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ENERGY SPECTRA CORRELATION

OF VIBRATIONAL AND ELECTRONIC EXCITATIONS
AND THEIR DISPERSION IN GRAPHITE AND GRAPHENE

The correlation between the vibrational and electron excitation modes in the energy spectra
of single-layer graphene and crystalline graphite, as well as the dispersion dependences of
those modes, has been studied. The methods of the theory of projective representations of the
point and spatial symmetry groups are used for the first time in order to interpret those cor-
relations. The correlations of vibrational and electron excitation spectra and the compatibility
conditions for irreducible projective representations in the descriptions of quantum states of
graphene and crystalline graphite at various points of their Brillowin zones are determined. For
the projective representations of all projective classes belonging to the hexagonal system, stan-
dard factor-systems are constructed for the first time. In particular, the factor-systems for
electron states are first determined. The results obtained are used to calculate, also for the
first time, the correct spinor multiplication tables, i.e. the multiplication tables for elements in
double symmetry groups. The developed method is applied to classify all high-symmetry points
in the Brillouin zones of single-layer graphene and crystalline graphite with respect to the
symmetry type of vibrational excitations.
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1. Introduction

The study of the energy spectra of collective vibra-
tional and electron excitations in crystals and one-
and biperiodic nanostructures, as well as their disper-
sion, always attracted large attention of the scientific
community, because such researches are classified as
fundamental and undoubtedly possess both practical
and theoretical values. Nevertheless, today, there is
neither a complete understanding of the dispersion of
collective excitations nor their theoretical or symmet-
ric interpretation, even for such a widely researched
structure as crystalline graphite. The classes of pro-
jective representations, according to which the wave
functions of vibrational and electron states at vari-
ous points of the Brillouin zone in graphite are trans-
formed, remain unknown. The changes in the degen-
eration character of the energy spectrum of excita-
tions and their correlation with the respective excita-
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tions in single-layer graphene are not determined. At
present, there are no clear ideas concerning a cor-
rect construction of factor-systems belonging to dif-
ferent projective classes, as well as their reduction
to the standard form, which determines the shape of
dispersion curves and the energy state degeneration
multiplicity.

In this paper, the methods have been developed
for determining the projective classes themselves and
their changes at the Brillouin zone boundaries, as well
as the irreducible projective representations, accord-
ing to which the wave functions of the researched
quantum-mechanical systems are transformed. For
the first time, the methods for constructing factor-
systems that characterize a certain projective class
and their reduction to the standard form are pre-
sented, a new classification of projective classes for
hexagonal structures is proposed, and a correct ta-
ble for the symmetry transformations of the wave
functions of quantum states with a half-integer spin,
i.e. spinors, is determined. The symmetry analysis of
the dispersion of vibrational and electron excitations

431



V.O. Gubanov, A.P. Naumenko, M.M. Biliy et al.

Ty J I

Fig. 1. Prism of reindicated H-rotations

is first carried out for the m-bands of graphite crys-
tals, and their correlations with the electron 7-bands
in single-layer graphene are discussed.

2. System of H-Rotations
of the Group 6/mmm/(Degy,)

Similarly to works [1,2], we introduce a right-handed
oblique coordinate system with the axis Z directed
upward and the axis Y directed to the right (the an-
gle between the X and Y axes equals 120°) for H-
rotations (the rotational elements of both the first
and second kinds) of the group 6/mmm(Dgyp). We
also use the digital notation for the elements, but
their ordinal numbers are somewhat changed. This
change is made for a more convenient representation
of the “block” character of the tables. This character
is determined by the internal structure of the group
6/mmm(Dgp), namely, by the fact that the group
Dgy, is a direct product of the groups Dg and C;, i.e.
D¢, = Dg x C;, and the group Dg, in turn, is a direct
product of groups D3 and Cs, i.e. Dg = D3xC5. The
group D3 contains an invariant subgroup, which can
be used to construct its factor group, the latter being
isomorphic to the group Cs. According to this “com-
position principle”, the “principal” axis that deter-
mines symbols in the notation of irreducible represen-
tations of the group Dgy, is the element c3, i.e. the ro-
tation around the third-order axis in the higher-rank
subgroup in the case where the highest-rank subgroup
is the first in all expressions for direct products. The
meaning of H-rotations is explained in Fig. 1. As was
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done in works [1, 2], the inversion rotations have a
priority over the mirror ones.

3. Crystal Structures, Brillouin
Zones, and Basic Symmetry Elements

Figure 2, a demonstrates a standard unit cell in the
crystal lattice of Bernal graphite v — C' [3]. The cor-
responding standard diagram of its spatial symme-
try group P63/mmc(Dg;) is shown in Fig. 2, b. Fi-
gure 2, c illustrates the position and orientation of
symmetry elements of the point group 6/mmm/(Degp,).

Figure 3 exhibits the Brillouin zone of the v — C
graphite crystals and its symmetry points. The lat-
ter are marked by letters in Herring’s notation for
hexagonal structures [4]. The Wigner—Seitz unit cell
and the Brillouin zone for single-layer graphene C'p,
are demonstrated in Figs. 4, a and 4, b, respectively.

In Fig. 4, a, the solid lines are used to schematically
mark a unit cell of graphene Cp,1, show the primitive
translation vectors a; and as, and indicate the orien-
tation of graphene symmetry elements in the three-
dimensional space that was used in calculations. The
dashed lines illustrate the corresponding orientations
of the reciprocal lattice vectors by and by on an ar-
bitrary scale and the positions of reciprocal lattice
sites in the reciprocal space. In Fig. 4, b, on the con-
trary, the solid lines are used to show the reciprocal
lattice vectors, and the dashed ones to demonstrate
the direct lattice vectors. The unit cells (the Wigner—
Seitz cells) of the graphene layer in the coordinate
(Fig. 4, a) and reciprocal (Fig. 4, b) spaces (in the
latter case, this cell coincides with the first Brillouin
zone) are tinted grey. It is of interest that those cells
are rotated by an angle of 7/2 with respect to each
other (or by an angle of 30°, taking into account that
the rotation by 60° is a symmetry element in the both
cases). In Fig. 4, b, the high-symmetry points K and
M in the Brillouin zone of graphene are also indi-
cated. The equivalent points are marked by one or
two primes.

The spatial symmetry group of the crystalline
graphite lattice, P63/mmc(Dj,), is non-symmor-
phic. It is determined by the basic (main) elements,
which can be chosen as follows:

By = (0f€), ha = (Olea), hs = (Ole), ha = (0](uz)y),
hs = (0](u2)2). ho = (0](uz)a), hy = (5 |ez),
o= (3214). 0= () o= ()

2
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Fig. 2. Structure of the standard unit cell of crystalline graphite y—C' (a), the standard diagram of the spatial symmetry
group P63/mmc(Dy,) (b). arrangement and orientation of the elements of the point symmetry group 6/mmm(Dgp)

(¢). The circles indicate the positions of carbon atoms

%‘(%)2) his = (% (Ulz)s), hiz = (0]3),
h14 = (0|203) h15 = (0|263) h16 = (O| (
hiz = (0li(u2)2), his = (0fi(uz)s),

where a; is the primitive vector of the crystal lattice
directed along the axis OZ (Oz). At the same time,
the spatial symmetry group of the crystalline lattice
of single-layer graphene, P6/mmm(DG80) [5] or the
triperiodic group Dﬁh7 whose diagram coincides with
that of the biperiodic spatial group of single-layer
graphene, is symmorphic, and all its “rotational” el-
ements — the symmetry elements of the point group
6/mmm(Dgp) — do not contain nontrivial (partial)
translations.

4. New Classification of Projective

Classes for Projective Representations

of Group 6/mmm(Dgr) and Construction
of Corresponding Standard Factor-Systems

The determination of the representations Dyyy,
i.e. the irreducible representations of the spatial
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Fig. 3. Brillouin zone of v — C graphite crystals and its sym-
metry points

group G with an irreducible star {k} of the wave vec-
tor k, is reduced to the finding of projective represen-
tations for the point group of equivalent directions Fy
of the wave-vector group Gy, the subgroup of group
G. The groups Fy are possible subgroups of the point
symmetry group of equivalent directions F', which
characterizes the crystalline class of the crystal lat-
tice. A general method to construct irreducible rep-
resentations of the wave-vector group Dy, which are
also called small representations, in the form of pro-
jective representations of the point groups of equiv-
alent directions of the wave-vector groups Fy, which
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Fig. 4. Wigner—Seitz unit cells (a) and Brillouin zone of single-layer graphene Cpy ()

are isomorphic to the factor groups of the group Gx
with respect to the infinite translation-invariant sub-
group, is described in work [6].

We recall that the projective or ray representations
are those representations that satisfy the relation

D(r2)D(r1) = w(re, r1)D(rary), (1)

where r; is a “rotational” (of the first or second kind)
element of the group Fi, and w(ry,71) is a set of h?
complex, in the general case, numerical coefficients (h
is the order of group), which is called a factor-system
and has the following properties:

lw(re,r)| =1

(2)
and
(3)

If D(r) is a certain projective representation belong-
ing to the factor-system w(rs, 71), then any other pro-
jective representation

D(r)
u(r)”’

where u(r) is an arbitrary single-valued function on
the group L and |u(r)| = 1, is also a projective rep-
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w(r3, ror1)w(re, 1) = w(rs, r2)w(rsre, r1).

D'(r) = (4)

resentation of the group L, but with another factor-
system w'(rg,71), i.e.

D' (ry)D'(r1) = W' (ra,r1) D' (1211),

where
w(re, r)u(rary)

u(r1)u(rs)

w/(’l“g, 7‘1) = (5)
All factor-systems related by expression (5) are called
projective-equivalent (or p-equivalent). A set of all p-
equivalent factor-systems is called the class of factor-
systems. This is also true for the corresponding pro-
jective representations.

The group 6/mmm has eight classes of projective
representations. They are classified by means of a sys-
tem of three coefficients — «, 8, and v — which take
a value of 1 or —1. Each coefficient is determined by
the relation

[W(Tj, 711')]71W(Ti, Tj) = o

for the corresponding pair of commuting elements r;
and r; selected from the group generators or the el-
ements belonging to different classes containing the
generators. As commuting elements for the group
6/mmm, it is convenient to choose, e.g., the following

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 5
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group generators: a = r1 = (ug)1, b = r9 = 2, and
c = r3 = 1. In this case,

o w(a, b) _ w(uz)1, c2]
w(b,a)  wlea, (uz)1]’
~wla,c)  wl(uz)1,1]
A= wic,a)  wli, (uz)1]’
w(b,e)  wlca,i)
v w(e,b)  w(i,ca)

For the classification and notation of the factor-
system classes and, respectively, the classes of projec-
tive representations in the group 6/mmm, it is con-
venient to choose the following system:

eclass Ko: a=1,8=1,v=1;
eclass Ki: a=-1,8=1,vy=1;
eclass Ko: a=1,8=-1,v=1;
eclass K3: a=-1,8=-1,v=1;
eclass Ky: a=1,8=1,v=—1;
eclass Ks: a=-1,8=1,v=—1;
eclass Kg: a=1,8=—-1,y=—1;

e Kina=-1,8=-1,yv=—-1.

This system is substantially different from that pro-
posed in work [6] by both the definitions of the coef-
ficients and their values.

The irreducible representations of the wave-vector
group Dy contain an infinite number of members
Dy (h) for the elements h € Gy. Every element h can
be expressed in the form h = (v + a|r), where r is a
“rotational” element from the set forming the group
Fx, a is the vector of a nontrivial translation cor-
responding to the rotational element r, and a is the
vector of a trivial translation by the periods of Bra-
vais lattice.

The matrices Dy (h) and their characters x p, (») are
determined from the formulas

Di(h) = e~ ) y(r)D(r) (6)
and
XDw(h) = € TN (r) X by, (7)

respectively. Here, in the case of representations that
describe states neglecting their spin (with an in-
teger spin), w(r) = u(r) = wik(r) is a func-
tion that transforms the factor-system w(re,r1) =
= w1 k(r2,71), which is determined by the properties
of the spatial group of the crystal, to the standard
form. In the case of representations describing the
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states making allowance for their spin (with a half-
integer spin), w(r) = us(r) = w1 x(r)uz(r) is a func-
tion that transforms the factor-system w(rs,m) =
= ws(re,m1) = w1 k(re,r1)wa(re,r1), which is deter-
mined by the spinor transformations in the spatial
group, and uz(r) is a function that transforms the
factor-system wo(ra,71), which is determined by the
spinor transformations at the symmetry group oper-
ations with the group of wave-vector directions Fy,
to the standard form wj(re,r1). In addition, D(r)
are irreducible representations corresponding to the
standard factor-systems of the projective class, to
which the factor-system w(rz, 1) belongs, and x p(,
are the characters of irreducible projective represen-
tations D(r).

The factor-system wq(r2,71) = w1 k(r2,71) is con-
structed according to the formula [6]

w1 k(r2,m1) = exp [i(k — rz_lk)aﬂ, (8)

so that no difficulty arises at any point in the Brillouin
zone. It is also easy to determine the projective class,
to which this factor-system belongs [6].

The transformation of spinors, i.e. the wave func-
tions of states with a half-integer spin, is character-
ized by double-valued representations. For their con-
struction, the Bethe method is often applied [7]. It is
based on the introduction of an additional, abstract
from the geometric viewpoint, symmetry element ¢,
which commutes with all symmetry operations and is
interpreted as a rotation of the quantum-mechanical
system by an angle of 2w around an arbitrary axis
1. This element changes the sign of the spinor, which
characterizes the quantum states, into the opposite
one. That is why the corresponding representation of
the symmetry group is called two-valued. The next
step in the Bethe method consists in the construction
of a double group containing 2n elements: n “rota-
tional” symmetry elements r» and n additional ele-
ments qr. Next, the irreducible representations of the
double group are found. Those of them, which are ad-
ditional to the representations of the ordinary group,
are the sought two-valued representations of the or-
dinary symmetry group. This method of constructing
two-valued representations does not take into account
that the latter should be projective representations of
the ordinary symmetry group, and there is no need
to construct a double abstract Bethe group for their
construction. We only need to determine the factor-
systems wa(rg, 1), which reflect the transformations
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of the wave functions of quantum-mechanical systems
with a half-integer spin.
The factor-system ws(ra,r1) is defined as follows:

1 if 0<9<2m,
wa(rz, 1) = 1

if 27 <9 <A4m, (9)
where 9 is the angle of the rotation corresponding
to the element product ror;. The projective class, to
which the factor-system belongs, can also be easily
determined [6].

Let us define a standard factor-system for the pro-
jective representations of the projective class K.

As the standard factor-systems for projective repre-
sentations of various projective classes K; of noncom-
mutative (non-Abelian) point symmetry groups of the
order h, we will call the factor-systems w’(r9,71) con-
sisting of real coefficients equal to 1 or —1 and con-
taining the maximum number of periods in the el-
ements 79, which form adjacent classes forming the
factor-groups according to the corresponding invari-
ant subgroups.

Let us take into account the following circum-
stances. First, the standard factor-systems for the
representations of the projective class Ky completely
consist of the coefficients equal to 1. Secondly, the
matrices of the irreducible representations corre-
sponding to standard factor-systems are known for
both the class Ky (in this case, they coincide with
ordinary vector representations) and the class K
(in this case, they can be easily calculated accord-
ing to the transformations of the angular momentum
with a half-integer quantum number j). Therefore,
the construction of irreducible projective represen-
tations of the class K of complete spatial symme-
try groups — in particular, spinor representations —
is reduced to the construction of the factor-systems
wa(ra,11), the determination of the forms for the stan-
dard factor-systems of the class K7, and the deter-
mination of the functions ug(r) that transform the
factor-systems wa(r2,71) to the p-equivalent standard
form wh(ro,m1).

5. Construction of Factor-Systems
wa(r2,71) that Describe the Transformation
of Spinors under the Action of Symmetry
Operations, and their Reduction to the
Standard Form w(72,71)

Let us construct a factor-system wq(re,r1) that de-
scribes the transformation of spin variables for the
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symmetry group 6/mmm (Dgp). As the 6/mmm
group generators, we select the elements
b= (UQ)l, d=1. (10)

a = cs3, C = Cg,

This choice of generators makes allowance for the
composition principle. According to the latter, the
group 6/mmm can be represented as the direct prod-
uct of the groups 622 and 1 (i.e. 6/mmm = 622 x 1);
then, the group 622 as the direct product of the
groups 32 and 2 (i.e. 622 = 32 x 2), and the group
32 as the direct product of groups 3 and 2’ (i.e.
32=3x2).

By applying the generating relations, which are sat-
isfied by the selected generating elements, let us cal-
culate all values forws(r2,r1). It is important that, for
this operation, we should use the generating relations
for the double group (6/mmm)’:

aS=e, brl=e, ct=e d=e,
ab = ¢gba?®, ac=ca, ad=da, (11)
bc = qcb, bd=db, cd=dc.

While finding algebraic expressions for the elements
of the double group (6/mmm)’ in terms of its gen-
erating elements, let us apply the following relation,
which is general for the elements of the infinite double
group of rotations K’ [6,8]:

I a@)f = ¢;-n(a).

Here, ¢1(a)) means a rotation by the angle a around
the axis 1, and f is an arbitrary rotation in the dou-
ble rotation group, with the unity operation being
considered as a rotation by an angle of 4m. It is re-
lation (12) that allows the generating permutation
relations indicated above and the algebraic expres-
sions for the elements of the double group in terms
of its generating elements [8] to be obtained. For ex-
ample, for the double-group element (u3)2, we obtain
c3(uz)1gc3 = (ug)a, which brings us to the expres-
sion

(12)

(uz)2 = qaba® = qgba*a® = ba* = gba. (13)

Note that another choice of generating elements
can be used, but then the generating relations for
them will also be changed. One can easily see that,
provided the generating elements (11), the follow-
ing algebraic expressions are obtained for the ele-
ments of the double group (6/mmm)’: e = d°c’b°a?,
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cz = d°Oal, & = d°P0a?; (u2); = d°cblaP,
(ug)2 = qd°cblal, (uz)z = d°c®bla?, co = d°c'b¥a®,
g = d°cOal, cg = qd°c'b°a?, (uh); = d°ctblal,
(uh)a = qdctbtal, (uh)s = dctbta?, i = d'cPbVa®,
ics = d'P0al, i3 = d PV, i(uz)1 = (04)1 =
= d'cPa®, i(uz)e = (04)2 = qdtcblal, i(uz)s =
= (04)3 = d bt a?, ico =0p =d ctb0a, i} =
dllcllbloaol7 .z'c6/ = qd'c'b’a?, i(lu'Ql)ll = '(o':i)l =
= d'c'bra’, i(uh)e = (0))2 = qd'c'blal, i(uy)s =
= (0)))3 = d'c'b'a?. The factor-system wo(ra, 1) cal-
culated in such a way for the group 6/mmm is pre-
sented in Table 1. It belongs to the projective class
Ky, because @« = —1, f =1, and v = 1 for it. The
subscripts in parentheses near the coefficient values
for the factor-system ws(re,r1) correspond to the
multiplication table for the elements of the group
6/mmm (numbers in the parentheses indicate the nu-
merical notation of the elements corresponding to the
products rory).

It should be noted that O.V. Kovalev [1, 2] made
an attempt to construct this factor-system in the
form of a multiplication table for the spinors in the
group 6/mmm. However, his attempt can be consid-
ered as a failure, because 216 of 576 values tabulated
in works [1, 2] have the opposite sign. The matter is
that the expression for the spinor wave function of a
quantum-mechanical system with a half-integer spin
contains an additional factor ¢ [9]. This factor can
accept either of two values: +1 or —1. Really, when
being rotated by an angle of 27 around any axis, the
spinor changes its sign to the opposite one. This is
the essence of the two-valued character of the repre-
sentation matrix for every “rotational” symmetry el-
ement. Without restricting the general character of
consideration, such a behavior is allowed only for
the “rotational” generating symmetry elements of the
crystalline class group. For other symmetry elements
that are products of various powers of group gener-
ators, this factor cannot anymore accept any of two
values. It always accepts the value following from the
relation that defines this element. In other words, the
arbitrary choice of the “internal” spinor sign for group
generators does not affect the values of coefficients of
the factor-system. Unfortunately, in works [1, 2], the
sign of a spinor at a transformation with the help
of any “rotational” group element of the crystalline
class was determined by algebraic expressions for the
geometric image of the element in the ordinary, one-
valued at rotations, three-dimensional space; i.e. for

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 5

every of the nongenerate “rotational” group elements,
it was determined arbitrarily.

The calculation of the factor-system wo(ra,71)
within our method is correct because, firstly, using
transformation (5) and the coefficients wus(r) indi-
cated in the lower part of Table 1 and calculated by
formulas (13.3), (14.18), and (14.19) in work [6], it
is reduced to the p-equivalent block-symmetric form,
which corresponds to the definition of the standard
factor-system, i.e. the factor-system wh(re,r1). Se-
cond, when transforming the matrices of irreducible
projective representations and their characters corres-
ponding to the standard factor-system (they can be
obtained independently by the method presented in
work [6] for the extended group construction, i.e. a
representation group, where they are determined by
its unique irreducible representations and are comple-
mentary to the ordinary irreducible vector represen-
tations [6]) according to formula (4), the same coef-
ficients us(r) bring about the matrices and the char-
acters of spinor representations that are identical to
those obtained by means of the double group with
the use of the Bethe method. Therefore, the factor-
system w(re,71) is a true standard factor-system of
the projective class K of the group 6/mmm.

Knowing the form of the standard factor-system
wh(ra,r1) for the class K, we can construct standard
factor-systems and, hence, irreducible projective rep-
resentations for all projective classes. It will be done
below.

Since the factor-systems wa(re,r1) and wh(re,r1)
for the symmetry group 6/mmm belong to the pro-
jective class K7, the standard factor-system w(rg,71)
for this group coincides with the standard factor-
system wél)(m,rl)[wé(m,m) = wél)(m,rl)], where
the parenthesized subscript of the standard factor-
system means its projective class. The standard ex-
pression for the factor-system wa(r2,71), which is de-
noted as wh(re,r1) [for the group 6/mmm, we have
wy(r2,m1) = wiy)(r2,71)], is shown in Table 2. In Ta-
ble 2, an additional partitioning of the symmetry el-
ements of the group 6/mmm is used: horizontally
into blocks a, b, ¢, and d; and vertically into blocks
alay,az), b(b1,bs), c¢(cr,cq), and d(dy,ds). This par-
titioning allows a compact form (it is applied below)
to be used to write down factor-systems, in which
the coefficients with the same value in every block
are substituted by the value of one coefficient, which
is the same for all coefficients in the block. In Ta-
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ble 2 and below, continuous lines are used to mark
the contours of such blocks with the coefficients hav-
ing a value of —1.

6. Characters of Irreducible

Representations of the Double Group
(6/mmm)’ and the Irreducible Projective
Representations of the Group 6/mmm,
Which Correspond to Two-Valued Projective
Representations of the Class K7, Spinor
Ones and Those Corresponding

to the Standard Factor-System

The characters of irreducible representations of the
double group (6/mmm)’(Dy,) are quoted in Ta-
ble 3. It is their complementary single-valued irre-
ducible representations (complementary to ordinary
vector single-valued nonnegative representations of
the group 6/mmm, which can be obtained from the
representations of the group (6/mmm) by a sim-
ple cancellation of the element ¢ from all relations)
that are two-valued projective or spinor representa-
tions of the group 6/mmm. The spinor representa-
tions are marked by the symbols E{, E}, and E% in
the Mulliken notation or by the symbols I'7, I's, and
I'g in the Koster notation, where the letter I' denotes
not only their membership to a certain point group
(in the given case, this is the group 6/mmm), but
also to the coinciding group of directions of the wave-
vector group of point I' in crystals or periodic nanos-
tructures. In the form of projective representations,
these irreducible representations and their characters
can also be obtained by formulas (6) and (7), where
D(r) and Xpr) are projective representations and
their characters, respectively, which correspond to the
standard factor-systems of those classes that include
the factor-systems w(rqg,71).

The characters of irreducible representations of the
projective classes Ky (ordinary single-valued or vector
ones) and K (two-valued projective or spinor ones)
are quoted in Table 4. It is easy to see that the char-
acters of irreducible projective representations of the
class K of the group 6/mmm coincide with the char-
acters of spinor irreducible representations of the dou-
ble group (6/mmm)’.

The characters of the projective representations of
the projective class K; that correspond to the stan-
dard factor-system wgl)(rg,rl) can be obtained, as
was mentioned above, by the method of construct-
ing a group of representations for the group 6/mmm

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 5

[6] or, which is much simpler, using formula (4)
with the substituted values for the coefficients us (),
which bring the factor-system wa(r2,71) to the stan-
dard form wgl)(rgn"l). The characters of the irre-
ducible projective representations of the projective
classes Ky and K; of the group 6/mmm that cor-
respond to the standard factor-systems OJEO) (ro,71)
and wyy(r2,71), respectively, are quoted in Ta-
ble 5, with the characters of two-dimensional pro-
jective representations that correspond to the stan-
dard factor-system WED(T27T1)7 being designated by
the symbol P.

7. Factor-Systems Associated

with the Structure of Spatial Symmetry
Groups. Their Construction and Reduction
to the Standard Form. Determination

of Projective Classes for Vibrational

and Electron Excitations at Various

Points in the Brillouin Zone

Now, let us use formula (8) to construct the factor-
system wi, 4(r2,71). The latter is determined by the
properties of the spatial symmetry group of a graphite
crystal and is responsible for single-valued irreducible
projective representations of point A. The corre-
sponding result is presented in Table 6. After calcu-
lating the values of the coefficients «, 3, and =y, one
can easily see that the constructed factor-system be-
longs to the projective class K5. The values of the
function on the group w1 4(r), which bring the factor-
system wy 4 (r2,71) to the standard form w’l,A(rg, r1),
can be easily found by the method described in work
[6, formulas (14.33)] and in works [10-12]. They are
exhibited in the lower part of Table 6.

Table 7 illustrates the standard factor-system
of the projective class K5, i.e. the factor-system
wi 4(r2,11) = W (r2,71), which can be easily obtai-
ned making use of the values of the function uy 4(r)
and formula (5). The characters of one-valued irre-
ducible projective representations for point A are also
easy to be obtained, if we know the values of the func-
tion w1 a(r) and the characters of irreducible projec-
tive representations of the class K5 corresponding to
the standard factor-system of the class K5, which are
given in Table 8 [6]. The single-valued irreducible pro-
jective representations for point A are given in Table 9
(the first three irreducible projective representations).

It is easy to get convinced that the two-valued
(spinor) irreducible projective representations at

439



V.O. Gubanov, A.P. Naumenko, M.M. Biliy et al.

oy ® o G0 RA I ) T4
@ Wy @) (ony (€0 €y AT&» £z N_B
¢ z b e -
©- (ON Wy @y (GO P @ (Cn)r Tz
3 7 z 9.
ﬁn;_ S__ Fu_ mn__ @ 2.— (=1 :.:— :p.— Dm 1Z
s z z : - T 9.
) (0 ©) @y @y @y o0y 0 Dy g (0T} «.u.k 0z __B
0 ©) ) [0 any (on (o) g oDy Dy (€0 6Dy 7 61
:_._I ::_I .Z_ .E_ E__ = :_E_I .E._I Anu._l :.S_I ::__ mAu:v.N 81
W e wy G Uy @ GO wny (Cny L1 i5
®_ O o0y _ @)y (G Dy 6D (D) @) ony _Ava.ﬁ 9]
S:_ .n_: ::_ 2:_ ..:_ 2; _n._ :.n._ _.H: :.m__ ;:_ :n: 2:_ mm,u_ <l
any @y )y ) ©)q y @y 4Ty (6 a2y (02 0y m.um ¥l 5]
An:_ ::; :: .m__ :;_ Am: Qm: .mﬂ_ :mv_ :.ﬁ_ :.:_ _i__ 1 €1
———— [ Re——
.m:_l .v:_l 81 :N: :_8_ :.n: :.._I _m__l ?,JI ?__I 9 ‘n:_ mﬁxv zl
:.:_I .v.:HI @ :n._ .mu__ _1_| S__I .w.:l Auau 11 mQ
ré 6 T I(c
;:_I (€n (C1h) :_n: :_: ;n._ Aw:l ::__ A”.ﬂv 01
::: ;:_ s :,n__ _mn._ :_m._ :,__ .G 6
ted 2) ( 9
E_: .x:_ ( r: (¥ 1 :.:_ ::_ .n.u 8 _Q
(g o (€0 (ca)y a2y 0y iy L
[{F4 - (s .:._ ?:_ Amzv 9
SE_I (6 :J Am:_ .m_: ::__ :.:_1 E: mﬁ nzv € ip
:n:l oz - [ .:._ :.:_ (@ - :.__ _Am_:v +
T < €T £
( N: o)y ( L_ (810 :.:_ .Z._ ::_ m_u €
@y @ o (o0 (&0 €0y @)y £y z Ip
;nu_ T..N: :."._ .c:— 1 SC_ :i_ 2 1
€T g I Ty 9, z. y Iy T £. e 9. 9. % g
Gy Gyt Gy 1 Cay (my 1 m B B % 2 [N
ve €T < 6l Ll 91 Sl Ll o1 6 8 L 1

p

(o=

wurneyg dnoas aoy (U <% Vo

(% %) *o wraysAs-10yoey paepues 7 27qn]

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 5

440



Energy Spectra Correlation of Vibrational

Table 3. Characters of irreducible representations of the double group (6/mmm)’ (D, )
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Table 5. Characters of irreducible projective representations of the projective classes
Ko and K; of the group 6/mmm corresponding to the standard factor-systems wEO) (r2,71) and “’El) (r2,71)

Projec- In(%ication. 6/mmm(Dgp)

tive of an irreducible

class projectivts o | - 5 ’ . . .9 5 . ,

representation e c1 cg | 3uz | c2 cg c6 | Jug I icg | icg | 304 | Oh icg icg | 30y

Ko rf Af 1 1 1] 1] 1 1 U S T A I A B | 1 1 1

T Ay 1 1 1] 1] 1 1 1 1| —1| -1 —1| -1 -1 =1 -1| -1

ry A 1 1) 1| -1 -1 =1 -1 1| 1| 1| 1| -1 -1 -1| -1

r, Ay 1 1 1] 1| -1 =1 =1 =1 =1| =1 1| —1| 1 1 1 1

r+ oAt 1 1 1 -1 1 1 1 -1 1| 1| 1| -1 1 1 1| -1

Iy Ay 1 1 1] -1 1 1 1 -1 —1| -1 —1| 1| -1 =1 -1 1

ryoAf 1 1 1| —1| -1 -—1| -—=1| 1| 1| 1| 1| —1| =1 =1| -—1| 1

Ty A; 1 1 1| -1 -1 -1 -—1| 1| —1| =1 -1 1| 1 1 1 -1

r& Bf 2 | -1 -1| o| 2| -1| -1 of 2| -1 -1/ of 2| -1| -1 o0

r; Ef 2 | -1 -1| o 2| -1| =1 of —2| 1| 1| of -2 1 1l o0

ry EBf 2 | —-1| -1| o] -2 1 1 o 2| -1 -1| o -2 1 1l 0

ry Ey 2 | -1 -1| o -2 1 1l o] -2 1| 1| o 2| -1 -1| o0

K1 (P{M)+ 2 | —1| —1] o] o| v3i|-v3i| o] 2| —1| —1| o] o] v3i|-v3i| o

PMy- 2 | —1| —1| o o v3i|-v3i| o —2| 1| 1| o o|-v3i| V3| o

P+ 2 | —1| —1| o o|-v3i| V3| o 2| —1] -1| o| o|-v3i| V3| o

(P{My- 2 | —1| 1| o o|-vBi| V3| o —2| 1| 1| o of V3i|-v3i| o0

(PIV)+ 2 2| 2| o o ol ol 2| 2| 2| o o 0 o o

Py 2 2| 2| o] o o| o —2| —2| —2| of o o o o

point A belong to the projective class Kj. Really,
by multiplying the corresponding values of the con-
stants «, (B, and 7, we obtain that, in our case,
Kl X K5 = K1 X K5 = K1K5 = K4. The standard
factor-system of the class K4 is the factor-system
wiyy(r2, 1) ! with the coefficients wiyy(re,r1) =
= wgl)(rg,rl)wzs)(rg,n). The corresponding charac-
ters of the two-valued (spinor) projective representa-
tions at point A, which are related to the projective
class Ky, are given in Table 9 (the remaining three ir-
reducible projective representations). The characters
of those irreducible projective representations can be
obtained by multiplying the values of the products
uy a(r)uz(r) and the values of the characters of ir-
reducible projective representations of class K4 that
correspond to the standard factor-system of the class
K, (they are presented in Table 8 [6]).

1Tt is easy to see that wE4>(r2,r1) = wé’A(rg,rl) =
= wll,A (ro, ri)wh (r2, 1) = wzs) (r2, r1)w21) (r2,m) =
:wzn (72771)WE5)(T27T1)1 where wéyA(rg,n) is a standard
factor-system for the corresponding two-valued projective
representations at point A.

442

Now, it is easy to determine the form of stan-
dard factor-systems for other projective classes of
the group 6/mmm. The standard factor-systems for
all eight projective classes of the group 6/mmm are
quoted in Table 10.

In the absence of external magnetic fields, addi-
tional conditions are imposed on the wave functions
of states and, as a result, the representations. Those
conditions are associated with the invariance with re-
spect to the time inversion. Provided that they are
satisfied, an additional degeneration may arise for
some states.

8. Symmetry of Lattice Vibrations

and Electron w-Bands, and Their Dispersion
in Single-Layer Graphene Cp,

and Crystalline Graphite v — C

The representations of fundamental vibrations in
crystal lattices (T, vibe) and the electron w-bands
at k = 0 (I'y) for single-layer graphene Cp; and
crystalline graphite v — C are determined by the
same point group 6/mmm(Dgp,). In the case of single-
layer graphene, this group describes csymmetry of

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 5
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Table 8. Characters of irreducible projective representations of the projective classes K5 and K4
of the group 6/mmm corresponding to the standard factor-systems of those classes wz5) (r2,71) and w24) (r2,71)

Projec- Indication 6/mmm(Dgp)
tive of an irreducible
projective

class representation e c1 3 | 3Buz | c2 cd c6 | 3uby | i ics | ic% | 3oq | On | icd | ice | 30,
Ks p® 2 olofloflo|lo|o]o|o]|z2]o0]|o0 0
P 2 |22 |o|ofo|lo|o|ofo0o|o0o]|-2]0]0 0
Q¥ -2 |-2]|0|o0o]o0]|]O0O|O0]O0|O0O]O]|O0O]O0O]|oO 0
K4 piY 2 2 oo |of|oflo|o]|o]o|o]|o 0
Y 2 |22 |=2|0|o0o|lo|o|ofo0o|o0o]|]o0o]o0]|o0 0
QW -2 |-2]|0|o0o]o0o]|]O0O|O0]O0|O0O]|]O]|O0O]O0O]|oO 0

Table 9. Characters of single- and two-valued irreducible projective representations of point A
Projec- Indication 6/mmm(Dg)
tive of an irreducible
projective

class representation e c1 c% 3ug | c2 cg ce | 3ub I3 ic3 icg 304 | On icg ice | 30/
Ks Aq 2 2 2 0 0 0 0 0 0 0 0 2 0 0 0 0
Ao 2 2 2 0 0 0 0 0 0 0 0 -2 0 0 0 0

As 4 -2 | -2 0 0 0 0 0 0 0 0 0 0 0 0 0

Ky Ay 2 | -2 2 2i 0 0 0 0 0 0 0 0 0 0 0 0

A4+ As

A<l 2|22 |2|ofolololololo|olo]|o|lo]o

Ag 4 2 | -2 0 0 0 0 0 0 0 0 0 0 0 0 0

the macromolecular class; and in the case of crys-
talline graphite v — C, the symmetry of its crystalline
class. The term “macromolecular class”, unlike the
term “crystalline class”, will be used for the symmetry
group of equivalent directions in periodic nanostruc-
tures with bi- or single-periodic infinite translation-
invariant subgroups, whereas the term “crystalline
class” describes a point symmetry group of equiva-
lent directions in a three-periodic structure, a crystal,
where the translational symmetry elements form an
infinite three-periodic subgroup. The representations
Dlat. vibr and T'; are determined by the formulas [13]
Flat. vibr = 1—‘eq & 1jvectora FTI' = 1_\eq & FZ7 (14)
where I'yq is the atomic equivalence representation at
point I', and T'yector is the representation of the po-
lar vector r with the components z, y, and z. While
determining I';, only I', is used, which is an irre-
ducible representation for a vector directed along the

ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 5

z-axis, because the electron 7w-bands in graphene and
graphite are formed by electron p,.-orbitals.
Formulas (14) determine the vibrational and elec-
tron representations for elementary excitations with
k # 0 as well [13]. In particular, the character
Xeq(Ra) of the atomic equivalence representation for
the symmetry element R, of the macromolecular and
crystalline classes can be defined by the following for-
mula at any point in the Brillouin zone of periodic
macromolecular and crystalline structures:

XEC}(RQ) = Z(SRQTJ',I‘J' eiK"Lrj' (]‘5)
J

Here, the operation R, translates an atom into an
equivalent position, i.e. it satisfies the condition

RaI'j = I'j —|— Rn, (16)
where R, = mnija; + noap + nzaz [(ni,n2,n3) =
=0,£1,%2,..., and a; are the basis vectors or the

445



V.O. Gubanov, A.P. Naumenko, M.M. Biliy et al.

Table 10. New classification of projective classes of the group 6/mmm(Dgp) and their
standard factor-systems: 1 stands for a class Ko, 2 - K1, 3 — K2,4 - K3, 5 — K4,6 — K5, 7 - K¢, 8 — K7

K (a=1,8=1y=]) K (a=-1,=1,y=1)

Ky(a=1,p=-1y=]) Ki(a=-1,f=-1y=1)

oK) a i bycid (M| a b 1cid oy,nn) a | b yc|d oyrK)| a | b1 c | d
a | 1 1 1 1 a | 1 1 1 1 a | 1 1 1 1 a | 1 1 1 1

a a a a
a,| 1 1 1 1 a| 1 |-1 1 |- a, | 1 1|-1 §-1 | a | 1 |-1 1-1 1
b | 1 1 1 1 b | 1 1 1 1 b| 1 1 1 1 ! 1 1 1

b b b b
b | 1 1 1 1 b | 1 |-t 1| -1 b | 1 1 ]-1 §-1 | S O S B 1
| 1111 1 | 1 1 1 1 G| 1 1 1 1 G| 1 1 1 1

C C C (4
ol 1 1 1 1 ol| 1 |-t 1 |- o | 1 -1 §-1 | o | 1 [-1 11 1
d | 1 1 1 1 d | 1 1 1 1 d | 1 1 1 1 d | 1 1 1 1

d d d d
dy| 1|1 1 1 d,| 1 [-1 1 |-t dy| 1 1[-1 §-1 | dy| 1 [-1 -1 1

1 2 3 4

Ki(a=1,p=1y=-1)

K(a=1,f=-1y=-1) Ki(a=-1p=-1y=-])

o, (r,1)| a b ¢ d of(n,7)| a b ¢ d o(n,n)| a b c d ou(r,n)| a b ¢ d
R ERE a | 111 R ERE a | 1111
a a a a
ay | 1| 11 |1 a| 1 [-1 ] 1 |- a | 101 [-1 §-1 a | 1 [-1 -1 |1
bl 1 P11 R ERE b 141 -1 -1 IR ERE
b b b b
by| 1 1 [-1 - by 1 |-1 -1 | 1 byl 1 {111 {1 b 1|1 |1 ]
ql 1111 {1 q| 1111 o 111 ¢ | U1 1 1
C c C c
G| 111 | 1|1 ] 1] o 11 |-1 {1 ol 1 |- 1-1 |1
d| 11 [-1 i d| 111 -1 -1 df 11 -1 - d| 1 i1 |- {1
d d d d
| 1 {1 -1 {1 d| 1 [-1 -1 |1 d,| 11 1 §1 d| 1|11 [
5 6 7 8
lattice translation vectors] is a vector of the crystal | 8.1. Points T’

lattice or periodic nanostructure, and the condition
R’k =k +K,,, (17)

where Km = m1b1 + m2b2 + m3b3 [(ml,mg, mg) =
=0,£1,£2, ..., and b, are the basis vectors of recip-
rocal lattice] is the vector of the reciprocal lattice in
the crystal or periodic nanostructure. As usual, it is
implied that the basis vectors of the direct and recip-
rocal lattices are connected by the relations
bjai = 27‘(’61‘]‘. (18)

Let us calculate the distribution of normal vibra-
tions over the symmetry types for various points in
the Brillouin zones of single-layer graphene Cp; and
crystalline graphite v — C. Furthermore, we will de-
termine the symmetry of their electron bands located
higher than the valent w-bands (they will be called the
m-bands), but below the conduction 7-bands (they
will be called the 7*-bands).

446

It is easy to see that the factor-groups of the
wave-vector groups with respect to the translation-
invariant subgroups are isomorphic to the same point
symmetry group 6/mmm(Degp) for both graphene
Cr1 and crystalline graphite v — C. This is true
not only for the wave-vector groups at points I' of
graphene and crystalline graphite, but also at all
points in the graphene and graphite Brillouin zones
that are marked by identical letters. Nevertheless, the
characters of the equivalence representation I'eq in
formula (10) are different for the points in the Bril-
louin zones of graphene and crystalline graphite des-
ignated by the same letters, because those objects
have different structures.

The characters of representations I'cq for single-
layer graphene C'; and crystalline graphite v—C are
given in Table 11. Table 11 also includes the charac-
ters of the polar-vector representations Iyector = 'y
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Table 11. Characters of equivalence representations of the polar vector (point I') and I', (point I') for high-
symmetry points in the Brillouin zones of single-layer graphene Cr; and crystalline graphite v — C structures
Points I'

Point group(s) 6/mmm(Dgp)

Projective class(es) Ko

6/mmm(Dgp) e 2c3 3uo c2 2ce 3ul, i 2ic3 3ius ico 2icg 3iub
Cra k=0 |Teq| 2 2 0 0 0 2 0 0 2 2 2 0
vy—=C k=0 Teq 4 4 0 0 0 4 0 0 4 4 4 0
Iy 3 0 —1 —1 2 —1 -3 0 1 1 —2 1
T, 1 1 -1 1 1 —1 —1 -1 1 —1 —1 1
Point A
Point group 6/mmm(Dgp)
Projective class K5
6/mmm(Dgp,) e 2c3 3uo c2 2cq 3ul, i 2ic3 3iug ica 2icg 3iub
y—Clk=—1/2)b1]Aeq| 4 4 0 0 0 0 0 0 4 0 0 0
Points K
Point groups 6m2(Dsy,)
Projective classes Ko
6m2(Ds3p) e 2c3 3us ico 2icg 3iul
Cri | (ki) =—(1/3)2b1 —by) | Keq 2 1 0 2 1 0
(kx)2 = (1/3)(2b1 — ba)
'Y*C (kK)l 27(1/3)(21112711)3) ch 4 1 0 4 1 0
(k)2 = (1/3)(2bz — b3)

Point H
Point group 6m2(D3p,)
Projective class K;

6m2(Dsy,) e c3 c% 3uo ico icg ice Biul
v—C|(kg)1 = —(1/2)by — (1/3)(2b2 — b3) | Heq 4 1 1 0 0 V3 —/3 0
(ki)2 = —(1/2)b1 + (1/3)(2bz — bs)
Points M
Point groups mmm(Day,)
Projective classes Ko
‘ mmm(Day,) ‘ e (u2)1 ‘ c2 ‘ (uh)1 ‘ i i(u2)1 ‘ ico i(ub)1 ‘
Cr1 | (kar)1 = —(1/2)ba,(kar)2 = (1/2)by | Meq | 2 0 0 2 0 2 2 0
(kar)s = —(1/2)(b1 — b2)
7= C | (knr)1 = —(1/2)bs,(kar)2 = (1/2)by | Mo | 4 0 0 4 0 4 4 0
(kar)s = —(1/2)(bz — b3)
Point L
Point group mmm(Dap)
Projective class K5
mmm(Day,) e (u2)1 c2 (uh)1 i i(u2)1 ico i(uh)1
v—C | (kp)1 = —(1/2)(by + bs) Leq | 4 0 0 0 0 4 0 0

(k)2 = —(1/2)(b1 — b2)
(kr)s = —(1/2)(b1 + bz — b3)
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Table 12. Distributions of vibrational and electron
excitations for the w-bands at high-symmetry points
in the Brillouin zones over irreducible projective

Table 13. Characters of single- and two-valued
irreducible projective representations of point A

representations of the corresponding projective Indication
classes for single-layer graphene Cp 1 Projec- of an 6/mmm(Degp,)
and crystalline graphite v — C structures tive irreducible
. . class projective
Single-layer Cry.stalhne represen- | ¢ | e C% 307| e Cg 6 |30
graphene, C graphite, v — C tation
. Points I Ko Ay 1) 1 1) me| & Mk el 1
Point groups 6/mmm(Dgp) As 11 1] nel —me o el =1
Projective classes Ko
P N B N B Az ) 1) l=mk| mk Mk k| —1
Fvib = F2 + FS + F5 + F6 Fvib = 2F2 =+ 2F3 + 2F5 =+ 2F6 Ay 1 1 1 S ——— —n _—— 1
Do = r;++ rg+ Tac =T3 j_— g . As 2|=2|-1| 0| 2ng —Nk k| O
F0pt:£2 +I5 FOPtZQ}:Q +I3 +2I'; + T Ag 2|—-1(—-1 0|—27% Nk ne| 0
I'r=T5 +T3 Ir =27 +2I';
T2 s P_:K 2 3 K, Az 20 1|=1] o o V3n|—v3n| ©
oints
Point groups 6m2(Dsy) 28 20 =10 0|—V3mk| V3ni| O
Projective classes Ko 9 201=20 2 0 0 0 U

Ky = K1+ K3 + K5 + Ko | Kyip = K1 + Ko + K3+
+ K4 +3Ks5 + Kg
Kr =K+ K4+ Kg
Points M
Point groups mmm/(Dap,)
Projective classes Ko
My, = Mi™ + Mg + My + | My, = 2M;T + 2M5 + 2My +
+ MG+ Mg + My +2My +2My +2M
My = My + My My =2M +2M;
Point A
Point group 6/mmm(Degp,)
Projective class K5
Ay = 248 4240
Ay =240
Point H
Point group 6m2(Ds3p,)
Projective class K1
Hyp =30 + HY 420"
Hy = HY 4+ H{Y
Point L
Point group mmm(Dap,)
Projective class K5
Ly = 4L 4218
Ly =21

Kr =Kg

and the representation I', that determines the sym-
metry of the p.-orbital. Table 12 illustrates the dis-
tribution of the vibrational representation Iy, =
= Tat. vibr [it can easily be obtained from formula
(10)], the representations for the acoustic, 'y, and
optical, I'op¢, fundamental vibrational modes, and the
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electron-band representation I'; [it was also found
from formula (10)] over the irreducible representa-
tions of the group 6/mmm(Dgp,).

8.2. Point A

The factor-group of the wave-vector group at point A
for graphite crystals v — C' is also isomorphic to the
group 6/mmm(Dgy,) with respect to the translation-
invariant subgroup. The wave-vector star at point
A, as was at point I', consists of a single vector
k = —(1/2)by. The character of the projective equiv-
alence representation at point A, i.e. the representa-
tion Aq, is given in Table 11, and the distributions of
the representations Ay, and A, over the irreducible
group representations in Table 12.

Table 13 illustrates the characters of one- and
two-valued irreducible projective representations of
point A located between points I' and A. The group
of equivalent directions of the wave-vector group at
point A is the group 6mm/(Csg, ). The wave-vector star
at this point contains two rays. There is no additional
degeneration of states, if their invariance with respect
to time inversion is taken into account. This is in
contrast to the pairwise merging of dispersion curves
for all energy states at point A owing to the invari-
ance with respect to the time inversion for structures,
whose symmetry is described by the non-symmetric
spatial group P63/mmec (this behavior can be derived
on the basis of a similar consideration for the wurzite
structure made in work [6]).
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Figure 5 exhibits a diagram that can be used to
determine the compatibility of irreducible projective
representations of the group P63/mmec along the line
I'— A — A in the Brillouin zone of crystalline graphite.

8.3. Points K

The factor-groups of the wave-vector groups with re-
spect to infinite translation-invariant subgroups at
points K of single-layer graphene Cpr; and crys-
talline graphite v — C' structures are isomorphic to
the point group 6m2(Dsp,), which is a point symme-
try group of equivalent directions. The stars of the
wave-vector groups at points K in both structures
contain two vectors: for single-layer graphene Cp,
these are (kx)1 = —(1/3)(2by — bs) and (kg)2 =
= (1/3)(2by —by); and for crystalline graphite v —C,
these are (kx)1 = —(1/3)(2by — b3z) and (kg)2 =
= (1/3)(2bs — b3). The characters of the projective
representations K., are given in Table 11 (for both
structures, they belong to the class Kj), and the dis-
tributions Kyip, and K, over the irreducible repre-
sentations of the group 6m2(Dsp) are presented in
Table 12.

8.4. Point H

The factor-group of the wave-vector group with re-
spect to the infinite translation-invariant subgroup
at point H of the graphite v — C' structure is also
isomorphic to the point group 6m2 (Dsp). The star
of the wave-vector group consists of two vectors:
(kH)l = —(1/2)]31 - (1/3)(2]32 - bg) and (kH)Q =
= —(1/2)by + (1/3)(2bz — b3). Table 14, a presents
the factor system wy gr(r2,71) calculated by formula
(8). With the help of the function values on the
group uy g (r), which are indicated in the lower part
of Table 14, a, it is reduced to the standard form
wy 7 (r2,71), which is represented in Table 14, b. It is
easy to see that the factor systems wq g (r2,71) and
wy g (r2,71)-in accordance with the values of the co-
efficients «, 3, and ~y, which are determined directly
from the factor-systems themselves—belong to the
projective class K7, i.e. wi)H(rg,rl) = wEl)(Tg,Tl).
Besides the factor-system wj y(re,71) describing
the symmetric properties of the spatial symmetry
group P63/mmc(Dg,) of crystalline graphite, the
standard factor-system of the projective class Ki,
i.e. the factor-system wél)(rg,rl), can also be ob-
tained from the factor system wa(re,r1). The lat-
ter is determined by the spinor transformations un-
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r; A
Iy A,
r; A, A4
FZ AZ AZ
Ty A, 4
r; A 4,
r; A,
r; A
——

s s
r; Aq 4
s Ag 4
T; Ag
3 A,
r; A7 6
F&+ AS 6
Ty A
5 4
. A+ A,
F‘) A‘)

Fig. 5. Diagram determining the compatibility of irreducible
projective representations of the P63/mmc group in the Bril-
louin zone in the I' — A direction

der the action of the symmetry elements belong-
ing to the point group 6m2(D3p), which is a sym-
metry group of equivalent directions in the wave-
vector group of point H of the Brillouin zone of
graphite. In Table 15, a, the factor-system way(r2, 1)
for the point symmetry group 6m2(Dsp) is pre-
sented, which was obtained by formula (12). One
can easily see that it belongs to the projective
class K. As was done above, the parenthesized sub-
scripts display the multiplication table for the ele-
ments of the group 6m2 (the numbers in parenthe-
ses indicate the numerical designation of elements
for the group 6m2, which correspond to the prod-
ucts ror1). Table 15, b contains the corresponding
standard factor-system wj(ra,7r1). It was obtained by
transforming the factor-system ws (2, 71) by means of
formula (5) and using the values of the function wug(r)
that are indicated in the lower part of Table 15, a.

It is important that the values of the coefficients
uz(r) for the elements entering the both groups
6m2 and 6/mmm turned out identical. The standard
factor-systems w) (r2,71) and ws(r2,71) belonging
to the same projective class K; also expectedly co-
incide; i.e. the equality w) y(ra,m1) = wh(re,m1) =
= w(y,(r2,71) does take place.

The characters of various p-equivalent forms of
irreducible projective representations of the group
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Table 14. Factor-systems w1, g (7r2,71) for point H in crystalline

graphite (the spatial group P63/mmc (Dg,), point group 6m2 (D3p)) (a) and the standard
factor-system wLH(rz,rl) corresponding to its standard form (b). The lower part

of Table 14, a contains the values of the function uq ¢ (r) that transform

the factor-system wi g (72,71) to the standard form wi,H(rz,rl) = “’21) (r2,71)

a’n,u(’za".)‘ 1 23 4 5 6 7 8 9 10 11 12
n o e Cy ng (uz)l (uz)z (112)3 icz ic(f ic, i(ulz)l i(u;)z i(u;)fi
1 e | la logy 1oyl L ley Yoyl Loy laoy  lan  lay
2 G| Lo lay Ly L L) L) L(g) L9 L) Loy laoy  Tay
3 CRZ l(-‘) l(l) 1(2) ]45) Im) 114) I(‘)) |(7) I(x_\ I(ll) l(ll) I(I(i)
4 (“:) l44) l(i) 1((,) I(n 1(2) ](3) _l(m) 'lul) _1(12) ‘1(7) _1(8) '1(9;
5 (uz)g l<51 I((.) 1(4) 1) lm I(zy _l(ll) ‘qu) _l(lm ‘IN) _l(’r) _I(X)
6 ()| Loy L lsy logy g oy —lazy —laoy —lay —lsy —leoy ~liy
7 /Cz '(7) 1(8) l(()) I(IU] lrll» luz; _I(I) "1(2) ‘I(R) _‘(4) _1(5) 'l(m
8 iC(? 1(8» 1(9) 1(7) I(ll; I(lo; l(ll) _1(2) _Im _lu) ’lm) ‘](4) '|<5)
9 icg| Yoy 1oy le lan lany lag <l —loy <l —lsy “le —le
10 i), | tao lay  lany Lo Ls) Loy 1y sy Lo T loy gy
11 i(u;)z Lan  lay  laoy Lo L7y lg) ls) L6) Ly 1) Loy l2)
12 i(ulg); iy ooy Tan L L) L7 ley L L) 1) 13 La)
u ,(r)| 1 1 1 1 1 1 i i i i i i
a
T
Oy (rr) = e S . S
=a',,(r,n) 0 2 3 4 6 1 7 8 9 10 11 12
r, e G c_f () (), (), : ic, e, ey i(uy), i(uy), i(ur);
; " 1 e| 1o loy 1oy lay Ly L : gy  lgy Loy lagy  lan  lay
E a, E 2 G| o 13 Loy 53) lia) 15 : Lg) L) L7y Lz Laoy Ly
: : 3 ng 1) Ly 1) I L) Ly b L) 1) L) Lan a2 Laoy
a
E E 4 (ug)l Ly Lis) L) oy e Igy | =taey —lay —lazyy -l -l —loy
¢ 3y 5 ()| e e e 1l g Loy [=tay ~lazy —lagy ~lo  ~lay  —lg
: : 6 (u3)3 lrs) Ly l(s) l(2) lq;) l(l) _1(12) ‘l(l()) “'uly “l(x) _1(9) =l
S A - EONUOR, i I P I L U L DI MR |
X : 7 ic,| 1 lgy Loy laoy lan  Taz Loy loy gy Ly ls) L)
Dby 8 iC(f L) L) Iy Tay oo l(II): L2y 13 oy Loy Lay Iis
b E :, 9 | Yoy oy le lan oy lan! le lo lo ls le
: : 10 i(u'z)| l(l(?) l<Il) I(Iz» 117) l(x) l(‘)) "1(41 —115, _lqr.; _](I) _1(2) _lU)
2 b, E 11 i(u;)z Liy  lazy laey Loy 1 Iy |-ty —ley Ly —ly —lay ~lo
: " 12 i) Yoy T lan e Loy Iy |-l —lay ~lsy ~lay ~loy 1oy
b

6m2(Dsy,), which belong to the projective class K7,
are given in Table 16; in particular, for irreducible
single-valued projective representations correspond-
ing to the standard factor-system wgl)(rz,rl) (Ta-
ble 16, a), for irreducible projective two-valued spinor
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representations (Table 16, b), and for irreducible pro-
jective single-valued representations describing the
symmetry of vibrational and electron excitations
without making allowance for the spin at point H for
the spatial symmetry group or the wave-vector group
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Table 15. Factor-system wz(r2,71) for the group 6m2(Dsp) (a) and the standard

factor-system wj(r2,71) corresponding to its standard form (b).

In the lower part of

Table 15, a, we present the values of the functions u2(r) that reduce the factor-system
w2(r2,r1) to the standard form wj(rz2,r1) = wzl)(rz,'r'l)

(oz(rz,r,)l 1 2 3 4 5 6 7 8 9 10 11 12
N e e d o) W), W), i, i e, i), i), i)
1 e| ly loy  lgy Ly L5y loy Ly gy Loy Taey  Tlay  lapy
2 Gl oty Lyl Tl “lay —ly legy —loy Ly —lay —laey —lay
3 al e -y -loy ks e lay =l =lay Ly lay  Tay  Taoy
4 ()| la ~lsy  le —lo loy —lg ~lao oy lay Loy —lgy -l
5 (uy),]| sy —Le lgy -lg -l loy =lay  lazy  laoy —lo Iy —lg
6 (ug);, l(m ‘1(4) l(5) l(2) “lm _I(l) '](IZ) l(m) l(ll) ‘l(S) _](9) 1(7,
7 i gy gy Ly o lany o Tay lay —lay Iy —lay —lsy —le
8 "CS\ gy —loy =1y ~layy —laey —lay -l -l -l L) s 1is)
9 icg| Loy Aoy L ~lay ~lay —laey ey <lay lay bsy le Ly
10 i(ulz)[ Laoy —tany oy —lo Lg) Loy lay 1y —le —la Loy —ls)
i), | oy ~lay laey ley L gy Ly —lgy —lay ~—lgy —lay 1)
12 i(ull)g ](sz l(m) l(ll) 1(3) 1(9; _117) l((») “lu; _l(S) I(z; ‘Id) —](l)
u,(r) 1 -1 1 i i i i -i —i -1 -1 -1
a
@' Fl)= |  lessssmosese G .. :.-____-_---_fj _____________
=dynn)| | 2 3 4 5 6 1 7 8 9 10 11 12
N e o d W) W), )y, e, e e, i), i), i),
i i 1 e| lg oy ey Ly Ly Le : Iy e Lo lan  lan  lay
E a, E 2 Cs P 1) Ly L) L) L : 1) L) Ly Loz Lio) Loy
; X ' 3 Cgl lay Ly loy Ly Ly L' Loy lgy g tan Loy Lo
1 1
' ' 4 ()| Y ) ley oy loy ey | =laoy —lan —lazy Loy —lgy -l
: a, : 5 (uz)a ](5) lun '(4, '(3) 'm '(2» ‘l(m —l«m ’lmn "'(9) _]m _llx)
| _ i _ _;_ _ f _(Eg.).z" l(o) ](4) l(i) l(2) 1(3) |(|) "11121 _lun) ‘I(m _l(x) ‘l(v) ‘|(7)
X . 7 ic, | 1 lgy Loy Tlaoy lan  layr oy lo)y 1) Ly L) L6
E b, E 8 iC: sy ) Loy lany lag l(m: L2y 13, Loy L) Ly Ls)
b : ............ : 9 Ic() l(‘}) ](7) I(x) l(|[) I(IZ) I“U)I l(}) I(I) l(Z) l(5) I16) 1(4)
5 E 10 0@), [ Taoy  lan  lan I ls) Loy | =ty -~y —loy —lay ~lay -l
: b2 : 11 i(ll;): luls I(l:; Im)y Iw) 117) Iqx» "1(5) 'lm) _Iu) _lm) _Im ‘I(Zb
: Voo i)y ey lan tay e le oy | cle cle <l <lay -l -l
b

of point H, which is a subgroup of the space symme-
try group P63/mmc(D;,) (Table 16, c). It should be
noted that the representations of the spatial symme-
try group P63/mmc at point H, which were calcu-
lated making no allowance for the spin of a quantum
excitation, are drastically different from the double-
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valued spinor representations (Table 16, b). But
they are projectively equivalent (p-equivalent) to this
class, as well as to the class of projective representa-
tions corresponding to the standard factor-system of
the projective class K; (Table 16, a). Moreover, the
“carriers” of the two-valued character of representa-
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Table 16. Characters of irreducible projective representations of the group 6m2(D3}):

single-valued representations corresponding to the standard factor-system (a), two-valued spinor
representations (b), and single-valued representations describing the symmetry of vibrational and electron
excitations neglecting the spin at point H for the spatial symmetry group of (the wave-vector group

of point H) that is a subgroup of the spatial symmetry group P63mmc(Degp) (c). Primes above letters I' in the
symbols of irreducible projective representations mean that those representations are two-valued spinor ones

6m2(Dsy,) e c3 c2 3ius ica ic3 ice 3iul

K, a pV 2 -1 -1 0 0 V3i —V/3i 0

PV 2 -1 ~1 0 0 —V/3i V3i 0

Py 2 2 2 0 0 0 0 0

b T\ =r; B 2 1 -1 0 0 V3 -V3 0

@)Y =1y E 2 1 -1 0 0 V3 V3 0

™) =1y Ej 2 -2 2 0 0 0 0 0

uz(r) 1 -1 1 i i —i —i -1

c HY 2 ~1 -1 0 0 —V3 V3 0

" 2 —1 —1 0 0 V3 V3 0

H{M 2 2 2 0 0 0 0 0

uy g (r) 1 1 1 1 i i i i
124 at points M of the single-layer graphene and crys-
talline graphite structures are isomorphic to the point
group mmm(Day,). The latter is a point symmetry
84 group of equivalent directions for points M. The
stars of the wave-vector groups at points M in the
ol ), i both structures contain three vectors: in single-layer
3 = graphene Cp1, these are (kps)1 = —(1/2)bg, (kar)2 =
= ? = (1/2)by, and (kps)s = —(1/2)(by — ba); for crys-
0+ talline graphite v — C, these are (kps)1 = —(1/2)bs,
(Lflfl)’ M; (kM)Q = (1/2)b2, and (kM)g = 7(1/2)(b27b3) The
ol ~—— M characters of projective representations Meqy, which
belong to the class K for both structures, are given in
Table 11. The distributions My, and M, over irre-
-8 ducible representations of the group mmm(Day) are
L M presented in Table 12. The construction of the char-
Fig. 6. Dispersion of the electron energy m-bands in the | acters for the irreducible representations of the group

graphite crystals (letters mark the points in the Brillouin zone,
and indexed letters do the irreducible projective representa-
tions of the corresponding projective classes)

tions are the sets of coefficients that are determined
by the functions wus(r), i.e. such sets of coeflicients
for reducing factor-systems to standard forms, which
correspond to the parameter o = —1.

8.5. Points M

The factor-groups of the wave-vector groups with re-
spect to the infinite translation-invariant subgroups
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mmm(Dap,) does not cause any difficulty, if one fol-
lows the recording sequence for the symmetry ele-
ments of the subgroup mmm, namely, as they are
written in the group 6/mmm, but every represen-
tation that is even with respect to the inversion is
followed by the corresponding odd one.

8.6. Point L

The factor-group of the wave-vector group with re-
spect to the translation-invariant subgroup at point
L of crystalline graphite is also isomorphic to the
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Table 17. Factor-systems w1,z (r2,r1) for point L

in the Brillouin zone of crystalline graphite (the spatial
group P63/mmec(D4, ), the point group mmm(Day))
(a) and standard factor-system “’i,L (r2,71)
corresponding to its standard form (b). The lower
part of Table 17, a contains the values of the function
u1,r,(r) that transforms the factor-system
w1,r(r2,r1) for point L to the standard

form “’i,L("'?’ r1) = “’25) (r2,71)

101,,,(’2,4)1 1 2 3 4 5 6 7 8
r il (), ¢ @) i i(uy), ic, i(uy),
1 el 1oy loy 1oy lay L Loy Loy s
2 (W), | o loy “lay “la e lsy  ~lwy —ly
3 G| Loy lay 1oy g 17y l(g) Iis) Lig)
4 @ 1wy ey ~lg ~la gy 1oyl L
5 i lsy Loy ~lay —lsy oy loy  ~lgy ~la
6 i(uy) | o sy gy 1oy Il Loy lay
7 ic,| 13 lgy ~lisy —le 13 Ly —lgy —lo
8 l'(ll;)| I(x» 17 L) l(i) L) ‘(3) l(Z) Loy
u ,(r)| 1 | 1 1 1 1 -1 -1
a
T v T
o= b e
=R | 2 003 4 1s 6 1 7 8
NG| e @) @) i 1(u1)11 ic, i(u}),
P 5 a, E 1 e Ly Loy 1 Ly lm)l lis) Loy 1 Loy Lis)
__tapt 2 (w)] _l<2_r___l<_n_l“<41 o] te Ly l e —loy
b E b, E 3 Gl Mgy oy oy [=lay =l 4 =ls) ~le
L _ _bg . _‘1 _(E;ll | _I‘i‘_ _Ilj» |_|<2> ~la) :‘lm “la) I l“l _ _‘@ i
. E c E 5 Pl v leon to e Ul ey g g g
IS ICICAN ISP EPTEN I TR
d vdy 7 ic, | 14 Igyy sy Lo [=1a) =l -1y 1
Vdy 8 )| 1 1 |—1(,,, 1y 1l <l | e Lo
b

point group mmm(Day). The wave-vector star of
point L for the graphite v — C' structure also contains
three vectors: (k)1 = —(1/2)(by + bs), (kz)2 =
= —(1/2)(]2)1—1)2), and (kL)S = —(1/2)(b1+b2—b3)
Table 17 demonstrates the factor-system wq r,(r2,71)
calculated by formula (8). With the help of the func-
tion values on the group ui1,r(r) (they are indicated
in the lower part of Table 17, a), it is reduced to
the standard form wj ;(r2,71), which is exhibited
in Table 17, b. The factor-systems wy ,(r2,71) and
wy z(r2,71) — in accordance with the values of the
coefficients «, 8, and ~, which are determined from
the factor-systems themselves — belong to the pro-
jective class Kj, i.e. wiyL(rg,rl) = wE5)(r2,r1). The
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characters of irreducible projective representations
for point L can easily be obtained if one knows the
values of the function uy 1(r) and the characters of
irreducible projective representations of the class K5
corresponding to the standard factor-system of the
class K5, which are presented in Table 8 [6]. The
irreducible projective representations for point L
can easily be determined from Table 9. The char-
acter of the projective equivalence representation
at point L, i.e. the representation L.q, is given in
Table 11. The distribution of representations Lyip,
and L, over irreducible projective representations
of the class K5 of the group mmm is shown in
Table 12.

Figure 6 schematically illustrates the dispersion of
the electron energy m-bands in graphite crystals (the
letters mark the points in the Brillouin zone, and the
indexed letters do the irreducible projective represen-
tations of the corresponding projective classes). The
dispersion of the electron m-bands is schematically
presented in Fig. 6 for all high-symmetry points in the
Brillouin zone of graphite crystals. Our results have
a good qualitative agreement with the results of nu-
merical calculations carried out in works [14, 15]. At
the same time, our results also include the qualitative
behavior of the dispersion of electron bands along the
high-symmetry line I'— A — A. Furthermore, the sym-
bolic notations of representations that correspond to
the classification of energy states by the irreducible
projective representations of certain projective classes
for various points in the Brillouin zone, which was
made in this work for the first time, correspond to
the exact values of characters and, hence, the ma-
trices of irreducible projective representations, which
exactly describe the symmetry of vibrational and elec-
tron excitations.

9. Conclusions

1. A method has been developed for constructing
the correct multiplication tables of spinors, the
wave functions of quantum states with a half-integer
spin. In effect, this is a method to calculate the factor-
systems of the projective class K, including a proce-
dure of their reduction to the standard form.

2. The standard factor systems and their correspon-
ding irreducible representations for all projective clas-
ses of the hexagonal symmetry group 6/mmm(Dgp,)
and its subgroups have been constructed for the first
time.
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3. The classes of projective representations for vari-
ous points in the Brillouin zone of crystalline graphite
have been identified for the first time. The charac-
ters of irreducible projective representations are con-
structed for each of them. The symmetric distribu-
tion over the irreducible projective representations
of vibrational excitations and electron states that
are determined by the structure of the m-bands is
determined.

4. A symmetric theoretical-group description of the
dispersion of vibrational and electron excitations in
crystalline graphite in view of the changes in the
projective classes is made for the first time for var-
ious points in the Brillouin zone. Their correlations
with vibrational and electron excitations in single-
layer graphene are revealed.
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KOPEJIALIA EHEPTETMTYHUX CIIEKTPIB
KOJIMBAJIBHUX I EJIEKTPOHHUX 3BV/I>KEHb
TA IXHS JUCIEPCISI B TPA®ITI TA TPA®EHI

Peszmowme

JocmiizKeHO KOpeJIAIiio KOJUBAJIBHUX MO/, €JIEKTPOHHUX 30y-
JPKEHDb Ta 1X JUCIIEePCiiiHi 3a1€2KHOCTI B OJHOIIIAPpOBOMY Ipade-
Hi Ta Kpucrajax rpadiry. s iHTeprnperariil TaKux KOpeJsiii
BIIEPIIIE BUKOPHCTAHO METOIM TeOpil MPOEKTUBHUX IIPEJICTaB-
JIeHb TOYKOBUX Ta IIPOCTOPOBUX I'Pyl cuMeTpil. Busnadeno ko-
peJsnil eHepreTUIHNX CIEKTPIB KOJIMBAJIBHUX Ta €JIEKTPOHHUX
30y/12KEeHb 1 YMOBU CyMICHOCTiI HE3BIJJHMX NPOEKTHUBHHUX IIPE-
CTaBJIeHb B ONMCAaX KBAHTOBUX CTaHIB rpadeHy i KpucTaJiqHo-
ro rpadirty ausi pisHux TO4YOK ix 30H Bpisumoena. st mpoe-
KTUBHUX IIPEJICTaBJIEHDb BCiX IPOEKTUBHUX KJIACIB M€KCAroHaJIb-
HOI CHCTEMHU BIIEpIIe TOOY0BAHO CTaHIapPTHI (pbakTOp-cucremu,
B TOMY YHCJI BIepIe BU3HAYEHO (PAKTOP-CUCTEMU JJIs eJlie-
KTPOHHUX CTaHIB, 3a JIOMOMOIOI SIKMX BIEpIIE 3HAWIEHO KO-
peKTHI TabauIll MHOXKEHHS CIIIHOPIB, TOOTO TabJIUIl MHOXKEHHS
eJIEMEHTIB B IO/BiiiHuX rpynax cumerpii. Ha ocHoBi 3a3Ha4eHo-
ro BHUIIE, HAJAHO PO3MIOAIIN 3a TUIIAMU CHMETPil KOJINBAJILHUX
30y/I2KEeHb JJIsi BCiX TOYOK BHCOKOI cuMeTpil 30H Bpisumoena
OIHOIIAPOBOro rpadeny i kpucramiaaoro rpadiry.
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