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MODELING OF BACTERIAL
CHEMOTAXIS IN A MEDIUM WITH A REPELLENT

The bacterial chemotaxis in a one-dimensional system with a repellent has been considered. The
process of bacterial redistribution in the system is analyzed, and a corresponding phenomeno-
logical model is proposed, which makes allowance for the diffusion of bacteria and their motion
caused by the repellent gradient. The repellent injection into the system is governed by boundary
conditions. In the framework of this model, the chemotaxis sensitivity function, a numerical
characteristic, which describes the nonuniformity in the bacterial distribution, is calculated. A
dependence of the chemotaxis sensitivity function on the repellent concentration at the sys-
tem boundaries is obtained. A relation between the bacterial distribution and the parameters
of repellent distribution is found.
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1. Introduction
Flagellate bacteria (e.g., E. coli) are known to be able
to recognize certain chemicals. Such bacteria move
in or opposite to the direction of the substance con-
centration gradient [1, 2]. If bacteria move in the di-
rection of the substance concentration growth, such
a substance is called an attractant. As an example,
these are sugar, vitamins, and amino acids. If bac-
teria move in the direction of the substance concen-
tration reduction, such a substance is called a repel-
lent. Repellents include, e.g., alcohols, phenols, and
some acids.

The chemotaxis problem has a long history. Among
the first works in this area, there are works [3–5]. Ne-
vertheless, the chemotaxis problem remains challeng-
ing till now [6–9]. For the decades of researches, a
lot of interesting and promising results were obtained
(see, e.g., works [10–13] and references therein). At
the same time, there are important issues that have
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not been resolved yet. In particular, the mechanism
governing the bacterial redistribution in accordance
with the attractant or repellent gradient is quite com-
plicated [2].

A bacterium has receptors that can sense an attrac-
tant or a repellent [14–17]. However, as a rule, the
linear size of a bacterium is too small for the latter to
“calculate” the gradient of the substance. This “rule”
has exceptions (see, e.g., work [18]), but, in general,
the reaction of bacteria to the repellent/attractant
gradient has a multilevel character and is rather fine.
It is based on the fact that, when a bacterium moves,
its receptors register the attractant/repellent. As a
result, the receptors transit into a certain active
state. The active state of a receptor is a temporary
phenomenon. In a certain time interval after its ac-
tivation, the receptor returns into the inactive state.
Therefore, when a bacterium moves, the number of its
active receptors changes. This number is larger, if the
concentration of an attractant/repellent registered by
the bacterium during its motion is higher.
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Concerning the laws of bacterium motion, bacte-
ria move mainly uniformly and straightforwardly. Ho-
wever, the uniform motion is interrupted by the
tumbling. At the tumbling, the bacterium stops and
randomly changes the direction of its motion. The
redistribution of bacteria according to the attrac-
tant/repellent gradient occurs by changing the tum-
bling frequency. The latter, in turn, depends on the
number of active receptors and, thus, on the attrac-
tant/repellent concentration registered by the bac-
terium receptors during the motion of a bacterium
in the medium. For example, if the bacterium re-
ceptors register a high attractant concentration, the
tumbling frequency decreases [2]. As a result, a bac-
terium changes the direction of its motion more
rarely in regions with a high attractant concentra-
tions. For a repellent, the situation is inverse. Hence,
bacteria obtain a “memory effect” [2, 19], when their
behavior depends on the region where they were
earlier.

There are two conceptual approaches to describe
the motion of bacteria in a medium with an attrac-
tant/repellent. One of them is based on the software
application [2]. Its advantage consists in that it is
possible to set up an algorithm for the behavior of
bacteria and, in such a way, maximally mimic the
real system by an artificial one. The main disadvan-
tage of this approach (apart from mere technical dif-
ficulties of its implementation) is associated with the
impossibility to obtain analytical dependences. The-
refore, the other approach that uses models based
on nonlinear differential equations of the diffusion
type [20, 21] is also popular and efficient. The cor-
responding equations contain a set of phenomenolog-
ical parameters and involve the behavior of bacteria
in a medium with an attractant/repellent by intro-
ducing specific terms into expressions for the bacte-
rial flux.

In this work, a one-dimensional system containing
bacteria and a repellent is considered. To elucidate
the character and specific features of the bacterial
distribution in the system (and their dependences on
the repellent distribution), a mathematical model is
proposed, which is based on a nonlinear differential
equation. The models of this type were used earlier
to study the bacterial behavior in a medium with an
attractant [22–24]. A similar approach is used in this
work, but now, when developing the model, we take
into account that the repellent is dealt with.

2. System with Repellent

As was indicated above, a one-dimensional system
with linear dimension 𝐿 is considered. Accordingly,
the coordinate along the system is varied within the
interval 0 ≤ 𝑥 ≤ 𝐿. Let the function 𝑏(𝑥) describe
the stationary distribution of bacteria, and the func-
tion 𝑐(𝑥) the stationary distribution of a repellent in
the system. It is clear that there is a functional rela-
tion between the dependences 𝑏(𝑥) and 𝑐(𝑥), which is
rather non-trivial. We proceed from the assumption
that the flux of bacteria in the system, j𝑏, is deter-
mined by both the distribution of bacteria 𝑏(𝑥) and
by the distribution of a repellent 𝑐(𝑥). In particular,
the following expression for the bacterial flux is used:

j𝑏 = −𝐷∇𝑏(𝑥)− 𝑘
𝑏(𝑥)∇𝑐(𝑥)

(𝑎+ 𝑐(𝑥))2
, (1)

where 𝐷 is the diffusion coefficient, and 𝑘 and 𝑎
are phenomenological parameters of the model. The
first term in the right-hand side of expression (1)
corresponds to the bacterial diffusion, and the sec-
ond term describes the flux component associated
with the chemotaxis. We proceed from the assump-
tion that the contribution of the chemotaxis to the
bacterial flux is proportional to the repellent gradient
∇𝑐(𝑥) and the bacterial concentration 𝑏(𝑥). The ex-
pression (𝑎+ 𝑐(𝑥))2 in the denominator of the second
term is associated with the following fact. According
to experimental data [2], if the concentration of an
attractant or repellent is high, the “saturation effect”
takes place: the bacteria cease to sense the gradient
(in our case, of a repellent). It should also be noted
that the type of functional dependence used by us for
the chemotaxis term was well verified for models de-
scribing a system with an attractant [22–24]. In our
case, we use an analogous expression, but it enters
the general expression for the bacterial flux with the
different sign.

If we are interested in the stationary distribution
of bacteria in the system, the corresponding equation
can be written as follows:

div(j𝑏) = 0. (2)

In view of the one-dimensional geometry of the prob-
lem, it reads

𝐷∇𝑏(𝑥) + 𝑘
𝑏(𝑥)∇𝑐(𝑥)

(𝑎+ 𝑐(𝑥))2
= const. (3)

In addition to this equation, we have to specify
boundary conditions and to set the spatial distribu-
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tion of a repellent. We proceed from the feasible con-
ditions of physiological experiments [2]. In this case,
let us consider a situation where the repellent is in-
jected into the system at the left end 𝑥 = 0, and
bacteria at the right end 𝑥 = 𝐿 (in the more gen-
eral case, the parameters of the bacterial distribution
are controllable). Suppose that the repellent concen-
tration 𝐶0 is given at the left boundary, and there is
no bacterial flux through it. In addition, we assume
that the total amount of a repellent, 𝐶, and the total
number of bacteria, 𝐵, in the system are known.

Taking all that into account and making the sub-
stitutions 𝑥 = 𝐿𝑧 (0 ≤ 𝑧 ≤ 1), 𝑏(𝑥) = 𝐵𝑚(𝑧)/𝐿,
and 𝑐(𝑥) = 𝑎𝑠(𝑧), we can ultimately formulate the
problem. It consists in finding the function 𝑚(𝑧) that
satisfies the equation

𝑑𝑚

𝑑𝑧
+ 𝜆

𝑚(𝑧) 𝑑𝑠𝑑𝑧
(1 + 𝑠(𝑧))2

= 0, (4)

where 𝜆 = 𝑘/𝐷/𝑎.
The repellent distribution in the system is de-

scribed by the stationary diffusion equation. There-
fore, the repellent concentration dependence on the
coordinate is linear. In other words, the dependence
𝑠(𝑧) is given by the expression

𝑠(𝑧) = 𝑝(1− 2𝑧) + 2𝛼𝑧, (5)

where the parameter 𝑝 determines the repellent con-
centration at the left end (𝑠(0) = 𝑝), and the dimen-
sionless parameter 𝛼 = 𝐶/𝐿/𝑎 determines the total
amount of a repellent in the system,
1∫︁

0

𝑠(𝑧)𝑑𝑧 = 𝛼. (6)

In addition, the function 𝑚(𝑧) is normalized,
1∫︁

0

𝑚(𝑧)𝑑𝑧 = 1. (7)

From the formal viewpoint, this problem is not dif-
ficult. The solution 𝑚(𝑧) that satisfies all additional
conditions looks like

𝑚(𝑧) =
exp

(︁
𝜆

1+𝑠(𝑧)

)︁
1∫︀
0

exp
(︁

𝜆
1+𝑠(𝑧)

)︁
𝑑𝑧

, (8)

where the function 𝑠(𝑧) is given by formula (5), and
the parameters 𝑝 and 𝛼 are the known quantities.

3. Qualitative Parameters of the System

Although we know a general solution for the bac-
terial distribution in the system, we are interested,
first of all, in consequences following from this so-
lution. From the practical viewpoint, we are inter-
ested in how the distribution of bacteria in the sys-
tem is nonuniform and how the bacterial distribu-
tion nonuniformity depends on the repellent distri-
bution. For this purpose, some numerical parameters
should be used. In particular, the uniform character
of the bacterial distribution in the system can be de-
scribed by the chemotaxis sensitivity function [2, 22–
24]. This function determines how much the average
concentration of bacteria in a definite region devi-
ates from the average concentration of bacteria over
the whole system. If we are interested in the interval
𝑥1 ≤ 𝑥 ≤ 𝑥2, the chemotaxis sensitivity function is
defined as follows:

𝐹 (𝑥1, 𝑥2) =

1
𝑥2−𝑥1

𝑥2∫︀
𝑥1

𝑏(𝑥)𝑑𝑥

1
𝐿

𝐿∫︀
0

𝑏(𝑥)𝑑𝑥

− 1. (9)

The equality 𝐹 (𝑥1, 𝑥2) = 0 means that the aver-
age concentration of bacteria in the examined region
is the same as in the whole system. The inequality
𝐹 (𝑥1, 𝑥2) > 0 demonstrates that the average bacte-
rial concentration in this region is higher than the
mean value over the system. Finally, the inequality
𝐹 (𝑥1, 𝑥2) < 0 indicates that the average concentra-
tion of bacteria in the region is lower than the average
concentration over the system.

It is clear that the function defined by formula
(9) depends on the size and location of the region,
for which the function is calculated. But if the size
Δ𝑥 = 𝑥2 − 𝑥1 of the region tends to zero, we obtain
the following formula for the chemotaxis sensitivity
function:

𝐹 (𝑥) =
𝐿𝑏(𝑥)

𝐿∫︀
0

𝑏(𝑥)𝑑𝑥

− 1. (10)

In dimensionless variables,

𝐹 (𝑧) = 𝑚(𝑧)− 1 =
exp

(︁
𝜆

1+𝑠(𝑧)

)︁
1∫︀
0

exp
(︁

𝜆
1+𝑠(𝑧)

)︁
𝑑𝑧

− 1. (11)
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Since the dependence 𝑠(𝑧) contains the parameters 𝑝
and 𝛼 (see formula (5)), the function 𝐹 (𝑧) defined
by Eq. (11) also depends on them. The correspond-
ing solutions have a physical meaning at 𝑝 ≤ 2𝛼. At
𝑝 = 𝛼, we have 𝑠(𝑧) ≡ 𝛼, i.e. a uniform repellent
distribution, so that 𝐹 (𝑧) ≡ 0.

From the technical viewpoint, it is the simplest way
to carry out the measurements at the boundaries of
the system. Therefore, let us consider the chemotaxis
sensitivity function at the left boundary,

𝐹0(𝑝, 𝛼) ≡ 𝐹 (𝑧 = 0) =
exp

(︁
𝜆

1+𝑝

)︁
1∫︀
0

exp
(︁

𝜆
1+𝑠(𝑧)

)︁
𝑑𝑧

− 1, (12)

and, at the right boundary,

𝐹1(𝑝, 𝛼) ≡
exp

(︁
𝜆

1+2𝛼−𝑝

)︁
1∫︀
0

exp
(︁

𝜆
1+𝑠(𝑧)

)︁
𝑑𝑧

− 1. (13)

It is easy to see that the equality 𝐹0(𝛼 − 𝑞, 𝛼) =
= 𝐹1(𝛼 + 𝑞, 𝛼) holds true for any 0 ≤ 𝑞 ≤ 𝛼, which
means that the plots of the dependences 𝐹0(𝑝, 𝛼 =
= const) and 𝐹1(𝑝, 𝛼 = const) are specular reflec-
tions of each other with respect to the vertical line
𝑝 = 𝛼. This is an important fact, because it means
that the functions 𝐹0(𝑝, 𝛼) and 𝐹1(𝑝, 𝛼) are not inde-
pendent characteristics of the nonuniform character
of the bacterial distribution in the system: from the
known function 𝐹0(𝑝, 𝛼), we can obtain the function
𝐹1(𝑝, 𝛼) and vice versa.

4. Regime of Repellent Injection

Hence, the chemotaxis sensitivity function depends
on the parameters 𝑝 and 𝛼, which, in turn, are de-
termined by the regime of repellent injection into the
system. By changing one of them or the both, we can
change the bacterial distribution in the system. Si-
multaneously, we can monitor those changes on the
basis of the chemotaxis sensitivity function. Further-
more, the parameter 𝜆 also enters the corresponding
formulas. However, unlike the parameters 𝑝 and 𝛼,
the parameter 𝜆 is not determined by the regime of
repellent injection, but by the system properties of
the system.

It should be noted at once that the specific nu-
merical value of the parameter 𝜆 does not affect the

Fig. 1. Chemotaxis sensitivity function 𝐹0(𝑝, 𝛼) for various
values of the parameter 𝛼 = 0.1 (solid curve), 0.3 (dotted
curve), and 0.5 (dashed curve)

behavior of the obtained dependences at the qualita-
tive level. At the same time, we can evaluate 𝜆. For
this purpose, let us consider the results of previous
works for systems with an attractant [2, 22]. In par-
ticular, in work [2], the bacterial distribution in a sys-
tem with a linearly distributed attractant was calcu-
lated. The cited work also contains data on the exper-
imentally measured parameters of the bacterial dis-
tribution function. On the other hand, in work [22],
an approach based on a phenomenological model was
proposed, and a bacterial distribution function con-
taining a phenomenological parameter, which corre-
sponds to the parameter 𝜆 with an accuracy to its
sign, was obtained. By comparing the bacterial dis-
tributions from works [2] and [22], the value of the
indicated phenomenological parameter can be eval-
uated (the corresponding evaluation was made in
works [22, 24]). Proceeding from the assumption that
the reaction of bacteria to a repellent at the micro-
scopic level is realized in a similar way as the reaction
to an attractant, we may put 𝜆 ≈ 40 by the order of
magnitude.

If the total amount of a repellent in the system
is fixed (𝛼 = const), the corresponding dependences
𝐹0(𝑝) (for various 𝛼’s) are shown in Fig. 1. Expected-
ly, the function 𝐹0(𝑝, 𝛼 = const) monotonically de-
creases with the growth of the parameter 𝑝. At 𝑝 < 𝛼,
the repellent concentration profile 𝑠(𝑧) increases lin-
early with the coordinate 𝑧. Therefore, the bacteria
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Fig. 2. Chemotaxis sensitivity function 𝐹1(𝑝, 𝛼) for the pa-
rameter 𝛼 = 0.1 (solid curve). For comparison, the function
𝐹0(𝑝, 𝛼 = 0.1) is also plotted (dashed curve)

Fig. 3. Chemotaxis sensitivity function 𝐹0(𝜂) for various val-
ues of the parameter 𝜉 = 0.75 (solid curve), 0.85 (dotted curve),
and 0.95 (dashed curve)

are located closer to the coordinate origin. At 𝑝 = 𝛼,
the repellent distribution is uniform, so that the bac-
teria are also uniformly distributed over the sys-
tem, and the chemotaxis sensitivity function equals
zero. Finally, at 𝛼 < 𝑝 ≤ 2𝛼, the repellent concentra-
tion linearly decreases with the distance, so that the
bacteria move to the end of the system. Accordingly,
the bacterial concentration at the left boundary be-
comes lower than the average one, and the chemotaxis
sensitivity function becomes negative.

The situation at the right boundary of the system
is inverse. Figure 2 demonstrates plots for the depen-
dences 𝐹0(𝑝) and 𝐹1(𝑝) with the same value of the
parameter 𝛼 = 0.1. As was marked above, the plot
of the function 𝐹1(𝑝) is a specular reflection of the
plot of the function 𝐹0(𝑝) with respect to the vertical
line 𝑝 = 𝛼. At 𝑝 < 𝛼, the repellent concentration in-
creases, as the coordinate grows. Therefore, the bac-
teria move to the left boundary of the system. Ac-
cordingly, the chemotaxis sensitivity function 𝐹1(𝑝)
acquires negative values. At 𝛼 < 𝑝 ≤ 2𝛼, the repel-
lent concentration in the system decreases, as the co-
ordinate grows. Therefore, the bacteria move to the
right boundary of the system in this case, and the
chemotaxis sensitivity function 𝐹1(𝑝) increases.

It is evident that if the total amount of a repellent
in the system is fixed, the variation of its concentra-
tion at the boundary can result in the redistribution
of bacteria only within certain limits. More interest-
ing is a situation where the variation of the repellent
concentration at the left boundary of the system is
synchronously accompanied by the variation of the
repellent amount in the whole system. In particular,
let us consider a situation where a variation of the re-
pellent concentration at the left boundary gives rise
to a proportional variation of the repellent concentra-
tion at the right boundary,

𝑠(0) = 𝑝, (14)

𝑠(1) = 𝜉𝑝, (15)

where the parameter 𝜉 is fixed. In this case, the total
amount of a repellent in the system is determined by
the formula

𝛼 =
(1 + 𝜉)𝑝

2
. (16)

For the sake of convenience, we put 𝑝 = 10𝜂 and
introduce the notation

𝐹𝑖(𝜂) = 𝐹𝑖

(︁
10𝜂,

(1 + 𝜉)10𝜂

2

)︁
, (17)

where 𝑖 = 0 and 1.
The dependences 𝐹0(𝜂) for various values of the

parameter 𝜉 are plotted in Fig. 3. The function 𝐹0(𝜂)
has only negative values. It has a well-shaped profile
with a minimum. The negativity of the function 𝐹0(𝜂)
follows from the fact that, under the given bound-
ary conditions, the repellent concentration decreases
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along the system. As a result, the bacterial concen-
tration at the left boundary of the system is lower
than the average concentration over the whole sys-
tem. The well-shaped profile of the curve has the fol-
lowing explanation. With an increase of the repellent
concentration at the left boundary of the system, the
repellent concentration gradient also increases. The-
refore, the nonuniformity in the bacterial distribu-
tion grows, and the chemotaxis sensitivity function
decreases (increases by the absolute value). However,
an increase of the repellent concentration at the left
boundary also results in an increase of the total repel-
lent amount in the whole system. Hence, the bacte-
ria begin to demonstrate the saturation effect, when
the repellent gradient is not sensed enough against a
significant repellent concentration background. As a
result, the bacterial distribution becomes more uni-
form, and the chemotaxis sensitivity function returns
back to zero. As to the influence of the parameter 𝜉, it
is evident that its smaller values correspond to larger
values of the repellent concentration gradient, so that
the extremum of the chemotaxis sensitivity function
becomes more pronounced.

A similar situation takes place for the function
𝐹1(𝜂). The only correction consists in that the func-
tion 𝐹1(𝜂) accepts positive values. The plots of the
function 𝐹1(𝜂) for various 𝜉 are shown in Fig. 4.

Explanations of the dome-shaped profile of the
function 𝐹1(𝜂) remain the same as for the function
𝐹0(𝜂). It should also be noted that the effect obtained
in our case is similar to that obtained for systems with
an attractant [22–24].

5. Discussion of the Results Obtained

The model proposed in this work allows the bacterial
distribution in the system to be calculated provided
that the system contains a repellent. Despite the phe-
nomenological character of the basic model, we have
good grounds to hope for that the results obtained
can be useful, while processing experimental data and
predicting the behavior of bacteria in a repellent en-
vironment. Such hopes are based on the qualitative
agreement between the simulation results and mod-
ern ideas concerning the behavior of bacteria in an
active medium, as well as on the results of computer
simulations for a system with an attractant [2]. Not-
withstanding that, as for a repellent, the model used
by us is similar to that proposed for a system with

Fig. 4. Chemotaxis sensitivity function 𝐹1(𝜂) for various
values of the parameter 𝜉 = 0.75 (solid curve), 0.85 (dotted
curve), and 0.95 (dashed curve)

an attractant and had shown a good agreement of
its predictions with the available results of numerical
and real experiments [22–24].

The approach used in this work to calculate the
chemotaxis sensitivity function also has a specific ap-
plication value, because, in practice, it is much easier
to measure the concentration of bacteria at a certain
point than over the whole system. Concerning a pos-
sible experiment, its technique should be associated
with the counting of the number of bacteria in a re-
gion, where an attractant or a repellent is injected [2]
(in our case, this is one of system’s ends). Therefore,
the estimates obtained for the chemotaxis sensitiv-
ity function and their dependences on the repellent
concentration at system’s boundaries can be used di-
rectly for the processing of experimental data.

6. Conclusions

The results of calculations presented above testify
that, by controlling the repellent distribution, it is
possible to affect the bacterial redistribution. The
regime of repellent injection is important in this
case. If a variation of the repellent concentration does
not change the ratio of concentrations on system’s
boundaries, then the dependence of the nonunifor-
mity of the bacterial distribution, which is determined
by the chemotaxis sensitivity function, on the repel-
lent concentration is substantially nonlinear. At low
repellent concentrations, an important factor is the
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repellent concentration gradient. Due to the growth
of the repellent concentration gradient, the bacterial
distribution becomes more nonuniform. The increase
in the total amount of a repellent leads to a lower
sensitivity of bacteria to the repellent concentration
gradient because of the saturation mechanism, so that
the bacterial distribution becomes uniform again. It
should also be emphasized that the described results
were obtained provided that the total number of bac-
teria and the total amount of a repellent in the system
are constant. If at least one of those conditions is vio-
lated in a real experiment, the corresponding changes
have to be introduced into the model.

The authors express their sincere gratitude to the
Referees for their comments, remarks, and advice
concerning this work.
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МОДЕЛЮВАННЯ БАКТЕРIАЛЬНОГО
ХЕМОТАКСИСУ В СЕРЕДОВИЩI З РЕПЕЛЕНТОМ

Р е з ю м е

Розглядається хемотаксис бактерiй в одновимiрнiй системi
за умови наявностi там репеленту. Дослiджується процес
просторового перерозподiлу бактерiй в системi. Для цього
пропонується феноменологiчна математична модель. В мо-
делi враховується дифузiя бактерiй та їх рух, пов’язаний
iз наявнiстю градiєнту репеленту. Режим пiдведення репе-
ленту в систему реалiзується за рахунок граничних умов.
Для такої системи розраховано функцiю чутливостi хемота-
ксису – числову характеристику, яка описує неоднорiднiсть
розподiлу бактерiй. Отримано залежнiсть функцiї чутли-
востi хемотаксису вiд концентрацiї репеленту на границях
системи. Знайдено зв’язок мiж характеристиками розподi-
лу репеленту та розподiлом бактерiй.
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