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MORPHOLOGY AND PHASE TRANSFORMATION
OF COPPER/ALUMINIUM OXIDE FILMS

Сopper aluminium oxide (CuAlO2) was successfully prepared within the single-step sparking
process at the atmospheric pressure. The as-deposited films were then annealed at 400, 900,
1000, and 1100 ∘C in an oven. The results have shown that the annealing temperature has
direct effect on the morphology, phase transformation, and optical properties. CuAlO2 in the
delafossite phase was formed on the annealed films at temperatures higher than 900 ∘C. Fur-
thermore, the energy band gaps of the annealed films were linearly increased from 3.3 to 3.8 eV
with increasing the annealing temperature from 400 to 1100 ∘C due to a reduction of the oxygen
deficit of films at high annealing temperatures.
K e yw o r d s: sparking process, CuAlO2, annealing, phase transformation.

1. Introduction
Transparent conducting oxide is one of the most ad-
vanced topics for a wide range of equipment appli-
cations and for credible wide band gap oxide semi-
conductors. Transparent oxides with 𝑝-type and 𝑛-
type are severely limited for the development of 𝑝–𝑛
junction based devices such as transistors, transpar-
ent diodes, light emitting diodes (LEDs), and vari-
ous other optoelectronic devices [1–6]. In recent years,
semiconducting delafossite oxides such as copper alu-
minium oxide (CuAlO2) have attracted much inter-
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est as 𝑝-type semiconductors due to their optical and
electrical properties [8]. CuAlO2 has a direct band
gap in the interval 3.5–4.0 eV, while the indirect band
gap is 2.0 eV [9]. Thus, CuAlO2 can be used as amass-
ing in a dye-sensitized solar cell [5]. Several methods
have been used for the synthesis of CuAlO2 films such
as the sputtering [10–11], sol-gel [12], solution [13],
pulsed laser deposition [14], chemical vapour deposi-
tion [15], and sparking [16] ones.

In this work, we prepare CuAlO2 films on the
quartz substrate using a single step of the spark-
ing method without vacuum system [16]. The as-de-
posited films were annealed at 400, 900, 1000, and
1100 ∘C for 1 h. to improve their crystallinity. The
morphology and structural and optical properties of
the films were characterized by scanning electromic-
roscopy (SEM), energy dispersive x-ray (EDX), X-
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Fig. 1. Schematic diagram of a sparking apparatus

Fig. 2. SEM images of as-deposited films (a), the annealed
films at 400 (b), 900 (c), 1000 (d), and 1100 ∘C (e) and their
EDS (f)

ray diffraction (XRD), and UV/vis spectroscopy. Fur-
thermore, the phase composition of the film surfaces
was characterized using X-ray photoelectron spect-
roscopy (XPS). The effect of the annealing temper-
ature on their properties will be described and dis-
cussed in what follows.

2. Experimental Details

The experiment was carried out using the sparking
off Al (0.25 mm, 99.9%, SIGMA-ALDRICH Chem-
istry, USA) and Cu (0.58 mm, 99.9%, Advent Re-
search Material Ltd, UK) tips with the high DC volt-
age of 2 kV under atmospheric pressure, as shown
in Fig. 1. The tips were placed at the 1-mm spac-
ing, while the tips were also placed above the quartz
substrate at a distance of 1 mm. In the sparking pro-
cess for 1 h and the deposition rate of 125 nm/min,
small particles of Cu and Al, which are gener-
ated by the bombardment by electrons and ions at
the two tip surfaces, were deposited on the sub-
strate to form the films. The as-deposited films were
then annealed in a furnace at 400, 900, 1000, and
1100 ∘C for 1 h. The film morphology was charac-
terized by SEM (JEOL JSM300), the film compo-
nents were determined by using EDX. The crystal
structures and the phase composition of the films
were investigated by XRD (Rigagu; CuK𝛼 radia-
tion with 𝜆 = 0.1541862 nm operating at 40 kV,
30 mA) and XPS (AXIS ULTRADLD, Kratos ana-
lytical, Manchester, UK). Moreover, the optical prop-
erties including the energy gap of the films can
be characterized by UV/vis spectroscopy (Hitachi
U-4100).

3. Results and Discussion

Fig. 2, a–e shows SEM images of the as-deposited
and annealed films at 400, 900, 1000, and 1100 ∘C
for 1 h, respectively. From the figures, it is clearly
seen that the as-deposited films (Fig. 2, a) have a
high porosity. According to the high surface energy
of nanoparticles, Cu/Al nanoclusters were then agg-
lomerated to decrease their surface energy [17]. The
surface roughness and the particle sizes of the films
were decreased with increasing the annealing temper-
ature (see Fig. 2, b–e). When the films are annealed
at 900 and 1000 ∘C, it is seen that some of Al particles
are melted, because the melting temperature of Al is
lower than 900 ∘C [18]. When the films are annealed
at 1100 ∘C, Cu/Al particles are totally melted since
the temperature was higher than the melting point
of copper [18]. The weight % of Cu/Al on the films is
shown in Fig. 2, f. It is found that the weight % of Cu
decreases, while the weight % of Al increases, as the
annealing temperature increases. This is because the
melting temperature of Al lower than that of Cu leads
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to the coverage on Cu particles at the high annealing
temperature.

Figure 3 shows XRD patterns of the as-deposited
films and films annealed at various temperatures for
1 h. From the figure, no significant peak is observed
at the annealing temperature lower 400 ∘C. At the
annealing temperature of 900 ∘C, the peaks were ob-
served at 35.6∘ and 38.9∘, which correspond to CuO
[19], while the peak at 36.9∘ is related to CuAl2O4

[20]. After the annealing at more that 900 ∘C, the
peaks are clearly observed at 21.6∘ and 35.8∘, which
confirms that the film is CuAlO2 [21].

The CuAlO2 film annealed at 1100 ∘C were stud-
ied by XPS spectra, as shown in Fig. 4. From the
figure, we see that all strong peaks of Cu, Al, and
O correspond to the state of CuAlO2. That is, the
main peaks of Cu 2𝑝 were observed at the bind-
ing energies of 933.2 eV and 952.9 eV, which cor-
respond to Cu 2𝑝3/2 and the spin orbital Cu 2𝑝1/2
(see Fig. 4, a) [22]. However, the states of CuO
are remained at 935.0 eV and 953.9 eV, while the
states of CuAl2O4 are also remained at 934.6 eV and
952.6 eV [24]. Figure 4, b shows the Al 2𝑝 (Al3+) peak
at 74.5 eV, which corresponds to Al+3–O−2 bonds
of CuAlO2 [22], whereas the peak at 74.7 eV corre-
sponds to CuAl2O4 [25]. Figure 4, c shows the main
peak at 532.6 eV of O 1𝑠, which corresponds to O2−–
Cu+1 [22]. The binding energy at 531.4 eV corre-
sponds to O−2–Al+3. However, the peak at 533.8 eV
was observed due to the aggregation of (O2)2− per-
oxo species [23]. Thus, the XRD results show not only
the peak of CuAlO2 (Fig. 3), but also confirm the
presence of CuAlO2 observed on the films by XPS
spectra.

The optical transmission spectra of the as-
deposited and annealed films at 400, 900, 1000, and
1100 ∘C in for 1 h have shown in Fig. 5. The transmis-
sion of the as-deposited and annealed films at 400 ∘C
rapidly decreases from 90 to 20% with decreasing the
wavelength from 1000 to 200 nm. It might be from
the absorption and scattering of the amorphous struc-
ture [26]. If the annealing temperature is higher than
900 ∘C, the transmission slightly decreases with de-
creasing the wavelength from 1000 to 300 nm. The
transmission then rapidly decreases for the wave-
lengths lower than 300 nm due to the formation of
the CuAlO2 phase on the films [27].

The energy band gap (𝐸𝑔) values, which can be in-
dicated using the transmission spectra (see Fig. 5),

Fig. 3. XRD patterns of the Cu/Al films at various annealing
temperatures

Fig. 4. XPS spectra of Cu 2𝑝 (a), Al 2𝑝 (b) and O 1𝑠 (c); the
films were annealed at 1100 ∘C for 1 h
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Fig. 5. UV-Vis transmission spectra of the as-deposited and
annealed films at various annealing temperatures

Fig. 6. Plot of (𝛼ℎ𝜐)2 versus the photon energy for the de-
termination of the as-deposited and annealed films at various
annealing temperatures

are shown in Fig. 6. The Tauc plot is used to gener-
ate the optical band gap (𝐸𝑔) and can be written as
follows [28]:

𝛼ℎ𝜐 = 𝐴(ℎ𝜐 − 𝐸𝑔)
𝑍 , (1)

𝛼 =
1

𝑡
ln

(︂
1

𝑇

)︂
. (2)

Here, 𝛼 is an optical absorption coefficient of the
films which can be calculated using relation (2) [29,
37], 𝐴 is a constant dependent on the photon en-
ergy, ℎ𝜐 is the photon energy, and 𝑇 is the transmit-
tance. The exponential 𝑍 is 2 or 1

2 for the indirect or
direct allowed transition. However, the assuming 𝛼
without the film thickness value (𝑡) was slightly dif-
ferent [35, 36]. Thus, the optical band gap (𝐸𝑔) can

be determined using a plot of (ln(1/𝑇 )*ℎ𝜐)2 against
the energy ℎ𝑣, as shown in Fig. 6. From the figure,
the (𝐸𝑔) of the as-deposited films was 3.2 eV, while
the annealed films at 400, 900, 1000, and 1100 ∘C
were 3.3, 3.4, 3.5, and 3.8 eV respectively. We note
that 𝐸𝑔 increases with the annealing temperature due
to the formation of CuAlO2 at high temperatures
[33]. This is because the increasing of the band gap
is required to reduce the oxygen deficit [9], which in
good agreement with all of the above-mentioned re-
searchers [30–34].

4. Conclusions

Cu/Al composited films were deposited on the quartz
substrate by the single-step sparking method at the
atmospheric pressure. The morphology and struc-
tural and optical properties of the annealed films
at various temperatures are totally different from
the as-deposited films. Furthermore, XRD and XPS
spectra have confirmed that CuAlO2 in the delafos-
site phase was formed on the films annealed at high
temperatures.
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МОРФОЛОГIЯ I ФАЗОВЕ
ПЕРЕТВОРЕННЯ ПЛIВОК ОКИСУ МIДI/АЛЮМIНIЮ

Р е з ю м е

Одностадiйним електроiскровим методом при атмосферно-
му тиску отримано окис мiдi i алюмiнiю CuAlO2. Тiльки
що виготовленi плiвки вiдпаленi в печi при 400, 900, 1000 i
1100 ∘C. Результати показали, що морфологiя, фазове пе-
ретворення i оптичнi властивостi залежать вiд температури
вiдпалу. CuAlO2 у фазi делафоссiта утворюється на вiдпа-
лених плiвках за температурою вище 900 ∘C. Ширина за-
бороненої зони вiдпалених плiвок лiнiйно зростає вiд 3,3
до 3,8 еВ iз збiльшенням температури вiдпалу вiд 400 до
1100 ∘C завдяки зменшенню дефiциту кисню при високих
температурах вiдпалу.
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