃
(5)
2 2 2 2 0 0 0 0 0 0 0 0 −2 0 0 0 0

𝑄(5) 4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

𝐾4 𝑃
(4)
1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

𝑃
(4)
2 2 2 2 −2 0 0 0 0 0 0 0 0 0 0 0 0

𝑄(4) 4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9. Characters of single- and two-valued irreducible projective representations of point 𝐴

Projec-
tive
class

Indication
of an irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐1 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝜎𝑑 𝜎ℎ 𝑖𝑐56 𝑖𝑐6 3𝜎′

𝑑

𝐾5 𝐴1 2 2 2 0 0 0 0 0 0 0 0 2 0 0 0 0
𝐴2 2 2 2 0 0 0 0 0 0 0 0 −2 0 0 0 0
𝐴3 4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

𝐾4 𝐴4 2 −2 2 2𝑖 0 0 0 0 0 0 0 0 0 0 0 0
𝐴4 +𝐴5<𝐴5 2 −2 2 −2𝑖 0 0 0 0 0 0 0 0 0 0 0 0

𝐴6 4 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

the macromolecular class; and in the case of crys-
talline graphite 𝛾−𝐶, the symmetry of its crystalline
class. The term “macromolecular class”, unlike the
term “crystalline class”, will be used for the symmetry
group of equivalent directions in periodic nanostruc-
tures with bi- or single-periodic infinite translation-
invariant subgroups, whereas the term “crystalline
class” describes a point symmetry group of equiva-
lent directions in a three-periodic structure, a crystal,
where the translational symmetry elements form an
infinite three-periodic subgroup. The representations
Γlat. vibr and Γ𝜋 are determined by the formulas [13]

Γlat. vibr = Γeq ⊗ Γvector, Γ𝜋 = Γeq ⊗ Γ𝑧, (14)

where Γeq is the atomic equivalence representation at
point Γ, and Γvector is the representation of the po-
lar vector r with the components 𝑥, 𝑦, and 𝑧. While
determining Γ𝜋, only Γ𝑧 is used, which is an irre-
ducible representation for a vector directed along the

𝑧-axis, because the electron 𝜋-bands in graphene and
graphite are formed by electron 𝑝𝑧-orbitals.

Formulas (14) determine the vibrational and elec-
tron representations for elementary excitations with
𝑘 ̸= 0 as well [13]. In particular, the character
𝜒eq(𝑅𝛼) of the atomic equivalence representation for
the symmetry element 𝑅𝛼 of the macromolecular and
crystalline classes can be defined by the following for-
mula at any point in the Brillouin zone of periodic
macromolecular and crystalline structures:

𝜒eq(𝑅𝛼) =
∑︁
𝑗

𝛿𝑅𝛼r𝑗 ,r𝑗𝑒
𝑖K𝑚r𝑗 . (15)

Here, the operation 𝑅𝛼 translates an atom into an
equivalent position, i.e. it satisfies the condition

𝑅𝛼r𝑗 = r𝑗 +R𝑛, (16)

where R𝑛 = 𝑛1a1 + 𝑛2a2 + 𝑛3a3 [(𝑛1, 𝑛2, 𝑛3) =
= 0,±1,±2, ..., and a𝑖 are the basis vectors or the
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Table 10. New classification of projective classes of the group 6/𝑚𝑚𝑚(𝐷6ℎ) and their
standard factor-systems: 1 stands for a class 𝐾0, 2 – 𝐾1, 3 – 𝐾2, 4 – 𝐾3, 5 – 𝐾4, 6 – 𝐾5, 7 – 𝐾6, 8 – 𝐾7

0 ( , 1, 1)K  
1 ( , 1, 1)K  

2 ( , 1, 1)K  
3 ( , 1, 1)K  

 a b c d  a b c d  a b c d  a b c d

a  
1a 1 1 1 1

a  
1a 1 1 1 1

a  
1a 1 1 1 1

a  
1a 1 1 1 1

2a 1 1 1 1
2a 1 1 1 1

2a 1 1 1 1
2a 1 1 1 1

b
1b 1 1 1 1

b
1b 1 1 1 1

b
1b 1 1 1 1

b
1b 1 1 1 1

2b 1 1 1 1
2b 1 1 1 1

2b 1 1 1 1
2b 1 1 1 1

c
 

1c 1 1 1 1
c

 

1c 1 1 1 1
c

 

1c 1 1 1 1
c

 

1c 1 1 1 1

2c 1 1 1 1
2c 1 1 1 1

2c 1 1 1 1
2c 1 1 1 1

d
1d 1 1 1 1

d
1d 1 1 1 1

d
1d 1 1 1 1

d
1d 1 1 1 1

2d 1 1 1 1
2d 1 1 1 1

2d 1 1 1 1
2d 1 1 1 1

1 2 3 4 

4 ( , 1, 1)K  
5 ( , 1, 1)K  

6 ( , 1, 1)K  
7 ( , 1, 1)K  

 a b c d   a b c d   a b c d   a b c d

a  
1a 1 1 1 1

a  
1a 1 1 1 1

a  
1a 1 1 1 1

a  
1a 1 1 1 1

2a 1 1 1 1
2a 1 1 1 1

2a 1 1 1 1
2a 1 1 1 1

b
1b 1 1 1 1

b
1b 1 1 1 1

b
1b 1 1 1 1

b
1b 1 1 1 1

2b 1 1 1 1
2b 1 1 1 1

2b 1 1 1 1
2b 1 1 1 1

c
 

1c 1 1 1 1
c

 

1c 1 1 1 1
c

 

1c 1 1 1 1
c

 

1c 1 1 1 1

2c 1 1 1 1
2c 1 1 1 1

2c 1 1 1 1
2c 1 1 1 1

d
1d 1 1 1 1

d
1d 1 1 1 1

d
1d 1 1 1 1

d
1d 1 1 1 1

2d 1 1 1 1
2d 1 1 1 1

2d 1 1 1 1
2d 1 1 1 1

5 6 7 8 

(0)' 2 1( , )r r
(1)' 2 1( , )r r

(2)' 2 1( , )r r (3)' 2 1( , )r r

(4)' 2 1( , )r r
(5)' 2 1( , )r r

(6)' 2 1( , )r r (7)' 2 1( , )r r

lattice translation vectors] is a vector of the crystal
lattice or periodic nanostructure, and the condition
𝑅−1

𝛼 k = k+K𝑚, (17)

where K𝑚 = 𝑚1b1 +𝑚2b2 +𝑚3b3 [(𝑚1,𝑚2,𝑚3) =
= 0,±1,±2, ..., and b𝑗 are the basis vectors of recip-
rocal lattice] is the vector of the reciprocal lattice in
the crystal or periodic nanostructure. As usual, it is
implied that the basis vectors of the direct and recip-
rocal lattices are connected by the relations
b𝑗a𝑖 = 2𝜋𝛿𝑖𝑗 . (18)

Let us calculate the distribution of normal vibra-
tions over the symmetry types for various points in
the Brillouin zones of single-layer graphene 𝐶𝐿1 and
crystalline graphite 𝛾 − 𝐶. Furthermore, we will de-
termine the symmetry of their electron bands located
higher than the valent 𝜋-bands (they will be called the
𝜋-bands), but below the conduction 𝜋-bands (they
will be called the 𝜋*-bands).

8.1. Points Γ

It is easy to see that the factor-groups of the
wave-vector groups with respect to the translation-
invariant subgroups are isomorphic to the same point
symmetry group 6/𝑚𝑚𝑚(𝐷6ℎ) for both graphene
𝐶𝐿1 and crystalline graphite 𝛾 − 𝐶. This is true
not only for the wave-vector groups at points Γ of
graphene and crystalline graphite, but also at all
points in the graphene and graphite Brillouin zones
that are marked by identical letters. Nevertheless, the
characters of the equivalence representation Γeq in
formula (10) are different for the points in the Bril-
louin zones of graphene and crystalline graphite des-
ignated by the same letters, because those objects
have different structures.

The characters of representations Γeq for single-
layer graphene 𝐶𝐿1 and crystalline graphite 𝛾−𝐶 are
given in Table 11. Table 11 also includes the charac-
ters of the polar-vector representations Γvector = Γr
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Table 11. Characters of equivalence representations of the polar vector (point Γ) and Γ𝑧 (point Γ) for high-
symmetry points in the Brillouin zones of single-layer graphene 𝐶𝐿1 and crystalline graphite 𝛾 − 𝐶 structures

Points Γ
Point group(s) 6/𝑚𝑚𝑚(𝐷6ℎ)

Projective class(es) 𝐾0

6/𝑚𝑚𝑚(𝐷6ℎ) 𝑒 2𝑐3 3𝑢2 𝑐2 2𝑐6 3𝑢′
2 𝑖 2𝑖𝑐3 3𝑖𝑢2 𝑖𝑐2 2𝑖𝑐6 3𝑖𝑢′

2

𝐶𝐿1 k = 0 Γeq 2 2 0 0 0 2 0 0 2 2 2 0
𝛾 − 𝐶 k = 0 Γeq 4 4 0 0 0 4 0 0 4 4 4 0

Γr 3 0 −1 −1 2 −1 −3 0 1 1 −2 1
Γ𝑧 1 1 −1 1 1 −1 −1 −1 1 −1 −1 1

Point 𝐴
Point group 6/𝑚𝑚𝑚(𝐷6ℎ)

Projective class 𝐾5

6/𝑚𝑚𝑚(𝐷6ℎ) 𝑒 2𝑐3 3𝑢2 𝑐2 2𝑐6 3𝑢′
2 𝑖 2𝑖𝑐3 3𝑖𝑢2 𝑖𝑐2 2𝑖𝑐6 3𝑖𝑢′

2

𝛾 − 𝐶 k = −(1/2)b1 𝐴eq 4 4 0 0 0 0 0 0 4 0 0 0

Points 𝐾
Point groups 6̄𝑚2(𝐷3ℎ)
Projective classes 𝐾0

6̄𝑚2(𝐷3ℎ) 𝑒 2𝑐3 3𝑢2 𝑖𝑐2 2𝑖𝑐6 3𝑖𝑢′
2

𝐶𝐿1 (k𝐾)1 = −(1/3)(2b1 − b2) 𝐾eq 2 −1 0 2 −1 0
(k𝐾)2 = (1/3)(2b1 − b2)

𝛾 − 𝐶 (k𝐾)1 = −(1/3)(2b2 − b3) 𝐾eq 4 1 0 4 1 0
(k𝐾)2 = (1/3)(2b2 − b3)

Point 𝐻
Point group 6̄𝑚2(𝐷3ℎ)

Projective class 𝐾1

6̄𝑚2(𝐷3ℎ) 𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝛾 − 𝐶 (k𝐻)1 = −(1/2)b1 − (1/3)(2b2 − b3) 𝐻eq 4 1 1 0 0
√
3 −

√
3 0

(k𝐻)2 = −(1/2)b1 + (1/3)(2b2 − b3)

Points 𝑀
Point groups 𝑚𝑚𝑚(𝐷2ℎ)

Projective classes 𝐾0

𝑚𝑚𝑚(𝐷2ℎ) 𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝐶𝐿1 (k𝑀 )1 = −(1/2)b2,(k𝑀 )2 = (1/2)b1 𝑀eq 2 0 0 2 0 2 2 0
(k𝑀 )3 = −(1/2)(b1 − b2)

𝛾 − 𝐶 (k𝑀 )1 = −(1/2)b3,(k𝑀 )2 = (1/2)b2 𝑀eq 4 0 0 4 0 4 4 0
(k𝑀 )3 = −(1/2)(b2 − b3)

Point 𝐿
Point group 𝑚𝑚𝑚(𝐷2ℎ)

Projective class 𝐾5

𝑚𝑚𝑚(𝐷2ℎ) 𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝛾 − 𝐶 (k𝐿)1 = −(1/2)(b1 + b3) 𝐿eq 4 0 0 0 0 4 0 0
(k𝐿)2 = −(1/2)(b1 − b2)

(k𝐿)3 = −(1/2)(b1 + b2 − b3)
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Table 12. Distributions of vibrational and electron
excitations for the 𝜋-bands at high-symmetry points
in the Brillouin zones over irreducible projective
representations of the corresponding projective
classes for single-layer graphene 𝐶𝐿1

and crystalline graphite 𝛾 − 𝐶 structures

Single-layer
graphene, 𝐶𝐿1

Crystalline
graphite, 𝛾 −𝐶

Points Γ
Point groups 6/𝑚𝑚𝑚(𝐷6ℎ)

Projective classes 𝐾0

Γvib = Γ+
2 + Γ−

3 + Γ+
5 + Γ−

6 Γvib = 2Γ+
2 + 2Γ−

3 + 2Γ+
5 + 2Γ−

6

Γac = Γ−
3 + Γ−

6 Γac = Γ−
3 + Γ−

6

Γopt = Γ+
2 + Γ+

5 Γopt = 2Γ+
2 + Γ−

3 + 2Γ+
5 + Γ−

6

Γ𝜋 = Γ+
2 + Γ−

3 Γ𝜋 = 2Γ+
2 + 2Γ−

3

Points 𝐾
Point groups 6̄𝑚2(𝐷3ℎ)
Projective classes 𝐾0

𝐾vib = 𝐾1 +𝐾3 +𝐾5 +𝐾6 𝐾vib = 𝐾1 +𝐾2 +𝐾3+

+𝐾4 + 3𝐾5 +𝐾6

𝐾𝜋 = 𝐾6 𝐾𝜋 = 𝐾2 +𝐾4 +𝐾6

Points 𝑀
Point groups 𝑚𝑚𝑚(𝐷2ℎ)

Projective classes 𝐾0

𝑀vib = 𝑀+
1 +𝑀+

2 +𝑀−
2 + 𝑀vib = 2𝑀+

1 + 2𝑀+
2 + 2𝑀−

2 +

+𝑀+
3 +𝑀−

3 +𝑀−
4 +2𝑀+

3 + 2𝑀−
3 + 2𝑀−

4

𝑀𝜋 = 𝑀+
2 +𝑀−

3 𝑀𝜋 = 2𝑀+
2 + 2𝑀−

3

Point 𝐴
Point group 6/𝑚𝑚𝑚(𝐷6ℎ)

Projective class 𝐾5

𝐴vib = 2𝐴
(5)
1 + 2𝐴

(5)
3

𝐴𝜋 = 2𝐴
(5)
1

Point 𝐻
Point group 6̄𝑚2(𝐷3ℎ)

Projective class 𝐾1

𝐻vib = 3𝐻
(1)
1 +𝐻

(1)
2 + 2𝐻

(1)
3

𝐻𝜋 = 𝐻
(1)
1 +𝐻

(1)
3

Point 𝐿
Point group 𝑚𝑚𝑚(𝐷2ℎ)

Projective class 𝐾5

𝐿vib = 4𝐿
(5)
1 + 2𝐿

(5)
2

𝐿𝜋 = 2𝐿
(5)
1

and the representation Γ𝑧 that determines the sym-
metry of the 𝑝𝑧-orbital. Table 12 illustrates the dis-
tribution of the vibrational representation Γvibr ≡
≡ Γlat. vibr [it can easily be obtained from formula
(10)], the representations for the acoustic, Γ𝑎𝑐, and
optical, Γopt, fundamental vibrational modes, and the

Table 13. Characters of single- and two-valued
irreducible projective representations of point Δ

Projec-
tive
class

Indication
of an

irreducible
projective
represen-

tation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝜎′
𝑟 𝑐2 𝑐56 𝑐6 3𝜎𝑟

𝐾0 Δ1 1 1 1 𝜂𝑘 𝜂𝑘 𝜂𝑘 𝜂𝑘 1
Δ2 1 1 1 𝜂𝑘 −𝜂𝑘 −𝜂𝑘 −𝜂𝑘 −1

Δ3 1 1 1 −𝜂𝑘 𝜂𝑘 𝜂𝑘 𝜂𝑘 −1

Δ4 1 1 1 −𝜂𝑘 −𝜂𝑘 −𝜂𝑘 −𝜂𝑘 1
Δ5 2 −2 −1 0 2𝜂𝑘 −𝜂𝑘 −𝜂𝑘 0
Δ6 2 −1 −1 0 −2𝜂𝑘 𝜂𝑘 𝜂𝑘 0

𝐾1 Δ7 2 1 −1 0 0
√
3𝜂𝑘 −

√
3𝜂𝑘 0

Δ8 2 1 −1 0 0 −
√
3𝜂𝑘

√
3𝜂𝑘 0

Δ9 2 −2 2 0 0 0 0 0

electron-band representation Γ𝜋 [it was also found
from formula (10)] over the irreducible representa-
tions of the group 6/𝑚𝑚𝑚(𝐷6ℎ).

8.2. Point 𝐴

The factor-group of the wave-vector group at point 𝐴
for graphite crystals 𝛾 − 𝐶 is also isomorphic to the
group 6/𝑚𝑚𝑚(𝐷6ℎ) with respect to the translation-
invariant subgroup. The wave-vector star at point
𝐴, as was at point Γ, consists of a single vector
k = −(1/2)b1. The character of the projective equiv-
alence representation at point 𝐴, i.e. the representa-
tion 𝐴eq, is given in Table 11, and the distributions of
the representations 𝐴vibr and 𝐴𝜋 over the irreducible
group representations in Table 12.

Table 13 illustrates the characters of one- and
two-valued irreducible projective representations of
point Δ located between points Γ and 𝐴. The group
of equivalent directions of the wave-vector group at
point Δ is the group 6𝑚𝑚(𝐶6𝑣). The wave-vector star
at this point contains two rays. There is no additional
degeneration of states, if their invariance with respect
to time inversion is taken into account. This is in
contrast to the pairwise merging of dispersion curves
for all energy states at point 𝐴 owing to the invari-
ance with respect to the time inversion for structures,
whose symmetry is described by the non-symmetric
spatial group 𝑃63/𝑚𝑚𝑐 (this behavior can be derived
on the basis of a similar consideration for the wurzite
structure made in work [6]).
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Figure 5 exhibits a diagram that can be used to
determine the compatibility of irreducible projective
representations of the group 𝑃63/𝑚𝑚𝑐 along the line
Γ−Δ−𝐴 in the Brillouin zone of crystalline graphite.

8.3. Points 𝐾

The factor-groups of the wave-vector groups with re-
spect to infinite translation-invariant subgroups at
points 𝐾 of single-layer graphene 𝐶𝐿1 and crys-
talline graphite 𝛾 − 𝐶 structures are isomorphic to
the point group 6̄𝑚2(𝐷3ℎ), which is a point symme-
try group of equivalent directions. The stars of the
wave-vector groups at points 𝐾 in both structures
contain two vectors: for single-layer graphene 𝐶𝐿1,
these are (k𝐾)1 = −(1/3)(2b1 − b2) and (k𝐾)2 =
= (1/3)(2b1−b2); and for crystalline graphite 𝛾−𝐶,
these are (k𝐾)1 = −(1/3)(2b2 − b3) and (k𝐾)2 =
= (1/3)(2b2 − b3). The characters of the projective
representations 𝐾eq are given in Table 11 (for both
structures, they belong to the class 𝐾0), and the dis-
tributions 𝐾vibr and 𝐾𝜋 over the irreducible repre-
sentations of the group 6̄𝑚2(𝐷3ℎ) are presented in
Table 12.

8.4. Point 𝐻

The factor-group of the wave-vector group with re-
spect to the infinite translation-invariant subgroup
at point 𝐻 of the graphite 𝛾 − 𝐶 structure is also
isomorphic to the point group 6̄𝑚2 (𝐷3ℎ). The star
of the wave-vector group consists of two vectors:
(k𝐻)1 = −(1/2)b1 − (1/3)(2b2 − b3) and (k𝐻)2 =
= −(1/2)b1 + (1/3)(2b2 − b3). Table 14, 𝑎 presents
the factor system 𝜔1,𝐻(𝑟2, 𝑟1) calculated by formula
(8). With the help of the function values on the
group 𝑢1,𝐻(𝑟), which are indicated in the lower part
of Table 14, 𝑎, it is reduced to the standard form
𝜔′
1,𝐻(𝑟2, 𝑟1), which is represented in Table 14, 𝑏. It is

easy to see that the factor systems 𝜔1,𝐻(𝑟2, 𝑟1) and
𝜔′
1,𝐻(𝑟2, 𝑟1)–in accordance with the values of the co-

efficients 𝛼, 𝛽, and 𝛾, which are determined directly
from the factor-systems themselves–belong to the
projective class 𝐾1, i.e. 𝜔′

1,𝐻(𝑟2, 𝑟1) ≡ 𝜔′
(1)(𝑟2, 𝑟1).

Besides the factor-system 𝜔′
1,𝐻(𝑟2, 𝑟1) describing

the symmetric properties of the spatial symmetry
group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ) of crystalline graphite, the
standard factor-system of the projective class 𝐾1,
i.e. the factor-system 𝜔′

(1)(𝑟2, 𝑟1), can also be ob-
tained from the factor system 𝜔2(𝑟2, 𝑟1). The lat-
ter is determined by the spinor transformations un-

Fig. 5. Diagram determining the compatibility of irreducible
projective representations of the 𝑃63/𝑚𝑚𝑐 group in the Bril-
louin zone in the Γ−𝐴 direction

der the action of the symmetry elements belong-
ing to the point group 6̄𝑚2(𝐷3ℎ), which is a sym-
metry group of equivalent directions in the wave-
vector group of point 𝐻 of the Brillouin zone of
graphite. In Table 15, 𝑎, the factor-system 𝜔2(𝑟2, 𝑟1)
for the point symmetry group 6̄𝑚2(𝐷3ℎ) is pre-
sented, which was obtained by formula (12). One
can easily see that it belongs to the projective
class 𝐾1. As was done above, the parenthesized sub-
scripts display the multiplication table for the ele-
ments of the group 6̄𝑚2 (the numbers in parenthe-
ses indicate the numerical designation of elements
for the group 6̄𝑚2, which correspond to the prod-
ucts 𝑟2𝑟1). Table 15, 𝑏 contains the corresponding
standard factor-system 𝜔′

2(𝑟2, 𝑟1). It was obtained by
transforming the factor-system 𝜔2(𝑟2, 𝑟1) by means of
formula (5) and using the values of the function 𝑢2(𝑟)
that are indicated in the lower part of Table 15, 𝑎.

It is important that the values of the coefficients
𝑢2(𝑟) for the elements entering the both groups
6̄𝑚2 and 6/𝑚𝑚𝑚 turned out identical. The standard
factor-systems 𝜔′

1,𝐻(𝑟2, 𝑟1) and 𝜔′
2(𝑟2, 𝑟1) belonging

to the same projective class 𝐾1 also expectedly co-
incide; i.e. the equality 𝜔′

1,𝐻(𝑟2, 𝑟1) = 𝜔′
2(𝑟2, 𝑟1) =

= 𝜔′
(1)(𝑟2, 𝑟1) does take place.

The characters of various 𝑝-equivalent forms of
irreducible projective representations of the group
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Table 14. Factor-systems 𝜔1,𝐻(𝑟2, 𝑟1) for point 𝐻 in crystalline
graphite (the spatial group 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ), point group 6̄𝑚2 (𝐷3ℎ)) (a) and the standard
factor-system 𝜔′

1,𝐻(𝑟2, 𝑟1) corresponding to its standard form (b). The lower part
of Table 14, 𝑎 contains the values of the function 𝑢1,𝐻(𝑟) that transform
the factor-system 𝜔1,𝐻(𝑟2, 𝑟1) to the standard form 𝜔′

1,𝐻(𝑟2, 𝑟1) ≡ 𝜔′
(1)

(𝑟2, 𝑟1)

a

b

6̄𝑚2(𝐷3ℎ), which belong to the projective class 𝐾1,
are given in Table 16; in particular, for irreducible
single-valued projective representations correspond-
ing to the standard factor-system 𝜔′

(1)(𝑟2, 𝑟1) (Ta-
ble 16, 𝑎), for irreducible projective two-valued spinor

representations (Table 16, 𝑏), and for irreducible pro-
jective single-valued representations describing the
symmetry of vibrational and electron excitations
without making allowance for the spin at point 𝐻 for
the spatial symmetry group or the wave-vector group
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Table 15. Factor-system 𝜔2(𝑟2, 𝑟1) for the group 6̄𝑚2(𝐷3ℎ) (a) and the standard
factor-system 𝜔′

2(𝑟2, 𝑟1) corresponding to its standard form (b). In the lower part of
Table 15, 𝑎, we present the values of the functions 𝑢2(𝑟) that reduce the factor-system
𝜔2(𝑟2, 𝑟1) to the standard form 𝜔′

2(𝑟2, 𝑟1) ≡ 𝜔′
(1)

(𝑟2, 𝑟1)

a

b

of point 𝐻, which is a subgroup of the space symme-
try group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ) (Table 16, 𝑐). It should be
noted that the representations of the spatial symme-
try group 𝑃63/𝑚𝑚𝑐 at point 𝐻, which were calcu-
lated making no allowance for the spin of a quantum
excitation, are drastically different from the double-

valued spinor representations (Table 16, 𝑏). But
they are projectively equivalent (𝑝-equivalent) to this
class, as well as to the class of projective representa-
tions corresponding to the standard factor-system of
the projective class 𝐾1 (Table 16, 𝑎). Moreover, the
“carriers” of the two-valued character of representa-
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Table 16. Characters of irreducible projective representations of the group 6̄𝑚2(𝐷3ℎ):
single-valued representations corresponding to the standard factor-system (a), two-valued spinor
representations (b), and single-valued representations describing the symmetry of vibrational and electron
excitations neglecting the spin at point 𝐻 for the spatial symmetry group of (the wave-vector group
of point 𝐻) that is a subgroup of the spatial symmetry group 𝑃63𝑚𝑚𝑐(𝐷6ℎ) (c). Primes above letters Γ in the
symbols of irreducible projective representations mean that those representations are two-valued spinor ones

6̄𝑚2(𝐷3ℎ) 𝑒 𝑐3 𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝐾1 а 𝑃
(1)
1 2 −1 −1 0 0

√
3𝑖 −

√
3𝑖 0

𝑃
(1)
2 2 −1 −1 0 0 −

√
3𝑖

√
3𝑖 0

𝑃
(1)
3 2 2 2 0 0 0 0 0

b (Γ′)
(1)
1 = Γ7 𝐸′

1 2 1 −1 0 0
√
3 −

√
3 0

(Γ′)
(1)
2 = Γ8 𝐸′

2 2 1 −1 0 0 −
√
3

√
3 0

(Γ′)
(1)
3 = Γ9 𝐸′

3 2 −2 2 0 0 0 0 0
𝑢2(𝑟) 1 −1 1 𝑖 𝑖 −𝑖 −𝑖 −1

c 𝐻
(1)
1 2 −1 −1 0 0 −

√
3

√
3 0

𝐻
(1)
2 2 −1 −1 0 0

√
3 −

√
3 0

𝐻
(1)
3 2 2 2 0 0 0 0 0

𝑢1,𝐻(𝑟) 1 1 1 1 𝑖 𝑖 𝑖 𝑖

Fig. 6. Dispersion of the electron energy 𝜋-bands in the
graphite crystals (letters mark the points in the Brillouin zone,
and indexed letters do the irreducible projective representa-
tions of the corresponding projective classes)

tions are the sets of coefficients that are determined
by the functions 𝑢2(𝑟), i.e. such sets of coefficients
for reducing factor-systems to standard forms, which
correspond to the parameter 𝛼 = −1.

8.5. Points 𝑀

The factor-groups of the wave-vector groups with re-
spect to the infinite translation-invariant subgroups

at points 𝑀 of the single-layer graphene and crys-
talline graphite structures are isomorphic to the point
group 𝑚𝑚𝑚(𝐷2ℎ). The latter is a point symmetry
group of equivalent directions for points 𝑀 . The
stars of the wave-vector groups at points 𝑀 in the
both structures contain three vectors: in single-layer
graphene 𝐶𝐿1, these are (k𝑀 )1 = −(1/2)b2, (k𝑀 )2 =
= (1/2)b1, and (k𝑀 )3 = −(1/2)(b1 − b2); for crys-
talline graphite 𝛾 − 𝐶, these are (k𝑀 )1 = −(1/2)b3,
(k𝑀 )2 = (1/2)b2, and (k𝑀 )3 = −(1/2)(b2−b3). The
characters of projective representations 𝑀eq, which
belong to the class 𝐾0 for both structures, are given in
Table 11. The distributions 𝑀vibr and 𝑀𝜋 over irre-
ducible representations of the group 𝑚𝑚𝑚(𝐷2ℎ) are
presented in Table 12. The construction of the char-
acters for the irreducible representations of the group
𝑚𝑚𝑚(𝐷2ℎ) does not cause any difficulty, if one fol-
lows the recording sequence for the symmetry ele-
ments of the subgroup 𝑚𝑚𝑚, namely, as they are
written in the group 6/𝑚𝑚𝑚, but every represen-
tation that is even with respect to the inversion is
followed by the corresponding odd one.

8.6. Point 𝐿

The factor-group of the wave-vector group with re-
spect to the translation-invariant subgroup at point
𝐿 of crystalline graphite is also isomorphic to the
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Table 17. Factor-systems 𝜔1,𝐿(𝑟2, 𝑟1) for point 𝐿

in the Brillouin zone of crystalline graphite (the spatial
group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ), the point group 𝑚𝑚𝑚(𝐷2ℎ))
(a) and standard factor-system 𝜔′

1,𝐿(𝑟2, 𝑟1)

corresponding to its standard form (b). The lower
part of Table 17, a contains the values of the function
𝑢1,𝐿(𝑟) that transforms the factor-system
𝜔1,𝐿(𝑟2, 𝑟1) for point 𝐿 to the standard
form 𝜔′

1,𝐿(𝑟2, 𝑟1) ≡ 𝜔′
(5)

(𝑟2, 𝑟1)

a

b

point group 𝑚𝑚𝑚(𝐷2ℎ). The wave-vector star of
point 𝐿 for the graphite 𝛾−𝐶 structure also contains
three vectors: (k𝐿)1 = −(1/2)(b1 + b3), (k𝐿)2 =
= −(1/2)(b1−b2), and (k𝐿)3 = −(1/2)(b1+b2−b3).
Table 17 demonstrates the factor-system 𝜔1,𝐿(𝑟2, 𝑟1)
calculated by formula (8). With the help of the func-
tion values on the group 𝑢1,𝐿(𝑟) (they are indicated
in the lower part of Table 17, 𝑎), it is reduced to
the standard form 𝜔′

1,𝐿(𝑟2, 𝑟1), which is exhibited
in Table 17, 𝑏. The factor-systems 𝜔1,𝐿(𝑟2, 𝑟1) and
𝜔′
1,𝐿(𝑟2, 𝑟1) – in accordance with the values of the

coefficients 𝛼, 𝛽, and 𝛾, which are determined from
the factor-systems themselves – belong to the pro-
jective class 𝐾5, i.e. 𝜔′

1,𝐿(𝑟2, 𝑟1) ≡ 𝜔′
(5)(𝑟2, 𝑟1). The

characters of irreducible projective representations
for point 𝐿 can easily be obtained if one knows the
values of the function 𝑢1,𝐿(𝑟) and the characters of
irreducible projective representations of the class 𝐾5

corresponding to the standard factor-system of the
class 𝐾5, which are presented in Table 8 [6]. The
irreducible projective representations for point 𝐿
can easily be determined from Table 9. The char-
acter of the projective equivalence representation
at point 𝐿, i.e. the representation 𝐿eq, is given in
Table 11. The distribution of representations 𝐿vibr

and 𝐿𝜋 over irreducible projective representations
of the class 𝐾5 of the group 𝑚𝑚𝑚 is shown in
Table 12.

Figure 6 schematically illustrates the dispersion of
the electron energy 𝜋-bands in graphite crystals (the
letters mark the points in the Brillouin zone, and the
indexed letters do the irreducible projective represen-
tations of the corresponding projective classes). The
dispersion of the electron 𝜋-bands is schematically
presented in Fig. 6 for all high-symmetry points in the
Brillouin zone of graphite crystals. Our results have
a good qualitative agreement with the results of nu-
merical calculations carried out in works [14, 15]. At
the same time, our results also include the qualitative
behavior of the dispersion of electron bands along the
high-symmetry line Γ−Δ−𝐴. Furthermore, the sym-
bolic notations of representations that correspond to
the classification of energy states by the irreducible
projective representations of certain projective classes
for various points in the Brillouin zone, which was
made in this work for the first time, correspond to
the exact values of characters and, hence, the ma-
trices of irreducible projective representations, which
exactly describe the symmetry of vibrational and elec-
tron excitations.

9. Conclusions

1. A method has been developed for constructing
the correct multiplication tables of spinors, the
wave functions of quantum states with a half-integer
spin. In effect, this is a method to calculate the factor-
systems of the projective class 𝐾1, including a proce-
dure of their reduction to the standard form.

2. The standard factor systems and their correspon-
ding irreducible representations for all projective clas-
ses of the hexagonal symmetry group 6/𝑚𝑚𝑚(𝐷6ℎ)
and its subgroups have been constructed for the first
time.
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3. The classes of projective representations for vari-
ous points in the Brillouin zone of crystalline graphite
have been identified for the first time. The charac-
ters of irreducible projective representations are con-
structed for each of them. The symmetric distribu-
tion over the irreducible projective representations
of vibrational excitations and electron states that
are determined by the structure of the 𝜋-bands is
determined.

4. A symmetric theoretical-group description of the
dispersion of vibrational and electron excitations in
crystalline graphite in view of the changes in the
projective classes is made for the first time for var-
ious points in the Brillouin zone. Their correlations
with vibrational and electron excitations in single-
layer graphene are revealed.
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КОРЕЛЯЦIЯ ЕНЕРГЕТИЧНИХ СПЕКТРIВ
КОЛИВАЛЬНИХ I ЕЛЕКТРОННИХ ЗБУДЖЕНЬ
ТА ЇХНЯ ДИСПЕРСIЯ В ГРАФIТI ТА ГРАФЕНI
Р е з ю м е
Дослiджено кореляцiю коливальних мод, електронних збу-
джень та їх дисперсiйнi залежностi в одношаровому графе-
нi та кристалах графiту. Для iнтерпретацiї таких кореляцiй
вперше використано методи теорiї проективних представ-
лень точкових та просторових груп симетрiї. Визначено ко-
реляцiї енергетичних спектрiв коливальних та електронних
збуджень i умови сумiсностi незвiдних проективних пред-
ставлень в описах квантових станiв графену i кристалiчно-
го графiту для рiзних точок їх зон Брiллюена. Для прое-
ктивних представлень всiх проективних класiв гексагональ-
ної системи вперше побудовано стандартнi фактор-системи,
в тому числi вперше визначено фактор-системи для еле-
ктронних станiв, за допомогою яких вперше знайдено ко-
ректнi таблицi множення спiнорiв, тобто таблицi множення
елементiв в подвiйних групах симетрiї. На основi зазначено-
го вище, надано розподiли за типами симетрiї коливальних
збуджень для всiх точок високої симетрiї зон Брiллюена
одношарового графену i кристалiчного графiту.
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