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PECULIARITIES OF BACTERIAL
CHEMOTAXIS IN A CYLINDRICAL PORE

The process of bacterial redistribution in a cylindrical pore filled with an attractant has been
considered. The attractant concentration decreases linearly along the pore, and the redistri-
bution of bacteria occurs due to their diffusion (the motion of bacteria along the gradient of
their concentration) and chemotaxis (the motion of bacteria along the gradient of attractant
concentration). The influence of a spatial confinement on the bacterial distribution in the pore
is analyzed. It is shown that if the pore wall is “repelling” for bacteria, the spatial confinement
can change the bacterial distribution. In particular, as the pore radius decreases, the chemo-
taxic effect becomes weaker. The non-uniformity of a bacterial distribution in the system is
estimated. The chemotaxis sensitivity function (the deviation of the ratio between the local
average bacterial concentration and the average bacterial concentration over the whole system
from unity) is calculated, and its dependence on the attractant concentration at the system
ends and on the pore size is determined.
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1. Introduction

The chemotaxis problem is an important direction
of researches in modern biophysics [1–5]. The chemo-
taxis phenomenon arises because some bacteria can
“feel” the presence of certain substances, which are
called attractants. If there is an attractant in the
system, bacteria become redistributed in accordance
with the gradient of attractant concentration. The-
refore, by affecting the attractant distribution, it is
possible to control the bacterial distribution. In this
process, besides the attractant concentration gradi-
ent, other factors play an important role, for exam-
ple, the total attractant concentration and the way
how the bacteria are introduced into the system.

There are different approaches to study the bac-
terial chemotaxis theoretically [6–11]. One of them
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consists in simulating the behavior of separate bac-
teria. In particular, for today, we know the following
algorithm of the bacterial behavior in a medium with
an attractant [6]:

∙ every bacterium moves uniformly in a straight
line within a certain time interval;

∙ this kind of motion continues until a tumbling;
i.e. the bacterium stops and randomly changes the
direction of its motion;

∙ the tumbling frequency depends to the amount
of an attractant registered by the bacterial receptors
during the motion; the higher the amount of the regis-
tered attractant, the lower is the tumbling frequency.

This algorithm is applicable, if the behavior of sep-
arate bacteria is studied and a further statistical av-
eraging of their trajectories and spatial distribution
is carried out (see, e.g., work [6] and the references
therein).
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Although this approach is quite acceptable, it has
disadvantages. In particular, it is often required to
know analytical expressions for the distribution func-
tion of bacteria and for other parameters of the sys-
tem. In this case, more appropriate is the approach
that is based on the application of non-linear differ-
ential equations of the diffusion type. It was substan-
tiated in works [12–14] and is commonly accepted
today.

However, the task of studying the chemotaxis is
not trivial even in its simplest formulation. The gen-
eral problem includes a separate important case: the
chemotaxis of bacteria in a porous medium [15–
18]. On the one hand, this case directly concerns real
systems, thus being challenging. On the other hand,
when solving this problem, we face certain difficul-
ties of the mathematical origin. In this work, we pro-
pose a mathematical model that describes specific
features in the behavior of bacteria located in a sys-
tem with the geometry of a cylindrical pore. This re-
search is methodologically based on a series of our
previous studies [19–21] carried out for one- and two-
dimensional systems and is their continuation. But,
unlike the cited works, we consider a spatially con-
fined three-dimensional system: a cylinder that is fi-
nite along its main axis.

2. Mathematical Model

Let us consider a three-dimensional system, which is
a finite cylinder with radius 𝑅 and length 𝐿 filled
with bacteria and an attractant. The coordinate 𝑧
is reckoned along the cylinder axis, so that 0 ≤ 𝑧 ≤
𝐿; for the radial distance 𝜌 from the cylinder axis,
0 ≤ 𝜌 ≤ 𝑅. The boundary conditions are assumed to
be independent of the azimuthal angle, so that the
sought functional dependences do not depend on this
coordinate.

Our approach is based on an expression for the
bacterial flux j𝑏. We suppose that this expression
contains two terms. One of them is associated with
the bacterial concentration gradient in the system
(the diffusion term), and the other with the attrac-
tant concentration gradient (the term describing the
chemotaxis). Denoting the space-time distribution of
bacteria by 𝑏(𝑡, 𝑧, 𝜌) and the stationary spatial distri-
bution of attractant by 𝑐(𝑧, 𝜌), we write the bacterial
flux j𝑏 as follows:

j𝑏 = −𝐷∇𝑏(𝑡, 𝑧, 𝜌) + 𝑘
𝑏(𝑡, 𝑧, 𝜌)∇𝑐(𝑧, 𝜌)

(𝑎0 + 𝑐(𝑧, 𝜌))2
. (1)

Here, ∇ is the gradient operator, 𝐷 the diffusion co-
efficient, and 𝑘 and 𝑎0 are phenomenological param-
eters of the model.

In the second term, which is directly associated
with the chemotaxis, the numerator includes the
product of the bacterial concentration 𝑏(𝑡, 𝑧, 𝜌) and
the attractant concentration gradient ∇𝑐(𝑧, 𝜌), be-
cause we proceed from the assumption that the
chemotaxis-related bacterial flux component is pro-
portional to the attractant gradient and the bacte-
rial concentration. The presence of a denominator in
this term is explained by the experimental fact (see,
e.g., work [6]) that the growth of the attractant con-
centration results in the saturation of the bacterial
receptor sensitivity, so that the attractant gradient
effect decreases. As was shown in works [19, 21], the
choice of the term associated with chemotaxis in the
presented form [see Eq. (1)] makes it possible to cor-
rectly describe the chemotaxis effect not only at the
qualitative level, but also at the quantitative one.

Knowing the general expression for the bacterial
flux j𝑏 and the attractant distribution 𝑐(𝑧, 𝜌), we can
determine the space-time distribution of bacteria in
the system using the continuity equation

𝜕𝑏

𝜕𝑡
+ div j𝑏 = 0, (2)

provided that the bacteria do not reproduce them-
selves or die. Let us consider a stationary case where
the distribution of bacteria has stabilized and does
not depend on the time, 𝑏 = 𝑏(𝑧, 𝜌). In addition, the
attractant concentration does not depend on the ra-
dial coordinate 𝜌, so that 𝑐 = 𝑐(𝑧) and the attrac-
tant concentration gradient is directed along the 𝑧-
axis. Under all those conditions, Eq. (2) gives rise to
the following equation determining the spatial distri-
bution of bacteria:

𝜕2𝑏

𝜕𝜌2
+

1

𝜌

𝜕𝑏

𝜕𝜌
+

𝜕2𝑏

𝜕𝑧2
− 𝑘

𝐷

𝑑

𝑑𝑧

[︂
𝑏

(𝑎0 + 𝑐)2
𝑑𝑐

𝑑𝑧

]︂
= 0. (3)

This equation should be complemented by boundary
conditions. Furthermore, it is also necessary to deter-
mine the spatial distribution of the attractant in the
system, 𝑐(𝑧).

As to the attractant, we assume that its concen-
trations at system’s ends (the left end 𝑧 = 0 and the
right end 𝑧 = 𝐿) are known, and the concentration is
higher at the left end, i.e. 𝑐(0) = 𝐶0 > 𝑐(𝐿) = 𝐶1. In
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this case, the spatial distribution of the attractant lin-
early varies with the coordinate 𝑧 and is determined
by the following formula:

𝑐(𝑧) = 𝐶0

(︁
1− 𝑧

𝐿

)︁
+ 𝐶1

𝑧

𝐿
. (4)

The mode of introducing bacteria into the system
consists in that the bacterial concentration is given
at the right end,

𝑏(𝑧 = 𝐿) = 𝐵0, (5)

and there is no bacterial flux through the left end,[︂
𝜕𝑏

𝜕𝑧
− 𝑘

𝐷

𝑏

(𝑎0 + 𝑐)2
𝑑𝑐

𝑑𝑧

]︂
𝑧=0

= 0. (6)

We also assume that there are no bacteria at the
cylindrical surface (𝜌 = 𝑅), i.e. their concentration
equals zero here:

𝑏(𝑧, 𝜌 = 𝑅) = 0. (7)

This condition corresponds to a situation where
the cylindrical (pore) surface is “repulsive” for the
bacteria.

3. Chemotaxis Sensitivity Function

Now, we have all information required to calculate
the spatial distribution of bacteria 𝑏(𝑧, 𝜌). However,
in practice, the point of interest is not a local value
of the bacterial concentration, but its averaged value
over a certain region. In this case, it is convenient
to experimentally measure the amount of bacteria at
a certain “cross-section” of the cylindrical pore. For
example, if we are interested in a “cross-section” of
the thickness Δ𝑧, which is located at the distance
𝑧 from the left end of the cylindrical pore, then the
average concentration of bacteria in this region, �̄�(𝑧),
can be calculated as follows:

�̄�(𝑧) =
2

𝑅2Δ𝑧

𝑧+Δ𝑧∫︁
𝑧

𝑑𝑧′
𝑅∫︁
0

𝑑𝜌𝑏(𝑧′, 𝜌)𝜌. (8)

In the limit Δ𝑧 → 0 (the “cross-section” thickness
vanishes), this formula reads

�̄�(𝑧) =
2

𝑅2

𝑅∫︁
0

𝜌𝑏(𝑧, 𝜌)𝑑𝜌. (9)

The corresponding average concentration of bacteria
in the system equals

�̄� =
2

𝑅2𝐿

𝐿∫︁
0

𝑑𝑧

𝑅∫︁
0

𝑑𝜌𝑏(𝑧, 𝜌)𝜌. (10)

In the simplest way, the concentration of bacteria
can be measured at system’s ends. As was already
marked above, the bacterial concentration at the right
end (𝑧 = 𝐿) is fixed. Therefore, the matter of inter-
est is the concentration of bacteria at the left end
(𝑧 = 0). Let us introduce the following numerical pa-
rameter:

𝐹 =
�̄�(0)

�̄�
− 1, (11)

which characterizes the deviation of the ratio between
the average bacterial concentrations at the left end
and throughout the system from unity. Expression
(11) defines the chemotaxis sensitivity function 𝐹 ,
which numerically characterizes the non-uniformity in
the bacterial distribution [6, 19–21]. The case 𝐹 = 0
means that the average concentration of bacteria at
the left end of the system is equal to the average
concentration over the whole system. The larger the
chemotaxis sensitivity function, the higher is the de-
viation of the average concentration of bacteria at the
left end from the average concentration of bacteria in
the system. Negative values of the chemotaxis sensi-
tivity function mean that the average concentration
of bacteria at the left end is lower than the average
concentration of bacteria in the system. The chemo-
taxis sensitivity function is the ultimate goal of our
study.

4. Bacterial Distribution

While solving the problem of bacterial distribution,
let us nondimensionalize the variables and introduce
some new notations. In particular, we put 𝜌 = 𝑟𝑅,
𝑧 = 𝑥𝐿, and 𝑐(𝑧) = 𝑎0𝛾(𝑥), and denote 𝐶1 = 𝜉𝐶0

(0 ≤ 𝜉 ≤ 1) and 𝐶0 = 𝑎0 × 10𝑝. Then the attrac-
tant distribution in terms of dimensionless variables
is given by the formula

𝛾(𝑥) = 10𝑝(1− 𝑥(1− 𝜉)). (12)

In essence, the parameter 𝑝 determines the attrac-
tant concentration at the left end (𝛾(0) = 10𝑝), and
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Fig. 1. Chemotaxis sensitivity function 𝐹 (𝑝) at various values
of the parameter ℎ = 10 (solid curve), 3 (dashed curve), 1
(dotted curve), and 0.8 (dash-dotted curve)

the parameter 𝜉 the attractant concentration ratio
between the right and left pore ends (𝛾(1) = 𝜉𝛾(0)).

By putting 𝑏(𝑧, 𝜌) = 𝐵0𝑚(𝑥, 𝑟), ℎ = 𝑅
𝐿 , and

𝜆 = 𝑘
𝐷𝑎0

, we obtain the following equation in dimen-
sionless variables, which describes the distribution of
bacteria in the system:

𝜕2𝑚

𝜕𝑟2
+

1

𝑟

𝜕𝑚

𝜕𝑟
+ ℎ2 𝜕

2𝑚

𝜕𝑧2
− 𝜆ℎ2 𝑑

𝑑𝑧

[︃
𝑚𝑑𝛾(𝑥)

𝑑𝑥

(1 + 𝛾(𝑥))2

]︃
= 0.

(13)

The function 𝑚(𝑥, 𝑟) has to satisfy the following
boundary conditions:[︃
𝜕𝑚

𝜕𝑧
− 𝜆

𝑚(𝑥, 𝑟)𝑑𝛾𝑑𝑥
(1 + 𝛾(𝑥))2

]︃
𝑧=0

= 0, (14)

𝑚(𝑥 = 1, 𝑟) = 1, (15)

𝑚(𝑥, 𝑟 = 1) = 0. (16)

The solution is sought in the form of a series

𝑚(𝑥, 𝑟) =

∞∑︁
𝑛=1

𝑚𝑛(𝑥)𝐽0(𝜇𝑛𝑟), (17)

where 𝐽0(𝑢) is the Bessel function of the zeroth order,
and 𝜇𝑛 (𝑛 = 1, 2, ...) are its zeros (𝐽0(𝜇𝑛) = 0). The
function 𝑚𝑛(𝑥) has to satisfy the equation

𝑚′′
𝑛(𝑥)−

(︁𝜇𝑛

ℎ

)︁2

𝑚𝑛(𝑥)−𝜆
𝑑

𝑑𝑧

[︂
𝑚𝑛(𝑥)𝛾

′(𝑥)

(1 + 𝛾(𝑥))2

]︂
= 0, (18)

where the prime denotes the derivative. The bound-
ary conditions for the function 𝑚𝑛(𝑥) are as follows:

𝑚′
𝑛(0) +

𝜆(1− 𝜉)10𝑝

(1 + 10𝑝)2
𝑚𝑛(0) = 0, (19)

𝑚𝑛(1) =
2

𝜇𝑛𝐽1(𝜇𝑛)
, (20)

where𝐽1(𝑢) is the Bessel function of the first order.
Thus, we have to find the functions 𝑚𝑛(𝑥) and, af-

terward, calculate the chemotaxis sensitivity function
using the formula

𝐹 =

∞∑︀
𝑛=1

𝑚𝑛(0)
𝐽1(𝜇𝑛)

𝜇𝑛

∞∑︀
𝑛=1

1∫︀
0

𝑚𝑛(𝑥)𝑑𝑥
𝐽1(𝜇𝑛)

𝜇𝑛

− 1. (21)

5. Influence of Boundary
Conditions and Spatial Confinement

The solutions 𝑚𝑛(𝑥) can be calculated only numeri-
cally. Another important factor is the implicit depen-
dence of the chemotaxis sensitivity function (21) on
the parameters 𝑝 and ℎ, because the solutions 𝑚𝑛(𝑥)
depend on them. Actually, the matter concerns the
dependence of the chemotaxis sensitivity function on
the attractant concentration at system’s ends and on
the ratio between the linear pore dimensions.

The dependence 𝐹 (𝑝) of the chemotaxis sensitivity
function on the parameter 𝑝, which determines the
attractant concentrations at system’s ends, was cal-
culated for the parameters 𝜉 = 0.75 and 𝜆 = 40. The
latter value is close to that which can be obtained on
the basis of information concerning the actual bacte-
rial parameters (see, e.g., work [6]). The calculations
were performed for various values of the parameter ℎ;
in particular, ℎ = 10, 3, 1, and 0.8. The parameter
𝑝 was varied within the interval −3 ≤ 𝑝 ≤ 3. The
results of calculations for the dependence 𝐹 (𝑝) are
shown in Fig. 1.

The dependence 𝐹 (𝑝) is dome-shaped (like those
obtained for one- and two-dimensional systems [6,19–
21]). The dependence of this type can be explained as
follows. At a given 𝑝-value, the dimensionless concen-
tration gradient equals 𝛾′(𝑥) = (𝜉 − 1)× 10𝑝. Hence,
when the parameter 𝑝 increases, the attractant con-
centration gradient grows by magnitude. Therefore,
the non-uniformity in the bacterial distribution (and,
hence, the chemotaxis sensitivity function) also in-
creases at first. However, together with an increase of
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the attractant gradient, the total amount of the at-
tractant in the system also increases. At a certain mo-
ment, the sensitivity of a bacterial receptor achieves
the saturation, and the bacteria cease to “feel” the at-
tractant gradient. The bacterial distribution becomes
more uniform, and the chemotaxis sensitivity func-
tion decreases. In particular, at ℎ = 10, the chemo-
taxis sensitivity function increases from zero to a cer-
tain maximum value and then vanishes. For larger
values of the parameter ℎ, the dependence 𝐹 (𝑝) does
not change qualitatively. However, if the parameter
ℎ decreases, then the following effect is observed:
the peak height in the chemotaxis sensitivity func-
tion profile decreases, and the function itself shifts
downward into the region of negative values. This is a
result of the spatial confinement, because smaller val-
ues of the parameter ℎ mean a reduction of the pore
radius with respect to the pore length. Furthermore,
this effect is a direct result of zero boundary condi-
tions at the cylindrical surface. As was marked above,
such conditions correspond to the situation where the
cylindrical surface is “repulsive” for the bacteria. The-
refore, the chemotaxis becomes suppressed, and this
effect is stronger for smaller pore radii.

The dependence 𝐹 (ℎ) of the chemotaxis sensitiv-
ity function on the ratio ℎ between the pore radius
and the pore length is depicted in Fig. 2. The calcula-
tion was carried out for the parameter 𝑝 = 0. As was
expected, the chemotaxis sensitivity function grows
with the parameter ℎ at small ℎ and afterward sat-
urates. A significant deviation from the saturation
value is observed only if the pore radius is compa-
rable with or smaller than the pore length.

6. Results and Conclusions

Hence, a phenomenological model for the chemotaxis
phenomenon is proposed in this work. The model al-
lows this phenomenon to be studied and a distribu-
tion of bacteria in a cylindrical pore with an attrac-
tant to be determined. A situation close to probable
experimental conditions is considered: the attractant
concentration is fixed at the pore ends; the bacte-
rial concentration is fixed at one end, and the aver-
age bacterial concentration is registered at the other
end. For this configuration of the system, the chemo-
taxis sensitivity function is calculated, which gives
some insight into the non-uniformity of a bacterial
distribution over the system.

Fig. 2. Chemotaxis sensitivity function 𝐹 (ℎ) at 𝑝 = 0

Two qualitative effects are obtained, which result
from the spatial confinement and the peculiarities in
the spatial distribution of an attractant. In particu-
lar, the dome-shaped dependence of the chemotaxis
sensitivity function on the attractant concentration
at the pore end (more exactly, a parameter that de-
termines the concentration at the pore end) is the
same as the behavior of this quantity in one- and
two-dimensional systems with bacteria and an attrac-
tant. At the same time, a reduction of the extremum
magnitude and a shift of the chemotaxis sensitivity
function into the region with negative values, as the
pore radius decreases, take place owing to the spatial
confinement of the system and the specific boundary
conditions at the lateral pore surface. Therefore, the
spatial confinement can be a factor that weakens the
processes associated with the chemotaxis.

The results obtained in this work are in agree-
ment with available experimental and theoretical
data. They can be useful when processing experimen-
tal results obtained for the chemotaxis in capillary
systems and porous media.
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ОСОБЛИВОСТI ХЕМОТАКСИСУ
БАКТЕРIЙ У ЦИЛIНДРИЧНIЙ ПОРI

Р е з ю м е

В статтi розглядається процес перерозподiлу бактерiй в ци-
лiндричнiй порi за наявностi атрактанту. Концентрацiя ат-
рактанту лiнiйно зменшується вздовж пори. Перерозподiл
бактерiй вiдбувається за рахунок дифузiї та за рахунок хе-
мотаксису (рух бактерiй у напрямку градiєнта атрактанту).
В статтi з’ясовується питання про вплив просторового обме-
ження на характер розподiлу бактерiй в системi. За умо-
ви, що боковi стiнки пори є “вiдштовхуючими” для бакте-
рiй, показано, що наявнiсть просторового обмеження при-
водить до змiни характеру розподiлу бактерiй. Зокрема, зi
зменшенням радiуса пори ефект вiд хемотаксису зменшує-
ться. Для оцiнки неоднорiдностi розподiлу бактерiй у систе-
мi розраховується функцiя чутливостi хемотаксису (вiдхи-
лення вiд одиничного значення вiдношення середньої кон-
центрацiї бактерiй в певнiй областi до середньої концентра-
цiї бактерiй по всiй системi). Знайдено залежнiсть функцiї
чутливостi хематаксису вiд концентрацiї атрактанту на гра-
ницях системи та вiд її лiнiйних розмiрiв.
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