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GENERALIZED SPIN-ORBIT
INTERACTION AND ITS MANIFESTATION
IN TWO-DIMENSIONAL ELECTRON SYSTEMS

In frame of Dirac quantum field theory that describes electrons and positrons as elementary
excitations of the spinor field, the generalized operator of the spin-orbit interaction is ob-
tained using non-relativistic approximation in the Hamilton operator of the spinor field taking
into account the presence of an external potential. This operator is shown to contain a new
term in addition to the known ones. By an example of a model potential in the form of a
quantum well, it is demonstrated that the Schrödinger equation with the generalized spin-orbit
interaction operator describes all spin states obtained directly from the Dirac equation. The
dependence of the spin-orbit interaction on the spin states in quasi-two-dimensional systems
of electrons localized in a quantum well is analyzed. It is demonstrated that the electric current
in the quantum well layer induces the spin polarization of charge carriers near the boundary
surfaces of the layer, with the polarization of the charge carriers being opposite at the differ-
ent surfaces. This phenomenon appears due to the spin-orbit interaction and is known as the
spin Hall effect, which was observed experimentally in heterostructures with the corresponding
geometry.
K e yw o r d s: spin-orbit interaction, Dirac equation, Schrödinger equation, 2D electron gas,
quantum well, spin Hall effect.

1. Introduction
It is generally accepted that both the origin and
the magnitude of the spin-orbit interaction (SOI),
which occurs in various electron systems, are well-
known and profoundly studied [1, 2]. In principle,
such a viewpoint does not raise objections, and one
may agree that SOI is of an exclusively relativis-
tic origin. The concept of SOI was introduced into
the Schrödinger equation (SE) on the basis of some
empirical (actually, classic) considerations, and it is
known as the Thomas correction 1 [3]. Since the SOI
effect is purely relativistic, its exhaustive description
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can be obtained only in the framework of the Dirac
theory. As a rule, the known relativistic corrections
to the SE (one of them was called the SOI operator)
are obtained by either making a non-relativistic lim-
iting transition in the Dirac equation (DE) or using
the method of the approximate Foldy–Wouthuysen
transformation of the Dirac Hamiltonian with re-
spect to the small parameter 𝑣/𝑐, where 𝑣 is the
characteristic velocity of the particle, and 𝑐 the light
speed.

1 It is worth to recall that this correction was independently
and simultaneously proposed by Ya.I. Frenkel [4]. Therefore,
it would be proper to call it the Thomas–Frenkel correction.
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In spite of that, the authors of works [5, 6] made
an attempt to obtain the form of the SOI operator on
the basis of the direct solution of the DE, in which
the external potential was taken into account from
the very beginning. Additionally, the attention was
paid to the fact that there are several operators –
these are the so-called spin invariants – that com-
mute with the DE, but not with one another. From
whence, it follows that the sought solutions of the
DE (even those obtained in the framework of per-
turbation theory with respect to the same small pa-
rameter) can be different. In other words, this means
that the DE has a number of solutions, and, hence,
there may exist other corrections to the SE. Really, it
turned out that the corresponding physical solutions,
or the eigenfunctions and eigenvalues, can be deter-
mined, which behave differently under different cir-
cumstances, i.e. depending on the potential form and
shape, the geometry of the system, and so on. Howe-
ver, the eigenvalues and eigenfunctions found in the
cited works do not provide an ultimate solution to the
problem, because there arises a problem of determin-
ing the form of corresponding corrections or the SOI
operator in the SE, considering the spin invariants
which those solutions correspond to.

This was the aim of this work, in which we re-
lied on the Dirac quantum field theory that describes
electrons and positrons as elementary excitations of a
spinor field. By applying the non-relativistic approx-
imation to the Hamilton operator of the spinor field
with regard for the presence of an external potential,
a generalized SOI operator can be found. By an ex-
ample of a quantum-well (QW) model potential, it is
shown that the SE with the generalized SOI opera-
tor can describe all spin states obtained directly from
the DE itself [5,6]. The dependence of SOI on the spin
state in quasi-two-dimensional (2D) electron systems
localized in the QW plane is analyzed. Recall that
the consideration of SOI and the study of its effects
in low-dimensional systems (for example, various het-
erostructures) is a challenging problem of modern
theoretical and applied solid-state physics.

2. Hamiltonian of Particles in External Fields

In quantum field theory, the Hamiltonian of the Dirac
spinor field has the form of the integral [7, 8]

H =

∫︁
ℋ𝑑r =

∫︁
Ψ†(r, 𝑡)�̂�𝐷Ψ(r, 𝑡)𝑑r, (1)

where the integration is carried out over the entire
volume, and the four-component function Ψ(r, 𝑡) =

= (𝜓1 : 𝜓2 : 𝜓3 : 𝜓4)
𝑇 (the 4-spinor or bispinor) is the

amplitude of the spinor field. The function Ψ(r, 𝑡) sat-
isfes the DE

𝑖~
𝜕Ψ

𝜕𝑡
= �̂�𝐷Ψ (2)

with the Hamiltonian

�̂�𝐷 = 𝑐
(︁
p− 𝑒

𝑐
A(r)

)︁
�̂�+ 𝑒Φ(r)𝐼 +𝑚𝑐2𝛽. (3)

Here, p̂ = −𝑖~∇ is the momentum operator for a par-
ticle with the mass 𝑚 and the charge 𝑒; �̂� =

∑︀
𝑗 e𝑗�̂�𝑗

is a vector matrix, whose components �̂�𝑗 (𝑗 = 𝑥, 𝑦, 𝑧)
together with the matrix 𝛽 and the unit matrix 𝐼 are
Hermitian Dirac 4-matrices; and A(r) and Φ(r) are
the vector and scalar, respectively, potentials of the
external electromagnetic field. According to quantum
mechanics, the components of the function Ψ are 𝑞-
numbers, i.e. 𝜓†

𝜈𝜓𝜇 ̸= 𝜓𝜇𝜓
†
𝜈 , where (𝜈, 𝜇) = 1, 2, 3, 4,

and the operator �̂�𝐷 in Eqs. (1) and (3) is called the
Dirac Hamiltonian.

Since an arbitrary bispinor Ψ(r) can be expanded
in a complete basis of orthonormal bispinors Ψ{𝜈}(r),

Ψ(r) =
∑︁
{𝜈}

𝑐{𝜈}Ψ{𝜈}(r),

then Hamiltonian (1) can easily be written in terms
of the creation, 𝑐†{𝜈} and annihilation, 𝑐{𝜈}, operators,
which are characterized by a set of quantum numbers
{𝜈}. The natural choice for this basis is the eigen-
bispinors of the equation

�̂�
(0)
𝐷 Ψ(0)(r) = 𝐸Ψ(0)(r), (4)

where

�̂�
(0)
𝐷 = 𝑐p̂�̂�+𝑚𝑐2𝛽,

which describe stationary states of free particles in
the absence of external fields. In this case, it is con-
venient to use plane waves

Ψ(r) = Ψ (k) exp (𝑖kr) (5)

as the eigenfunctions of the operator p̂, which is an
integral of motion for problem (4). The components
of the wave vector k determine the eigenvalues of the
momentum p = ~k and belong to the set of quantum
numbers {𝜈}.
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If the orthonormalization conditions are imposed,
it is easier to work with a discrete spectrum, rather
than with a continuous one. With this aim in view,
let us confine the space by a cube with the edge length
𝐿. Then, by imposing the cyclic boundary conditions
on the solutions, we arrive at the quasicontinuous
spectrum of values for the components of the vector
k =

∑︀
𝑗 𝑘𝑗e𝑗 :

𝑘𝑗 =
2𝜋

𝐿
𝑛𝑗 , 𝑛𝑗 = 0,±1,±2, ..., 𝑗 = 𝑥, 𝑦, 𝑧,

where the numbers 𝑛𝑗 take all integer values from
−∞ to +∞.

Substituting Eq. (5) into Eq. (4), we obtain the
matrix equation(︂
𝑚𝑐2𝐼2 ~𝑐k�̂�
~𝑐k�̂� −𝑚𝑐2𝐼2

)︂(︂
𝜓𝑢

𝜓𝑑

)︂
= 𝐸

(︂
𝜓𝑢

𝜓𝑑

)︂
, (6)

where �̂� is a vector matrix, whose components are
the Pauli matrices, and 𝐼2 is a unit matrix of the sec-
ond rank. In this case, the eigenbispinor of Eq. (4)
looks like Ψ(0) (k) = (𝜓𝑢 (k) 𝜓𝑑 (k))

𝑇 , where 𝜓𝑢 =

= (𝜓1 𝜓2)
𝑇 and 𝜓𝑑 = (𝜓3 𝜓4)

𝑇 are its upper and
lower, respectively, spinors.

It is rather easy to find a solution of Eq. (6), the
orthonormalized eigenbispinors of which are given by
the expressions [1, 2]

Ψ(0)
𝑒,𝜎 (k) = 𝐴k

⎛⎝ 𝜒𝑒,𝜎

~𝑐k · �̂�
𝜀 (k) +𝑚𝑐2

𝜒𝑒,𝜎

⎞⎠, 𝐸 = 𝜀 (k),

Ψ(0)
𝑝,𝜎 (k) = 𝐴k

⎛⎝− ~𝑐k · �̂�
𝜀 (k) +𝑚𝑐2

𝜒𝑝,𝜎

𝜒𝑝,𝜎

⎞⎠, 𝐸 = −𝜀 (k),

(7)

in which the following notations were introduced:

𝐴k =

√︃
𝜀 (k) +𝑚𝑐2

2𝜀 (k)
, 𝜀 (k) =

√︀
𝑚2𝑐4 + 𝑐2~2.k2. (8)

The bispinors Ψ
(0)
𝑒,𝜎 and Ψ

(0)
𝑝,𝜎 in Eq. (7) are the am-

plitudes of the fields of particles (electrons, 𝑒) and
antiparticles (positrons, 𝑝), respectively.

Equation (6) has four eigenvectors, because it is the
equation for the eigenvalues of a 4-matrix. Therefore,
the number 𝜎 was introduced in solutions (7). This
parameter has two values that are attributed to a pair
of orthogonal spinors 𝜒𝜈,𝜎’s: 𝜒†

𝜈,𝜎𝜒𝜈,𝜎′ = 𝛿𝜎,𝜎′ . Thus,

system (7) determines a complete set of bispinors,
which can be used in order to represent an arbitrary
bispinor in the form

Ψ(r) =
1

𝐿3/2

∑︁
k,𝜎

𝑒𝑖kr
(︁
𝑎k,𝜎Ψ

(0)
𝑒,𝜎 (k) + 𝑏†−k,𝜎Ψ

(0)
𝑝,𝜎 (k)

)︁
,

(9)

where 𝑎k,𝜎(𝑏k,𝜎) and 𝑎†k,𝜎(𝑏
†
k,𝜎) are the operators of

the particle (antiparticle) creation and annihilation,
respectively. The physical condition of positive defi-
niteness imposed on the eigenvalues of Hamiltonian
(1) requires that those operators have to obey the
Fermi statistics.

Nevertheless, the definition of bispinors in Eq. (9)
is ambiguous, because bispinors (7) satisfy Eq. (6)
for arbitrary spinors 𝜒𝜈,𝜎 (𝜈 = 𝑒, 𝑝). Therefore, the
physical meaning of 𝜎 as a quantum number is ab-
sent. Although the values of the quantity 𝜎 can be
defined as ±1 (or ↑, ↓), their meaning as projections
on that or another axis still remains absent, because
the directions of those axis are not given, although
it is required for the complete determination of the
state.

At the same time, the stationary states of the sys-
tem are known to be characterized by quantum num-
bers that correspond to a complete set of observed
quantities and have definite values. The operators of
those quantities, which are called invariants, com-
mute both with the Hamiltonian of the system and
with one another. As was said above, for expressions
(7), such numbers are the eigenvalues of the operator
p̂ or the components of the vector k.

Concerning the spin number, there are several spin
invariants in a uniform space [9], which together with
the Hamiltonian have a common system of eigenfunc-
tions (7). The substitution of expressions (7) into the
equation for the invariant eigenvalues brings about
the equations

u𝜈 (k) �̂�𝜒𝜈,k,𝜎 = 𝜎𝑢𝜈 (k)𝜒𝜈,k,𝜎, 𝑢𝜈 (k) = |u𝜈 (k) |,
(10)

which determine both a pair of orthogonal spinors and
a coordinate system, in which they have the simplest
form, 𝜒↑ = (1 0)𝑇 and 𝜒↓ = (0 1)𝑇 . The subscripts
𝜈 and 𝜎 in Eq. (10) take the relevant values: 𝜈 = 𝑒
or 𝑝, and 𝜎 = ±1. Then the matrices u𝜈(k)�̂� become
independent invariants for particles (𝜈 = 𝑒) and an-
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tiparticles (𝜈 = 𝑝) 2, so that Eq. (10) gives sense to
the number 𝜎 = ±1 in the operators 𝑎†k,𝜎 and 𝑎k,𝜎
in Eq. (9) by indicating that their action leads to the
creation or annihilation of a particle with a definite
spin invariant value at a given u𝜈(k). Every invariant
has its own vectors u𝜈(k) with a characteristic depen-
dence on k, the account of which is mandatory. Note
that the spin operator itself is not an integral of mo-
tion even in a uniform space. Therefore, in the case
of states with a given energy, one may talk about the
spin only as about the mean value of the correspond-
ing operator.

Since the spin invariants do not commute with one
another, only one of them can correspond to the sta-
tionary spin state. The presence of several invariants
gives rise to an ambiguous choice of the spin state,
which is an actual origin of the spinor arbitrariness
in Eq. (7).

Important is the fact that the spin state is not de-
fined a priori. In the general case, an arbitrary lin-
ear combination of all invariants, whose coefficients
are free parameters, can be chosen as such an invari-
ant. The explicit expressions for the vectors u𝑒 (k)
and u𝑝 (k) (k) are given in work [10], where it was
shown that they really contain free parameters or
the components of the vectors u𝜇 ≡ u𝜇 (k) and
u𝒮 ≡ u𝒮 (k). The subscripts 𝜇 and 𝒮 are associ-
ated with the notation for the initial invariants: 𝜇
for the vector of magnetic spin polarization and 𝒮
for the vector of spin polarization [9], the linear com-
bination of which ℐ̂gen = r𝜇 (k) �̂�+ r𝒮 (k) �̂� is an in-
variant in the general form. In the coordinate space,
k → (1/~)p̂, and the vectors u𝜇 and u𝒮 become op-
erators that commute with the Hamiltonian and with
the invariants of the spatial motion. The choice of u𝜇

and u𝒮 that explicitly depend on p̂ corresponds to
that or another invariant. For example, if u𝜇 = p̂
and u𝒮 = 0, we deal with the operator of helicity,
whereas if u𝜇 = 0 and u𝒮 = e𝑗 × p̂, this is the cor-
responding component of the vector of electric spin
polarization.

3. Spin-Orbit Interaction

Expressions (7), in which the spinors are given by
Eq. (10) with the vectors u𝑒 (k) and u𝑝 (k), give an
explicit form of the bispinors Ψ

(0)
𝑒,𝜎 (k) in expansion

2 In the general case, the vectors u𝑒(k) and u𝑝(k) do not
coincide.

(9). The substitution of Eq. (9) into Eq. (1) leads to
the Hamiltonian of the Dirac spinor field in the rep-
resentation of free-particle occupation numbers,

H =
∑︁
k,𝜎

(︂
𝜀(k)𝑎†k,𝜎𝑎k,𝜎 +

+
1

𝐿3

∑︁
k′,𝜎′

𝑉
(𝑒−𝑒)
𝜎,𝜎′ (k,k′) 𝑎†k,𝜎𝑎k′,𝜎′

)︂
+

+
∑︁
k,𝜎

(︂
−𝜀(k)𝑏−k,𝜎𝑏

†
−k,𝜎 +

+
1

𝐿3

∑︁
q,𝜎′

𝑉
(𝑝−𝑝)
𝜎,𝜎′ (k,k′) 𝑏−k,𝜎𝑏

†
−k′,𝜎′

)︂
+

+
1

𝐿3

∑︁
k,k′,𝜎,𝜎′

(︂
𝑉

(𝑒−𝑝)
𝜎,𝜎′ (k,k′) 𝑎†k,𝜎𝑏

†
−k′,𝜎′ +

+𝑉
(𝑝−𝑒)
𝜎,𝜎′ (k,k′) 𝑏−k,𝜎𝑎k′,𝜎′

)︂
, (11)

where

𝑉
(𝜈−𝜈′)
𝜎,𝜎′ (k,k′) =

(︁
Ψ(0)

𝜈,𝜎 (k)
)︁†

×

×
(︁
𝑉 (k− k′) 𝐼 − 𝑒

𝑐
A(k− k′)�̂�

)︁
Ψ

(0)
𝜈′,𝜎′ (k

′) (12)

are the particle-particle (𝜈 = 𝜈′ = 𝑒), antiparticle-
antiparticle (𝜈 = 𝜈′ = 𝑝), and particle-antiparticle
(𝜈 ̸= 𝜈′) scattering matrices, which contain the
Fourier images of the scalar, 𝑉 (r), and vector, A(r),
potentials, i.e. 𝑉 (q) and A (q), respectively. Then,
operator (11) becomes the sum H = H𝑒 +H𝑝 +V𝑒−𝑝

of three terms: the particle, H𝑒, and antiparticle,
H𝑝, Hamiltonians, and the operator V𝑒−𝑝 of direct
particle-antiparticle transformation. If the product of
the creation and annihilation operators is in the nor-
mal form, Hamiltonian (11) becomes positively deter-
mined, except for an infinite additive constant, which
is the energy of the state without any particles (“vac-
uum”). This is the energy, from which the energies of
all elementary excitations are reckoned from.

The state of the system with the given number of
elementary excitations is described by the ket vector
|𝜓⟩ that satisfies the SE

𝑖~
𝜕

𝜕𝑡
|𝜓 (𝑡)⟩ = H|𝜓 (𝑡)⟩.

Here, in accordance with the considered problem and
the conservation laws, the state |𝜓⟩ is generated by
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the products of the required numbers of the parti-
cle and antiparticle creation operators that act on
the vacuum state |0⟩. In a uniform isotropic space,
Hamiltonian (11) has a diagonal form and is the sum
of the Hamiltonians of free particles and antiparti-
cles. In addition, it also separates the Hamiltonians
for particles with opposite spins. As one can see, in
the presence of external fields, (i) the independence
of the free particle and antiparticle states disappears,
and (ii) the elements of the scattering matrix (12)
are not only generated by the scalar and vector po-
tentials, but also depend on the form of spinors 𝜒𝜈,k,𝜎

in amplitudes (7). The explicit dependence of spinors
(10) on the wave vector points directly at the interre-
lation between the spin and spatial levels of the par-
ticle degrees of freedom. For the description of this
interrelation, the SOI concept was introduced. We
should emphasize that, hence, SOI is nothing else, but
a direct result of the presence of that or another exter-
nal potential violating the uniform rectilinear motion
of particles.

Below, we confine the consideration to the case
where the magnetic field is absent, by putting A(r) =
0 in Eq. (12). As was shown in work [10], in the
case of non-relativistic potentials, where the in-
equality |𝑉 (r)|/𝑚𝑐2 ≪ 1 is obeyed, the particle and
antiparticle states can be approximately separated
with a given accuracy making use of the canonical
Schrieffer–Wolf transformation method. In the ma-
jority of physical problems, the kinetic energy is also
a non-relativistic quantity, so that another inequal-
ity, ~𝑘/𝑚𝑐≪ 1, is obeyed, which allows energies (8)
and bispinor convolutions in Hamiltonian (11) to
be expanded in series in this small parameter. The
approximate renormalization with respect to those
both parameters makes it possible to change to the
non-relativistic approximation in Hamiltonian (11)
and represent it as the sum H = H̃𝑒 + H̃𝑝, where
the components H̃𝜈=𝑒,𝑝 describe already independent
(quasi)particles and (quasi)antiparticles, which in-
clude a small (within the second order of magnitude)
“admixture” of the initial states of both particles and
antiparticles.

Below, only the electron Hamiltonian is considered,
so that the subscript “𝑒” is omitted. The analysis of
the antiparticle case is almost identical to the pre-
sented one. In particular, in work [10], both parame-
ters were assumed to be of the same order of magni-
tude, and a non-relativistic approximation for Hamil-

tonian (11) was obtained within the second-order cor-
rections. Thus, it was shown that the non-relativistic
Hamiltonian H̃𝑒 for electrons in an external scalar po-
tential looks like

H̃𝑒 ≡ H ≃
∑︁
k,𝜎

(︂
~2k2

2𝑚

(︀
1− 𝜆SO𝑘

2
)︀
𝑎†k,𝜎𝑎k,𝜎 +

+
1

𝐿3

∑︁
k′,𝜎′

𝑉𝜎,𝜎′ (k,k′) 𝑎†k,𝜎𝑎k′,𝜎′

)︂
, (13)

where

𝑉𝜎,𝜎′ (k,k′) = 𝑉 (k− k′)𝜒†
𝜎 ×

×
(︂
1− 𝜆SO

2
(k− k′)

2
+ 𝑖𝜆SOΛ (k,k′) �̂�

)︂
𝜒𝜎′, (14)

and the parameter

𝜆SO =
~2

4𝑚2𝑐2
(15)

characterizes the order of relativistic corrections and
determines the SOI magnitude.

Hamiltonian (13) includes all relativistic correc-
tions of the second order to both the kinetic and
potential energies. The second term in the renormal-
ized scattering potential (14) is known as the Darwin
correction, and the matrix Λ (k,k′) �̂� is a relativis-
tic correction that is called the SOI operator. In the
SOI operator, the vector Λ (k,k′) is described by the
expression

Λ (k,k′) = k× k′ +ΛBEL (k,k
′). (16)

Here, the term k × k′ corresponds to the Thomas–
Frenkel correction (see, e.g., works [1,2,8]). The other
term, ΛBEL (k,k

′), is given by the expression

ΛBEL (k,k
′) = Λ (k)−Λ (k′), (17)

where the vector

Λ (k) = e× u(2) (k) +
e ·
[︀
e𝑧 × u(2) (k)

]︀
1 + ee𝑧

e (18)

was also obtained in work [10] in the case where
u𝑒 (k) ≡ u (k) has the form

u (k) ≃ u(0) + 2𝜆SOu
(2) (k) + ... . (19)

In this expansion, u(0) and u(2) denote the terms of
the zeroth and second orders, respectively:

u(0) = u𝜇 + u𝒮 ,
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u(2) (k) = (u𝒮 · k)k− [u𝜇 × k]× k.

Making allowance for them, the solution of Eq. (10)
can be written as follows:

𝜒k,𝜎 ≃ 𝜒𝜎 + 𝜆SO𝜒
(2)
k,𝜎 = (1− 𝑖𝜆SOΛ (k) �̂�)𝜒𝜎,

where Λ (k) is given by expression (18), and 𝜒𝜎 sat-
isfies the spinor equation

u(0)�̂�𝜒𝜎 = 𝜎𝑢(0)𝜒𝜎, 𝜎 = ±1. (20)

The guiding cosines 𝛾𝑗 of the vector u(0) with respect
to the axes of the selected coordinate frame (

∑︀
𝑗 𝛾

2
𝑗 =

1) are spin variables. For example, it is easy to see
that the spinors

𝜒𝜎 ≡ 𝜒𝜎 (𝜃, 𝜑) = 𝑒𝑖𝜎𝜑/2

⎛⎜⎜⎝𝜎
√︂

1 + 𝜎𝛾𝑧
2

𝑒−𝑖𝜑/2√︂
1− 𝜎𝛾𝑧

2
𝑒𝑖𝜑/2

⎞⎟⎟⎠, (21)

where

tan𝜑 =
𝛾𝑦
𝛾𝑥
, 𝛾𝑧 = cos 𝜃,

are the solutions of Eq. (20) in the laboratory coordi-
nate frame (𝑗 = 𝑥, 𝑦, 𝑧). In this case, the unit vector
e = u(0)/𝑢(0) in expression (18) can be written in the
parametric form (in terms of spin variables, which are
the arguments of spinors (21)) as follows:

e(k⊥) = sin 𝜃 cos𝜑e𝑥 + sin 𝜃 sin𝜑e𝑦 + cos 𝜃e𝑧. (22)

In view of expression (18), the vector Λ (k,k′) ,
which characterizes SOI in the non-relativistic Hamil-
tonian, can be written in the form

Λ (k,k′) = k×k′+e×𝜆 (k,k′)+
e · [e𝑧 × 𝜆 (k,k′)]

1 + ee𝑧
e,

(23)

where 𝜆 (k,k′) = u(2) (k) − u(2) (k′), and the vector
u(2) (k) is defined in Eq. (19).

Note that the operators 𝑎†k,𝜎 and 𝑎k′,𝜎 in Eq. (13)
are related to the spinors 𝜒𝜎, which satisfy equal-
ity (20), and describe the creation and annihilation,
respectively, of electrons with the spin polarization
determined by the vector u(0) [see Eq. (19)]. As a re-
sult, the vector e that enters expression (23) inserts

not only the dependence on spatial variables into the
SOI operator, but also the explicit dependence on the
spin degrees of freedom. In the external potential, the
stationary electron states will be realized only pro-
vided a known spin invariant. In the non-relativistic
approximation, this is the matrix u(0)�̂�. According
to the symmetry of the given potential, this spin in-
variant is related to the vectors u𝜇 and u𝒮 with a
dependence on k (in the coordinate representation,
on the momentum), which is to be specified.

4. Diagonalization of the Hamiltonian
with regard for the Spin-Orbit Interaction

It is well known that the relativistic effects in the
problems of non-relativistic physics can be taken into
account by adding only the relativistic SOI operator,
which describes spin-dependent phenomena, to the
standard Schrödinger Hamiltonian. Bearing all that
in mind and taking Eqs. (14) and (23) into account,
let us write down Hamiltonian (13) in the form

H =
∑︁
k,𝜎

(︂
~2k2

2𝑚
𝑎†k,𝜎𝑎k,𝜎 +

+
1

𝐿3

∑︁
k′

𝑉 (k− k′) 𝑎†k,𝜎𝑎k′,𝜎 +

+ 𝑖
1

𝐿3
𝜆SO

∑︁
k′,𝜎′

𝑉 (k− k′)×

×𝜒†
𝜎Λ (k,k′) �̂�𝜒𝜎′𝑎†k,𝜎𝑎k′,𝜎′

)︂
. (24)

As concerning the eigenstates |𝜓 (𝑡)⟩ =
= exp (−𝑖ℰ𝑡/~) |𝜓⟩ of electrons in a given po-
tential, the solution procedure of the SE H|𝜓⟩ = ℰ|𝜓⟩
is reduced to the diagonalization of the Hamiltonian
with the help of a unitary transformation

𝑎k,𝜎 =
∑︁
{𝑛}

𝜓{𝑛},𝜎 (k) 𝑎{𝑛},𝜎, (25)

whose coefficients 𝜓{𝑛},𝜎 (k) are determined by an
equation for eigenvalues and satisfy the orthonormal-
ization condition∑︁
k

𝜓*
{𝑛},𝜎 (k)𝜓{𝑛′},𝜎 (k) = 𝛿{𝑛},{𝑛′}.

These coefficients are given by a set {𝑛} of all quan-
tum numbers that determine the energy 𝐸{𝑛},𝜎, i.e.
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by the equation

~2k2

2𝑚
𝜓𝜎(k) +

1

𝐿3

∑︁
k′

𝑉 (k− k′)𝜓𝜎(k
′)+

+ 𝑖𝜆SO
1

𝐿3

∑︁
k′,𝜎′

𝑉 (k− k′)𝜒†
𝜎Λ (k,k′)×

× �̂�𝜒𝜎′𝜓𝜎′(k′) = ℰ𝜓𝜎(k). (26)

While solving Eq. (26), it is convenient to change
to the coordinate representation,

𝜓𝜎(r) =
1

𝐿3/2

∑︁
k

𝑒𝑖kr𝜓𝜎(k). (27)

Then, the substitution k → k′ + q has to be made
in the terms that contain 𝑉 (k− k′) and the double
sum over k and k′. As a result, we obtain the equality
[see Eq. (23)]

𝜆 (k,k′) ≡ 𝜆 (q,k′) = (u𝒮 · q)k′ +

+(u𝒮 · k′)q [u𝜇 × q]×

×k′ − [u𝜇 × k′]× q+ u(2) (q),

where u(2) (q) is defined in Eq. (19). Finally, Eq. (26)
rewritten in the coordinate representation is trans-
formed into a system of SEs for the spin states,(︂
p̂2

2𝑚
+ 𝑉 (r)

)︂
𝜓𝜎(r) + 𝑖𝜆SO ×

×
∑︁
𝜎′

𝜒†
𝜎Λ (p̂,∇𝑉 (r)) �̂�𝜒𝜎′𝜓𝜎′(r) = ℰ𝜓𝜎(r), (28)

where

Λ (p̂,∇𝑉 (r)) = − 𝑖

~
∇𝑉 (r)× p̂+ e×

×𝜆 (p̂,∇𝑉 (r))− [e× 𝜆 (p̂,∇𝑉 (r))] e𝑧
1 + ee𝑧

e. (29)

In the last expression, the following notations were
introduced:

𝜆 (p̂,∇𝑉 (r)) = − 𝑖

~
�̂�− 𝜆 (∇𝑉 (r)),

�̂� = (u𝒮 ·∇𝑉 (r)) p̂+∇𝑉 (r) (u𝒮 · p̂)+
+ [∇𝑉 (r)× u𝜇]× p̂+∇𝑉 (r)× [u𝜇 × p̂],

𝜆 (∇𝑉 (r)) = ∇ (u𝒮 ·∇𝑉 (r))+

+∇× [u𝜇 ×∇𝑉 (r)].

(30)

Transformation (25) with the coefficients deter-
mined by Eq. (28) brings Hamiltonian (24) to the di-
agonal form with respect to the spatial degrees of free-
dom, and the diagonalization with respect to the spin
number means the determination of spinors 𝜒𝜎 (𝜃, 𝜑)
satisfying the condition 𝜒†

𝜎Λ (p̂) �̂�𝜒𝜎′ ∼ 𝛿𝜎,𝜎′ . This
relationship holds true, if the spinors 𝜒𝜎, which are
eigenfunctions for the matrix e�̂� according to def-
inition (20), are also eigenfunctions for the matrix
Λ (p̂) �̂�. This is possible, if these mutually indepen-
dent matrices commute, namely, if

[e�̂�,Λ (p̂) �̂�] = eΛ (p̂)−Λ (p̂) e+

+ 𝑖 (e×Λ (p̂)−Λ (p̂)× e) �̂� = 0. (31)

Equality (31) evidently demands that the vectors e
and Λ (p̂) should commute with each other. Accor-
ding to Eq. (30), the vector 𝜆 (p̂) has the term
𝜆 (∇𝑉 (r)), which depends on coordinates. Hence,
the same term also enters the SOI vector (29). There-
fore, the commutation condition for the vector oper-
ator Λ (p̂) and the unit vector e (generally speaking,
this vector in the coordinate representation is also
an operator that contains p̂) is obeyed provided that
𝜆 (p̂) does not include a vector that would depend on
the spatial coordinates. This requirement brings us to
the condition

𝜆 (∇𝑉 (r)) = ∇ (u𝒮 ·∇𝑉 (r))+

+∇× [u𝜇 ×∇𝑉 (r)] = 0.

This equality imposes restrictions on the vectors u𝜇

and u𝒮 , and it can be satisfied, only if

r𝒮 ·∇𝑉 (r) = 0, r𝜇 ×∇𝑉 (r) = 0, (32)

By essence, these are equations for the vectors r𝜇 and
r𝒮 , and their solutions depend on the specific field
symmetry, which reveals itself in the field gradient
∇𝑉 (r).

Since the gradient vector is directed along the nor-
mal to the equipotential surface at any of its points,
the equality ∇𝑉 (r) = |∇𝑉 (r) |n holds true, where n
is a unit normal vector. Then, at every point𝑀 in the
space, the orthogonal basis {e1 (M ) , e2 (M ) ,n (M )},
where e1 (M ) and e2 (M ) are two orthogonal unit vec-
tors that lie in a plane tangent to the equipotential
surface at the point 𝑀 [all three vectors are coupled
by the relationship e1 (M ) × e2 (M ) = n (M )], can
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be used. Accordingly, an arbitrary vector a can be
expanded in this basis, a = 𝛼1e1 (M ) + 𝛼2e2 (M ) +
+𝛼3n (M ), which is nothing else but an expression
for this vector in the curvilinear coordinate frame
that is related to the potential 𝑉 (r). According to
condition (32), we obtain

u𝒮 = 𝛼1e1 (M ) + 𝛼2e2 (M ) , u𝜇 = 𝛼3n (M ) (33)

in this coordinate frame, so that

e = u𝜇 + u𝒮 = 𝛼1e1 (M ) + 𝛼2e2 (M ) + 𝛼3n (M ) ,

where 𝛼2
1 + 𝛼2

2 + 𝛼2
3 = 1.

Because of the imposed condition, expression (29)
contains the equality 𝜆 (p̂,∇𝑉 ) = −(𝑖/~)�̂�, where,
according to Eq. (30),

�̂� = ∇𝑉 (u𝒮 · p̂) +∇𝑉 × [u𝜇 × p̂] =

= |∇𝑉 (r) |
{︀
n (M ) (u𝒮 · p̂)+

+u𝜇 (n (M ) · p̂)− p̂ (n (M ) · u𝜇)
}︀
.

Now, with the help of definition (33) and the rules of
vector computation, we obtain

�̂� = |∇𝑉 (r) | e× (n (M )× p̂) = e× (∇𝑉 (r)× p̂).

In view of this formula and the equality e2 = 1, vector
(29), which characterizes SOI in Eqs. (28), reads

Λ (p̂,∇𝑉 ) = − 𝑖

~
(e+ e𝑧) ·∇𝑉 (r)× p̂

1 + ee𝑧
e. (34)

Hence, condition (31) is obeyed automatically for
the vectors u𝜇 and u𝒮 that satisfy relations (32), and
the matrix element 𝜒†

𝜎Λ (p̂) �̂�𝜒𝜎′ ∼ 𝛿𝜎,𝜎′ . A direct
consequence of all that is the separation of SE (28)
into equations that are independent for every spin
state:(︂
p̂2

2𝑚
+ 𝑉 (r) + 𝜎

𝜆SO
~

(e+ e𝑧) ·∇𝑉 (r)× p̂

1 + ee𝑧

)︂
×

×𝜓𝜎(r) = ℰ𝜓𝜎(r). (35)

Their solutions 𝜓{𝑛},𝜎(r) together with the corre-
sponding eigenvalues 𝐸{𝑛},𝜎 determine the constants
in transformation (25),

𝜓{𝑛},𝜎(k) =
1

𝐿3/2

∫︁
𝑒−𝑖kr𝜓{𝑛},𝜎(r)𝑑r.

At the same time, Hamiltonian (24) becomes com-
pletely diagonalized,

H =
∑︁
{𝑛},𝜎

ℰ{𝑛},𝜎𝑎†{𝑛},𝜎𝑎{𝑛},𝜎. (36)

Taking the explicit expressions of spinors (21) into
account and introducing the spinor functions

∑︁
𝜎

𝜒𝜎𝜓𝜎(r) =

(︃
cos 𝜃

2𝜓+ − 𝑒−𝑖𝜑 sin 𝜃
2𝜓−

𝑒𝑖𝜑 sin 𝜃
2𝜓+ + cos 𝜃

2𝜓−

)︃
=

= 𝜓(r) =

(︂
𝜓↑(r)
𝜓↓(r)

)︂
,

the system of equations (28) or (35) can be written as
a single stationary Pauli equation �̂�P𝜓(r) = ℰ𝜓(r)
with the Hamiltonian �̂�P = 𝐻0 +VSO, where

𝐻0 =
p̂2

2𝑚
+ 𝑉 (r) , (37)

VSO =
𝜆SO
~

(ê+ e𝑧) · [∇𝑉 (r)× p̂]

1 + êe𝑧
ê�̂�.

In this case, the vector ê = û(0)/𝑢(0), which enters
the SOI operator and, by definition, characterizes a
spin invariant, has to be consistent with the commu-
tation condition for the matrix û(0)�̂� and the Hamil-
tonian. From whence, there arises the natural require-
ment[︁
û(0), 𝐻0

]︁
= 0. (38)

In other words, the vector operator û(0), which de-
fines the generalized SOI operator, has to be an in-
variant (or a function of invariants) of the spatial mo-
tion in the given potential 𝑉 (r). In this case, every
specific potential is connected with its “own” invari-
ant (in the general case, not a single one). Therefore,
condition (38) governs both the explicit expression for
û(0) and, as a result, the form of the generalized SOI
operator that contains not only the Thomas–Frenkel
correction in this potential.

For illustration, let us consider below a model po-
tential in the form of a QW, in which the bound
electron states are formed by electrons captured by
the well and moving freely in the well plane (2D
electrons).
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5. Free 2D Electrons

Let us analyze the electron states in a QW potential
that are described by Eq. (35). Let us select the 𝑧-axis
along the potential change direction, 𝑉 (r) = 𝑉 (𝑧),
and represent the momentum operator in the form
p̂ = p̂⊥ + 𝑝𝑧e𝑧, where p̂⊥ = 𝑝𝑥e𝑥 + 𝑝𝑦e𝑦. In this
case, we have ∇𝑉 (𝑧) = e𝑧𝑑𝑉 (𝑧) /𝑑𝑧 ≡ 𝑉 ′ (𝑧) e𝑧,
and Eq. (35) reads(︂
p̂2

2𝑚
+ 𝑉 (𝑧) + 𝜎

𝜆SO
~
𝑉 ′ (𝑧)

ê · e𝑧 × p̂

1 + êe𝑧

)︂
×

×𝜓𝜎(r) = ℰ𝜓𝜎(r).

It is easy to verify that two momentum components,
𝑝𝑥 and 𝑝𝑦, remain the integrals of motion for the cho-
sen potential. Accordingly, the states of electrons cap-
tured by the QW will be characterized by a definite
value of the momentum p̂⊥ and will be described by
the normalized wave function

𝜓k⊥(r) = 𝐿−1𝑒𝑖k⊥r⊥𝜙k⊥(𝑧),

r⊥ = 𝑥e𝑥 + 𝑦e𝑦,

k⊥ = 𝑘𝑥e𝑥 + 𝑘𝑦e𝑦,

(39)

where r⊥ = 𝑥e𝑥 + 𝑦e𝑦 and k⊥ = 𝑘𝑥e𝑥 + 𝑘𝑦e𝑦. Ac-
cording to condition (38), the vector ê depends only
on p̂⊥. Substituting expression (39) into Eq. (35), we
obtain the stationary one-dimensional SE(︂
− ~2

2𝑚

𝑑2

𝑑𝑧2
+

~2k2
⊥

2𝑚
+ 𝑉 (𝑧)+

+𝜎𝜆SO
e(k⊥) · e𝑧 × k⊥

1 + e(k⊥)e𝑧
𝑉 ′ (𝑧)

)︂
×

×𝜙k⊥,𝜎 (𝑧) = ℰ𝜙k⊥,𝜎(𝑧), (40)

in which the fourth term in the parentheses on the
left-hand side describes the generalized SOI. This
equation coincides with the equation obtained in
works [6, 11], in which an analytic general solution
of the DE for the given problem was sought, as well
as with the equation obtained in work [10] on the
basis of the non-relativistic Hamiltonian (24). No ad-
ditional conditions are imposed on the vector e(k⊥),
which defines the electron spin state, so that it can
be chosen with an arbitrary dependence on k⊥. This
circumstance means that the free 2D electrons still
retain a certain spin freedom, i.e. their states remain
spin-indefinite.

The last term in the parentheses on the left-hand
side of Eq. (40) characterizes the influence that the
QW edges exert, by means of the SOI mechanism,
on the dynamics of electrons, depending on their spin
state. The vector k⊥ can be written in the form k⊥ =
= 𝑘⊥e𝑘⊥ , where

ek⊥ =
k⊥

𝑘⊥
= e𝑥 cos𝜙k⊥ + e𝑦 sin𝜙k⊥ .

In addition, let us consider expression (22), in which

tan𝜙k⊥ =
𝑘𝑦
𝑘𝑥
, 𝑘⊥ =

√︁
𝑘2𝑥 + 𝑘2𝑦.

This procedure makes it possible to obtain the follow-
ing expression for the coefficient that determines the
magnitude of the generalized SOI in Eq. (40):

e(k⊥) · e𝑧 × k⊥

1 + e(k⊥) · e𝑧
= 𝑘⊥𝑓 (k⊥) , (41)

where the function
𝑓 (k⊥) ≡ 𝑓 (𝜃, 𝜑, 𝜙k⊥) =

sin 𝜃 sin (𝜑− 𝜙k⊥)

1 + cos 𝜃

was introduced. Generally speaking, the angles 𝜃 and
𝜑 may depend on the direction of the vector k⊥,
i.e. 𝜃 = 𝜃(k⊥) and 𝜑 = 𝜑(k⊥).

When solving Eq. (40), the attention should be
paid to that Hamiltonian (24) is a non-relativistic
approximation, in which the terms of the order of
𝜆SO were retained. Therefore, the solutions them-
selves will be correct exactly to this accuracy, which
allows the term proportional to 𝜆SO to be considered
as a perturbation. The solutions of the equation

− ~2

2𝑚

𝑑2𝜓 (𝑧)

𝑑𝑧2
+ 𝑉 (𝑧)𝜓 (𝑧) = ℰ𝜓 (𝑧) (42)

are used as the zeroth approximation.
It is known that if 𝜓𝑛 (𝑧) and ℰ𝑛 are eigenfunctions

and eigenvalues, respectively, of Eq. (42), then the
solutions of Eq. (40) obtained for the discrete QW
spectrum in the first order of perturbation theory can
be easily written in the form

𝜙k⊥,𝜎 (𝑧) = 𝜓𝑛 (𝑧) + 𝜎𝜆SO𝑘⊥𝑓 (k⊥)
∑︁
𝑛′ ̸=𝑛

𝑐𝑛,𝑛′𝜓𝑛′ (𝑧),

(43)

ℰ𝑛,𝜎 (k⊥) = ℰ𝑛 +
~2k2

⊥
2𝑚

+ 𝜎𝜆SO𝑘⊥𝑣𝑛𝑛𝑓 (k⊥) . (44)
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Here,
𝑐𝑛,𝑛′ =

𝑣*𝑛𝑛′

ℰ𝑛 − ℰ𝑛′
, (45)

𝑣𝑛,𝑛′ =

∫︁
𝜓*
𝑛 (𝑧)

𝑑𝑉 (𝑧)

𝑑𝑧
𝜓𝑛′ (𝑧) 𝑑𝑧, 𝑣*𝑛,𝑛′ = 𝑣𝑛′,𝑛.

Thus, the 2D electrons are described by Hamilto-
nian (36), which takes the form

H2𝐷 =
∑︁

𝑛,k⊥,𝜎

ℰ𝑛,𝜎 (k⊥) 𝑎
†
𝑛,k⊥,𝜎𝑎𝑛,k⊥,𝜎. (46)

In this expression, the operators 𝑎†𝑛,k⊥,𝜎 (𝑎𝑛,k⊥,𝜎) are
the creation (annihilation) operators of “free” 2D elec-
trons 3 with the wave vector k⊥ in the 2D ℰ𝑛,𝜎 (k⊥)
band associated with the 𝑛-th discrete level in the
QW, and the spin state of those electrons is deter-
mined by the vector e(k⊥) [see Eq. (22)].

From expressions (44) and (43), one can see that
the generalized SOI gives rise, firstly, to the spin split-
ting (the Rashba effect) of 2D bands and, secondly,
to the spin dependence of the electron density distri-
bution over the QW thickness:

|𝜙k⊥,𝜎 (𝑧) |2 = |𝜓𝑛(𝑧)|2 + 𝜎2𝜆SO𝑘⊥𝑓 (k⊥)𝐹𝑛(𝑧),

where

𝐹𝑛(𝑧) =
∑︁
𝑛′ ̸=𝑛

𝜓𝑛 (𝑧)𝑤𝑛,𝑛′𝜓𝑛′ (𝑧)

ℰ𝑛 − ℰ𝑛′
.

The latter phenomenon has not been mentioned ear-
lier. The spin splitting of 2D bands (44) by a magni-
tude of 2𝜆SO𝑘⊥𝑣𝑛𝑛𝑓 (k⊥) is non-zero, only if the in-
verse potential symmetry is violated. The multiplier
𝑣𝑛𝑛 ̸= 0 in front of 𝑉0 (−𝑧) ̸= 𝑉0 (𝑧) characterizes the
QW asymmetry (both a probable inherent one and,
e.g., that induced by an external electric field applied
perpendicularly to the 𝑥𝑦-plane). The spatial sepa-
ration of densities for electrons with different spins
is characterized by the function 2𝜆SO𝑘⊥𝑓 (k⊥)𝐹𝑛(𝑧),
which is finite in the symmetric QW as well, when the
Rashba splitting is absent. Of course, this is a com-
monly known fact, and we report the corresponding
results only as an evidence that the generalized SOI
reproduces the well-known and recognized effects. In
addition, it allows one to verify, to which of the spin-
invariants the potential should correspond in order
that, e.g., the Rashba effect takes place.

3 In this case, the word “free” means that those particles are
captured by the QW potential, but move freely in its plane.

6. Manifestation of the Spin-Orbit
Interaction in a 2D System
It is well known that the bound electron states in a
QW are described by a discrete non-degenerate spec-
trum of SE (42) with real-valued eigenfunctions 𝜓𝑛(𝑧)
that are characterized by a definite parity. The even
and odd functions alternate at that with the growth
of their eigenenergies. If the QW is symmetric with
respect to the coordinate origin, the matrix elements
(45) differ from zero only between the even and odd
states. Therefore, 𝐹𝑛(−𝑧) = −𝐹𝑛(𝑧), and the distri-
bution of the probability to find an electron with the
wave vector k⊥ and the spin number 𝜎 turns out
asymmetric as the electron shifts toward either of the
QW edges. In this case, it is easy to see that the elec-
trons with the same k⊥ but opposite spins become
shifted to different surfaces, which directly testifies
to the appearance of the spin Hall effect in this situ-
ation and, in essence, explains its mechanism.

At the same time, the spin splitting of energy bands
and the spin-dependent electron distribution over the
QW thickness depend on the QW form, which gov-
erns the explicit form of the solutions of Eq. (40) or
(42). In this situation, the function 𝑓 (k⊥) plays its
role and introduces an explicit dependence on the spin
states of electrons into such phenomena. Really, ac-
cording to Eq. (41 ), the arguments of this function
are the spin (the angles 𝜃 and 𝜑) and spatial (the
angle 𝜙k⊥) variables. The specific values of the spin
variables 𝜃 and 𝜑 correspond to definite spin invari-
ants, which are preserved in the field 𝑉 (𝑧). In partic-
ular, if the 𝑧-component of the electric spin polariza-
tion 𝜖𝑧 is selected as the spin invariant, then 𝜃 = 𝜋/2
and 𝜑 = 𝜋/2 + 𝜙k⊥ (state I). On the other hand, if
the component of the spin pseudovector 𝒮𝑗 in the 𝑥𝑦-
plane is selected as the spin invariant, then 𝜃 = 𝜋/2,
whereas 𝜑 = const within the interval 0 ≤ 𝜑 ≤ 𝜋/2
(state II; the value 𝜑 = 0 corresponds to the 𝑥-
component of the invariant, and the value 𝜑 = 𝜋/2 to
the 𝑦-component).

From definition (41), one can see that the influence
of the obtained SOI on the dynamics of 2D electrons
takes place, if the projection of e(k⊥) onto the direc-
tion of the unit vector e𝑧×ek⊥ differs from zero. This
influence reaches its maximum, when e(k⊥) coincides
with the latter vector (the Rashba spin state). The
realization of a particular spin state has to be deter-
mined by the given conditions (the concentration of
charge carriers, the presence of electric and/or mag-
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netic fields, the external pressure, the properties of
specific interface, and so forth) and, therefore, has to
manifest itself in real physical experiments.

As was noted in work [6], in an isolated 2D band
(for example, when free electrons fill the ground state,
𝑛 = 0, QW level; only this case will be considered
below), the total energy of 𝑁𝑒 electrons described by
the equilibrium distribution function

�̄�𝜎,k =
1

exp{(ℰ𝜎,k − 𝜇)/k𝐵𝑇}+ 1
= �̄� (ℰ𝜎,k) (47)

equals

𝐸tot =
∑︁
𝜎,k⊥

ℰ𝜎 (k⊥) �̄�𝜎k⊥ ,
∑︁
𝜎,k⊥

�̄�𝜎k⊥ = 𝑁𝑒,

and Rashba state I has the lowest energy in the
absence of external fields and at the low temper-
ature 𝑇 . The Rashba splitting of 2D bands and
their spin polarization were experimentally confirmed
for a number of materials and structures, in which
the charge carriers possess 2D properties (see, e.g.,
review [13]).

The spatial spin-separation of charge carriers in the
QW can affect the observed local spin value S or the
related magnetic moment M = (𝑒/𝑚𝑐)S that char-
acterizes the 2D electron system. The spin per se,
as was mentioned above, has no definite value for
stationary states, because only its absolute value is
the integral of motion. Therefore, the observed spin
value is given by the average value of the spin oper-
ator. In the quantum field theory, the latter together
with Hamiltonian (1) is given by the expression

S =
~
2

∫︁
Ψ†(r)Σ̂Ψ(r)𝑑r, Σ̂ =

(︂
�̂� 0
0 �̂�

)︂
.

Here, the expressions for the bispinors are given in
Eq. (9). Unlike the Hamiltonian, the operator S is not
diagonalized in the free-particle representation, but
contains terms that couple the creation and annihila-
tion operators of electrons and positrons with differ-
ent spin numbers. But, when calculating the average
value ⟨S⟩ = Sp (𝜌𝑒S) with the use of the statistical op-
erator 𝜌𝑒 for a system of electrons described by Hamil-
tonian (46), the non-diagonal terms vanish, and the
following expression is obtained in the non-relativistic
approximation for the spin density ⟨ŝ⟩ = ⟨Ŝ⟩/𝐿2 in

the QW 4:

⟨ŝ⟩ =
∫︁

⟨ŝ(𝑧)⟩𝑑𝑧,

where
⟨ŝ(𝑧)⟩ = ~

2𝐿2

∑︁
k⊥,𝜎

𝜒†
𝜎�̂�𝜒𝜎|𝜙k⊥,𝜎 (𝑧) |2�̄�𝜎,k⊥.

Here, �̄�𝜎,k⊥ = Sp
(︁
𝜌𝑒𝑎𝜎,k

†
⊥𝑎𝜎,k⊥

)︁
is the electron

distribution function, and the spinors 𝜒𝜎 are defined
by expressions (21).

Now, by applying the explicit form of spinors, we
obtain

𝜒†
𝜎�̂�𝜒𝜎 = 𝜎(sin 𝜃 cos𝜑e𝑥 + sin 𝜃 sin𝜑e𝑦 +

+ cos 𝜃e𝑧) = 𝜎e(k⊥).

Passing from the summation over the quasicontinu-
ous k⊥ variable to the integration, we arrive at the
following expression for the average local magnitude
of the spin vector density of electrons in the isolated
2D band:

⟨ŝ(𝑧)⟩ = ~
8𝜋2

∫︁
𝑑𝑘𝑥𝑑𝑘𝑦

∑︁
𝜎

𝜎e (k⊥) |𝜙𝜎,k⊥ (𝑧) |2�̄�𝜎,k⊥ .

In a symmetric QW (𝑣𝑛,𝑛 = 0), the spin splitting of
the bands is absent, and the distribution function �̄�k⊥

does not depend on the spin number. Taking this fact
into account, after summing over the spin index and
substituting the explicit expression for |𝜙𝜎,k⊥ (𝑧) |2,
we obtain

⟨ŝ(𝑧)⟩ =

~
2𝜋2

𝜆SO

2𝜋∫︁
0

𝑑𝜙k⊥

∞∫︁
0

𝑑𝑘⊥e (k⊥) 𝑘
2
⊥𝑓 (k⊥) �̄�k⊥𝐹 (𝑧).

One can see that the average value ⟨ŝ(𝑧)⟩ depends
on the given electron spin state, which determines
the specific values of the angles 𝜃 and 𝜑 in expres-
sions (22) and (41). In the equilibrium 2D electron

4 To be more precise, in the non-relativistic approximation,
when the quantities proportional to 𝜆SO are preserved, the
Pauli matrix in this expression has to be substituted by the
matrix ^̃𝜎 = �̂� + 2𝜆SO (Λ (k)× �̂� + k× [k× �̂�]). Then the
relativistic corrections along the spin direction, which is de-
termined by an essentially non-relativistic expression, are
small and can be neglected.
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gas characterized by the distribution function (47),
we have �̄�k⊥ = �̄� (ℰk⊥), and the electron spins be-
come compensated over the whole QW thickness,
⟨ŝ(𝑧)⟩ = 0, in both indicated states I and II.

The situation changes radically, if an external elec-
tric field induces a current in the system. The exter-
nal field, whose strength vector lies in the QW plane,
perturbs the electron subsystem and changes its dis-
tribution function. In the linear approximation with
respect to the perturbation, this function can be writ-
ten as the sum [12]

�̄�pertk = �̄� (ℰk) + Δ𝑛k,

in which the correction associated with the field,

Δ𝑛k =
~𝜏𝑒
𝑚

E · k
(︂
−𝜕�̄� (ℰk)

𝜕ℰk

)︂
(48)

contains the phenomenological relaxation time 𝜏 .
By selecting the 𝑥-axis along the field direction, we

arrive at the following expression for the local spin
polarization of charge carriers induced by the joint
action of SOI and the electric current in the QW:

⟨ŝ(𝑧)⟩ = ~2𝜏𝑒𝐸
2𝜋2𝑚

𝜆SO

2𝜋∫︁
0

𝑑𝜙k⊥ ×

×
∞∫︁
0

𝑑𝑘⊥e (k⊥) 𝑘
3
⊥𝑓 (k⊥) cos𝜙k⊥

(︂
−𝜕�̄� (ℰk)

𝜕ℰk

)︂
𝐹 (𝑧).

Both the unit vector e (k⊥) and the function 𝑓 (k⊥)
depend only on the angle 𝜙k⊥ . Therefore, the inte-
gration over 𝑘⊥ in this expression can be carried out
by transforming it into the integration over the en-
ergy and taking into account that, at low tempera-
tures, the derivative (−𝜕�̄� (ℰ) /𝜕ℰ) behaves like the
𝛿-function, 𝛿(ℰ−ℰF), where ℰF is the Fermi energy. In
such a way, we obtain the average value

⟨ŝ(𝑧)⟩ = 𝜏𝑒𝐸𝑛𝑒
𝜋

𝜆SO𝐹 (𝑧)ℐ,

where 𝑛𝑒 is the number of electrons per unit QW area,
𝐹 (𝑧) ≡ 𝐹0(𝑧), and the vector

ℐ =

2𝜋∫︁
0

e (𝜃, 𝜑) 𝑓 (𝜃, 𝜑, 𝜙k⊥) cos𝜙k⊥𝑑𝜙k⊥

is determined by the spin-invariant, to which the elec-
tron states correspond, i.e. it depends actually on the

specific form of the general spin invariant ℐ̂gen, which
was introduced above.

If the spin state is given by invariant I, then the
vector e(k⊥) = − sin𝜙k⊥e𝑥+cos𝜙k⊥e𝑦 and 𝑓 (k⊥) =
= 1. From whence, we find that ℐ = 𝜋e𝑦. For the spin
state corresponding to invariant II, when e(k⊥) =
= cos𝜑e𝑥 + sin𝜑e𝑦 and 𝑓 (k⊥) = sin (𝜑− 𝜙k⊥), we
obtain ℐ = 𝜋 (cos𝜑e𝑥 + sin𝜑e𝑦) sin𝜑. It is evident
that the vector ℐ = 0 at 𝜑 = 0, and the same vector
ℐ = 𝜋e𝑦 at 𝜑 = 𝜋/2.

Note that the external electric field directed along
the 𝑥-axis lowers the system symmetry, and only the
𝑦-component of the spin pseudovector remains to be
an invariant, 𝜑 = 𝜋/2. Thus, the local spin polariza-
tion of charge carriers in the QW is described by the
formula

⟨ŝ(𝑧)⟩ = 𝜏𝑒𝐸𝑛𝑒𝜆SO𝐹 (𝑧)e𝑦,

where 𝐹 (−𝑧) = −𝐹 (𝑧) and 𝐹 (0) = 0. Hence, an elec-
tric current in the QW layer induces the spin polar-
ization of charge carriers near the boundary surfaces
of the layer, with this polarization being opposite at
the different surfaces. This, as was indicated above, is
completely associated with the action of the general-
ized SOI. This phenomenon was called the spin Hall
effect, and it was experimentally observed in struc-
tures with a similar geometry [14] (see also review
[15]). In our case, it is a result of exclusively geomet-
ric properties of the examined 2D structures.

7. Conclusions

To summarize, in this work on the basis of the quan-
tum theory of the Dirac spinor field, the generalized
SOI operator VSO ∼ Λ(p̂,∇𝑉 )�̂� is constructed. It is
described by expressions (37) and (34). Its applica-
tion to the non-relativistic SE provides a consistent
description of the influence of SOI on electrons that
move in an external potential 𝑉 (r). The latter is as-
sumed to correspond to definite conditions of small-
ness in comparison with the characteristic electron
energy (this criterion is always satisfied at least in
the problems of solid state physics). In this case, the
vector Λ(p̂,∇𝑉 ), which determines, in essence, SOI
in addition to the well-known Thomas–Frenkel cor-
rection, also contains an additional contribution [see
Eq. (16)].

Recall that the Thomas–Frenkel correction appears
in vector (16), if the explicit dependence of the
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lower (“small”) spinor on the momentum is made al-
lowance for. On the other hand, the additional vector
term ΛBEL (k,k

′) emerges owing to an analogous de-
pendence of the ΛSO-order corrections to the upper
(“large”) spinor in the electron amplitude (bispinor).
As to our knowledge, this term was ignored, as a rule.

It is extremely important that the spin invariants
play a substantial role in finding vector (16). Some of
them – for example, these are helicity operator and
operator of the vector of electric spin polarization, as
well as the operator of total momentum Ĵ = L+ 1

2~Σ̂
and the operator �̂� = (L̂Σ̂+ ~)𝛽 commutating with
it, where L̂ is the torque – correspond to the vectors
u𝜈 [see Eq. (10)] without relativistic corrections.

Finally, let us formulate conditions, under which
the new, obtained in this work, correction to the stan-
dard and widely used SOI does not appear. It occurs,
if the potential symmetry preserves one of the just
indicated operators, and the generalized SOI oper-
ator automatically takes the form of the Thomas–
Frenkel correction for the corresponding spin state. If
the potential symmetry does not violate the preser-
vation of another invariant, then this spin state
(or states) will be lost, if the term ΛBEL (k,k

′) in
Eq. (16) is ignored. This was unambiguously illus-
trated by the example of a QW potential, in which
the Thomas–Frenkel correction can describe only the
spin state with the Rashba splitting. However, it was
shown that this correction is not the only possible
one. Currently, we may only hope for that not only
the Thomas–Frenkel term is responsible for all possi-
ble “spin” consequences of SOI, and that the general-
ized SOI will find its application.
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УЗАГАЛЬНЕНА СПIН-ОРБIТАЛЬНА
ВЗАЄМОДIЯ ТА ЇЇ ПРОЯВ У ДВОВИМIРНИХ
ЕЛЕКТРОННИХ СТРУКТУРАХ

Р е з ю м е

В рамках квантової теорiї поля Дiрака, що описує електро-
ни i позитрони як елементарнi збудження спiнорного поля,
переходом до нерелятивiстського наближення в операторi
Гамiльтона спiнорного поля з урахуванням наявностi зов-
нiшнього потенцiалу знайдено узагальнений оператор спiн-
орбiтальної взаємодiї. Показано, що цей оператор мiстить
окрiм вiдомих доданкiв також новий внесок. На прикладi
модельного потенцiалу у виглядi квантової ями показано,
що рiвняння Шредiнгера з таким узагальненим оператором
спiн-орбiтальної взаємодiї описує всi спiновi стани, одержа-
нi з самого рiвняння Дiрака. Дослiджено залежнiсть спiн-
орбiтальної взаємодiї вiд спiнового стану у квазiдвовимiр-
них локалiзованих в площинi квантової ями електронних
системах. Показано, що електричний струм у шарi кванто-
вої ями iндукує спiнову поляризацiю носiїв поблизу грани-
чних поверхонь шару з протилежною поляризацiєю на про-
тилежних поверхнях, що цiлком зумовлено дiєю узагаль-
неної спiн-орбiтальної взаємодiї i вiдомо як спiновий ефект
Холла, що i спостерiгалося експериментально у структурах
з подiбною геометрiєю.
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