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MULTIPARTICLE FIELDS
ON THE SUBSET OF SIMULTANEITY

We propose a model describing the scattering of hadrons as bound states of their constituent
quarks. We build the dynamic equations for the multiparticle fields on the subset of simul-
taneity, using the Lagrange method, similarly to the case of “usual” single-particle fields. We
then consider the gauge fields restoring the local internal symmetry on the subset of simul-
taneity. Since the multiparticle fields, which describe mesons as bound states of a quark and
an antiquark, are two-index tensors relative to the local gauge group, it is possible to consider
a model with two different gauge fields, each one associated with its own index. Such fields
would be transformed by the same laws during a local gauge transformation and satisfy the
same dynamic equations, but with different boundary conditions. The dynamic equations for
the multiparticle gauge fields describe such phenomena as the confinement and the asymptotic
freedom of colored objects under certain boundary conditions and the spontaneous symme-
try breaking under another ones. With these dynamic equations, we are able to describe the
quark confinement in hadrons within a single model and their interaction during the hadron
scattering through the exchange of the bound states of gluons – the glueballs.
K e yw o r d s: multiparticle fields, problem of simultaneity in relativistic quantum theory,
confinement of quarks and gluons, Higgs mechanism, energy-momentum conservation law in
hadron processes.

1. Introduction

Probably for the first time, the idea of multiparti-
cle fields was proposed by H. Yukawa [1–3]. H. Yuka-
wa called these fields “nonlocal” fields. We use an-
other term “multiparticle fields” to show the differ-
ences between our model from the model proposed
by H. Yukawa. The most essential difference between
the proposed model from not only the Yukawa model,
but also from models on the light cone [4, 5], quasi-
potential models [6–8], and models with multitime
probability amplitudes [9–11] is that, in our opinion,
the internal variables of such fields in different iner-
tial reference systems cannot be related to each other,
whereas these variables are connected by Lorentz
transformations in the said models. We have already
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partially explained our viewpoint in the previous arti-
cle [12]. The use of multitime probability amplitudes
in [9–11,13–15], other works of this direction, and the
above-mentioned works contradicts the principles of
quantum theory, because it does not consider, in our
opinion, the measuring instrument influence on the
state of a microsystem. In more details, we explain
it in work [16], where we proposed an alternative
approach to ensuring the simultaneity of quantum-
mechanical measurements in different reference sys-
tems, and introduce a subset of simultaneity of the
Cartesian product of several Minkowski spaces. On
the other hand, the existing field theories are con-
sidered in such a way that all interaction effects are
reduced only to changes in the occupation numbers of
the single-particle states of free particles. This leads
to the fact that, in such models, when the dynamics
of processes is described, the sum of energy-momenta
of these one-particle states is conserved. At the same
time, the energy-momentum of hadrons, but not of
constituent particles, must be conserved for the pro-
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cesses with hadrons. The model of multiparticle fields
on the subset of simultaneity proposed in this article
allows us to construct a dynamic description, which
is free of the mentioned problems.

2. Scalar Product on a Subset of Simultaneity

Let us consider a meson as a two-particle system con-
sisting of the constituent quark and antiquark. The
time and coordinates of the Minkowski space of the
first particle will be denoted

(︁
𝑥0(1), 𝑥

1
(1), 𝑥

2
(1), 𝑥

3
(1)

)︁
,

for the second particle
(︁
𝑥0(2), 𝑥

1
(2), 𝑥

2
(2), 𝑥

3
(2)

)︁
. Here, as

usual, the index 0 denotes the time coordinate of
the event, and 1,2,3 are the spatial coordinates. The
lower indices in parentheses identify the first and
second particles. The parentheses are used to distin-
guish these indices from the covariant coordinates
of the event. The upper indices are used to de-
note contravariant coordinates. The Cartesian prod-
uct of Minkowski spaces for two particles is an eight-
dimensional linear space. Its elements can be consid-
ered as columns

𝑧𝑎 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥0(1)
𝑥1(1)
𝑥2(1)
𝑥3(1)
𝑥0(2)
𝑥1(2)
𝑥2(2)
𝑥3(2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

We introduce a scalar product in this eight-
dimensional space by the following expression:

⟨𝑧|𝑧⟩ = 1

2

(︁
𝑔Minc
𝑎𝑏 𝑥𝑎(1)𝑥

𝑏
(1) + 𝑔Minc

𝑎𝑏 𝑥𝑎(2)𝑥
𝑏
(2)

)︁
. (2)

Here, 𝑔Minc
𝑎𝑏 is the Minkowski tensor. The indices 𝑎

and 𝑏 are repeated and summed up, and each of these
indices takes the value of 0,1,2,3. Then it is conve-
nient to use the Jacobi coordinates

𝑋𝑎 =
1

2

(︁
𝑥𝑎(1) + 𝑥𝑎(2)

)︁
, 𝑦𝑎 = 𝑥𝑎(2) − 𝑥𝑎(1). (3)

In view of (3), the expression for a scalar product (2)
takes the form

⟨𝑧|𝑧⟩ = 𝑔Minc
𝑎𝑏

(︂
𝑋𝑎𝑋𝑏 +

1

4
𝑦𝑎𝑦𝑏

)︂
. (4)

A condition for the subset of simultaneity in coordi-
nates (3) reads

𝑦0 = 0. (5)

The coordinates of a point on a subset of simultaneity
are denoted by a seven-component column

𝑞𝑎 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑋0

𝑋1

𝑋2

𝑋3

𝑦1

𝑦2

𝑦3

⎞⎟⎟⎟⎟⎟⎟⎠. (6)

We define the scalar product on a subset of simultane-
ity so that it coincides with product (4) with regard
for condition (5):

⟨𝑞|𝑞⟩ = 𝑔𝑎𝑏𝑞
𝑎𝑞𝑏, (7)

where the metric tensor is

𝑔𝑎𝑏 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −4 0 0
0 0 0 0 0 −4 0
0 0 0 0 0 0 −4

⎞⎟⎟⎟⎟⎠. (8)

The multiparticle field will be described by a set of
field functions Ψ𝑎 (𝑞) = Ψ𝑎 (𝑋,y). Here, 𝑋 is a set of
coordinates 𝑋0, 𝑋1, 𝑋2, 𝑋3, and y is a set of internal
variables 𝑦1, 𝑦2, 𝑦3. The index 𝑎 enumerates different
components of the field, and its range space is de-
termined by the representation of a transformation
group, which describes the transition from field func-
tions relative to one reference system to field func-
tions relative to another reference system. The group
of matrices acts on a subset of simultaneity as follows:

�̂� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ0
0 Λ0

1 Λ0
2 Λ0

3 0 0 0

Λ1
0 Λ1

1 Λ1
2 Λ1

3 0 0 0

Λ2
0 Λ2

1 Λ2
2 Λ2

3 0 0 0

Λ3
0 Λ3

1 Λ3
2 Λ3

3 0 0 0

0 0 0 0 𝑅1
1 𝑅1

2 𝑅1
3

0 0 0 0 𝑅2
1 𝑅2

2 𝑅2
3

0 0 0 0 𝑅3
1 𝑅3

2 𝑅3
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

The indices of the 𝐺𝑎
𝑏 matrix take the values from 0 to

6. Λ𝑎
𝑏 , 𝑎, 𝑏 = 0, 1, 2, 3 are the elements of the Lorentz
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transformation matrix, and 𝑅𝑎
𝑏 , 𝑎, 𝑏 = 1, 2, 3 are the

elements of the rotation matrix.
The scalar product (7) with the metric tensor (8)

is invariant relative to the group transformations (9).
Hence, our further aim will be to construct a quan-

tum field theory not on the Minkowski space with
the Lorentz group, but on the above subset of simul-
taneity with group (9). In work [16], we show that
if the Minkowski space is replaced by a subset of si-
multaneity and the Lorentz group is group (9), then
such a theory can be constructed in the same way as
a “usual” one-particle field theory. At the same time,
such a model conforms to the principle of relativity.

3. Lagrangian of a Two-Particle Meson Field

We use the notation 𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞) for a two-particle
meson field, which describes, after the quantization,
the processes of creation and annihilation of bound
states of a quark and an antiquark. Here, 𝑞 is a set
of seven variables (6). Indices with subindices 1 and 2
correspond to an antiquark and a quark, respectively,
𝑐1 is the color of an antiquark, and 𝑐2 is the color of
a quark, 𝑓1 is the flavor of an antiquark, and 𝑓2 is a
flavor of a quark. Accordingly, the field 𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞)
takes the value, for which the mixed tensor represen-
tations of the 𝑆𝑈𝑐 (3) and 𝑆𝑈𝑓 (3) groups are realized:

𝜓′
𝑐1𝑐2,𝑓1,𝑓2 (𝑞) =

= 𝑢(𝑐)†𝑐1𝑐3 𝑢
(𝑐)
𝑐2𝑐4 𝑢

(𝑓)†
𝑓1𝑓3

𝑢
(𝑓)
𝑓2𝑓4

𝜓𝑐3𝑐4,𝑓3,𝑓4 (𝑞). (10)

Here, 𝑢(𝑐)𝑐2𝑐4 are the elements of an arbitrary matrix
of the 𝑆𝑈𝑐 (3) group and 𝑢(𝑓)𝑓2𝑓4

are elements of an inde-
pendent matrix of the 𝑆𝑈𝑓 (3) group. A sign † is used
to denote the elements of the adjoint matrix. Dupli-
cate indices usually mean the summation. The dy-
namic equations for the field 𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞) must be
symmetric relative to transformations (10).

Moreover, the dynamic equations must be sym-
metric relative to group (9). The simplest Lagrangian
that generates such equations can be written in the
form

𝐿(0) = 𝑔𝑎𝑏
𝜕𝜓*

𝑐1𝑐2,𝑓1,𝑓2
(𝑞)

𝜕𝑞𝑎
𝜕𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞)

𝜕𝑞𝑏
−

−𝑀2
𝜇𝜓

*
𝑐1𝑐2,𝑓1,𝑓2 (𝑞)𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞). (11)

Here, 𝑔𝑎𝑏 are the tensor components (8), and the term
𝑀𝜇 will be considered as the “bare” meson mass. The
“real” meson mass was considered in [16].

Since the field 𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞) must describe the dy-
namics of the bound states of a quark and an anti-
quark, Lagrangian (11) is obviously incomplete, be-
cause it does not involve the interaction between
a quark and an antiquark, which ensures the exis-
tence of a bound state. As usual, such an interac-
tion can be introduced, if we demand the symmetry
of the Lagrangian relative to the local transforma-
tions of the internal symmetry in the form (10). Since
the existence of a meson as a bound state of the
quark and the antiquark is due to the strong inter-
action, we choose the symmetry relative to the lo-
cal 𝑆𝑈𝑐 (3)-transformations. This symmetry can also
be achieved in the usual way, if we will replace the
“ordinary” derivatives in Lagrangian (11) by the co-
variant derivatives and will introduce the correspond-
ing compensating fields 𝐴(1)

𝑎,𝑔1 (𝑞) and 𝐴(2)
𝑎,𝑔1 (𝑞).

Further, instead of these fields, it would be conve-
nient to consider their linear combinations, similarly
to Jacobi variables,

𝐴(+)
𝑎,𝑔1 (𝑞) =

1

2

(︁
𝐴(1)

𝑎,𝑔1 (𝑞) +𝐴(2)
𝑎,𝑔1 (𝑞)

)︁
,

𝐴(−)
𝑎,𝑔1 (𝑞) = 𝐴(2)

𝑎,𝑔1 (𝑞)−𝐴(1)
𝑎,𝑔1 (𝑞).

(12)

A local 𝑆𝑈𝑐 (3) group representation is given for the
domain of values of the field functions 𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞).
So, this domain may be decomposed into a direct sum
of subspaces which are invariant relative to transfor-
mations of this representation. Since the hadron is
colorless, we will be interested in a field that has
a nonzero projection only on a subspace, on which
a scalar irreducible representation is realized. This
means that the field 𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞) can be given as

𝜓𝑐1𝑐2,𝑓1,𝑓2 (𝑞) = 𝛿𝑐1𝑐2𝜓𝑓1,𝑓2 (𝑞), (13)

where 𝜓𝑓1,𝑓2 (𝑞) are the new field functions for the dy-
namical equations, which should describe, after the
quantization, the processes of creation and annihila-
tion of mesons. These dynamic equations can be ob-
tained from the Lagrangian with covariant derivatives
that is formed, if we substitute (13) with regard for
notation (12). After these transformations, this La-
grangian takes the form

𝐿𝜇 = 3𝑔𝑎𝑏
(︀
𝜕𝜓*

𝑓1,𝑓2(𝑞)/𝜕𝑞
𝑎
)︀ (︀
𝜕𝜓𝑓1,𝑓2(𝑞)/𝜕𝑞

𝑏
)︀
+

+𝑉 (𝑞)𝜓*
𝑓1,𝑓2(𝑞)𝜓𝑓1,𝑓2(𝑞)−

− 3𝑀2
𝜇𝜓

*
𝑓1,𝑓2(𝑞)𝜓𝑓1,𝑓2(𝑞), (14)
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where

𝑉 (𝑞) = 2𝑔2𝑔𝑎𝑏𝐴(−)
𝑎,𝑔1 (𝑞)𝐴

(−)
𝑏,𝑔1

(𝑞). (15)

4. Dynamic Equation for the Field 𝑉 (𝑞)

In order to obtain the dynamic equations for a two-
gluon field, we consider the simplest tensor that can
be formed from single-gluon fields

𝐴𝑎𝑏,𝑔1𝑔2 (𝑞) = 𝑔2
(︁
𝐴(−)

𝑎,𝑔1 (𝑞)𝐴
(−)
𝑏,𝑔2

(𝑞)
)︁
, 𝑎, 𝑏 = 4, 5, 6.

(16)

Extending the linear space of the tensors 𝐴𝑎𝑏,𝑔1𝑔2 (𝑞)
relative to group (9) into the direct sum of invari-
ant subspaces, we pick a term corresponding to the
projection on a scalar subspace

𝐴𝑎𝑏,𝑔1𝑔2 (𝑞) = −𝐴𝑔1𝑔2 (𝑞) 𝑔𝑎𝑏 + ... . (17)

Convolving both sides of equality (17) with the metric
tensor 𝑔𝑎𝑏, we obtain

𝐴𝑔1𝑔2 (𝑞) =
4

7
𝑔2

6∑︁
𝑏=4

(︁
𝐴

(−)
𝑏,𝑔1

(𝑞)𝐴
(−)
𝑏,𝑔2

(𝑞)
)︁
. (18)

Then we apply a similar procedure for internal in-
dices. Considering the coupling equations obtained in
[16] and definition (15), we get

𝐴𝑔1𝑔2 (𝑞) = 𝐴 (𝑞) 𝛿𝑔1𝑔2 + ...,

𝐴 (𝑞) =
1

14
𝑔2

6∑︁
𝑏=4

(︁
𝐴

(−)
𝑏,𝑔1

(𝑞)𝐴
(−)
𝑏,𝑔1

(𝑞)
)︁
=

1

14
𝑉 (𝑞).

(19)

The kinetic part of the Lagrangian for the 𝐴𝑔1𝑔2 (𝑞)
field can be given as

𝐿
(0)
𝐺 =

1

2
𝑔𝑎𝑏

𝜕𝐴𝑔1𝑔2 (𝑞)

𝜕𝑞𝑎
𝜕𝐴𝑔1𝑔2 (𝑞)

𝜕𝑞𝑏
−

− 1

2
𝑀2

𝐺𝐴𝑔1𝑔2 (𝑞)𝐴𝑔1𝑔2 (𝑞). (20)

Replacing ordinary derivatives by covariant ones
and performing some calculations described in [16],
we obtain the Lagrangian

𝐿𝑉 =
1

2
𝑔𝑎𝑏

𝜕𝑉 (𝑞)

𝜕𝑞𝑎
𝜕𝑉 (𝑞)

𝜕𝑞𝑏
+

+
3

2
(𝑉 (𝑞))

3 − 1

2
𝑀2

𝐺(𝑉 (𝑞))
2
. (21)

Having a Lagrangian for the field 𝑉 (𝑞) , we can
obtain a dynamic equation for this field such as the
Euler–Lagrange equation:

−𝑔𝑐𝑎 𝜕
2𝑉 (𝑞)

𝜕𝑞𝑐𝜕𝑞𝑎
−𝑀2

𝐺𝑉 (𝑞) +
9

2
(𝑉 (𝑞))

2
= 0. (22)

We introduce the function 𝑉 (𝑞) = 𝑉 (𝑋,y) (with
regard for (6)) in the form

𝑉 (𝑋,y) = 𝑉0 (y) + 𝑉1 (𝑋,y),

𝑉1 (𝑋,y) ≡ 𝑉 (𝑋,y)− 𝑉0 (y).
(23)

Then the function 𝑉0 (y) , will enter the complete La-
grangian as the potential energy of interaction of non-
relativistic constituent quarks. At the same time, it
will satisfy the equation

4Δy𝑉0 (y)−𝑀2
𝐺𝑉0 (y)−

9

2
(𝑉0 (y))

2
= 0. (24)

Analyzing the properties of the solutions of
Eq. (24), we can obtain information about the in-
teraction potential for quarks. Before analyzing these
properties, we will make this equation to be dimen-
sionless.

Let us introduce the dimensionless internal coordi-
nates r, dimensionless glueball mass 𝑚𝐺, and dimen-
sionless potential energy 𝑢 (r):

y = 𝑙r,𝑀𝐺 = 𝑙−1𝑚𝐺,

𝑉0 (y) = 𝑉0 (𝑙r) = 𝑙−2𝑢 (r).
(25)

Then, instead of Eq. (24), we obtain

4Δr𝑢 (r)−𝑚2
𝐺𝑢 (r)−

9

2
(𝑢 (r))

2
= 0. (26)

Here, Δr ≡
∑︀3

𝑏=1
𝜕2

𝜕(𝑟𝑏)2
is the Laplace operator in

dimensionless variables r.
We now consider the properties of a spherically

symmetric solution of Eq. (26). In order to transform
the variables r

(︀
𝑟1, 𝑟2, 𝑟3

)︀
, we pass to spherical coor-

dinates and make the standard replacement

𝑢 (𝑟) =
𝜒 (𝑟)

𝑟
. (27)

Finally,we obtain

𝑑2𝜒 (𝑟)

𝑑𝑟2
=

9

8

𝜒 (𝑟)
(︀
𝜒 (𝑟) +

(︀
𝑚2

𝐺/9
)︀
𝑟
)︀

𝑟
. (28)
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Fig. 1. Results of the numerical calculation of the dimension-
less inter-quark potential 𝑢 (𝑟) as a function of the dimension-
less distance 𝑟 for 𝐶 = 1.1, 𝑚2

𝐺/9 = 0.1

Fig. 2. Results of numerical calculations of the dimensionless
inter-quark potential 𝑢 (𝑟) as a function of the dimensionless
distance 𝑟 for 𝐶 = −15.5, 𝑚2

𝐺/9 = 8.7

In order to analyze the properties of solutions of
Eq. (28), we use an analogy with classical mechan-
ics. We will consider the independent variable 𝑟 as
an analog of the time. We will call the quantity 𝜒 a
“coordinate”. Let its first derivative 𝑑𝜒/𝑑𝑟 be a “ve-
locity,” and let the second derivative 𝑑2𝜒/𝑑𝑟2 be an
“acceleration”. The dependence of “acceleration” on
“coordinate”, which is determined by the right part
of Eq. (28), leads to the fact that, on the coordi-
nate plane (𝑟, 𝜒) , there are three domains [16]. In-
side each of them, the “acceleration” has a constant
sign. So, if the graph 𝜒 (𝑟) gets into one of these
three selected domains, then the following path of
this graph is determined by the corresponding sign of
the “acceleration”.

Let us establish the boundary conditions for the
function 𝜒 (𝑟). We can see from Eq. (27) that if we
want to obtain the finite potential energy 𝑢 (𝑟) for all
finite values 𝑟, we should fulfill the condition

𝜒 (𝑟)|𝑟=0 = 0. (29)

At that, the “initial velocity” should not be equal to
zero, and we can set it to a certain real number:

𝑑𝜒 (𝑟)

𝑑𝑟

⃒⃒⃒⃒
𝑟=0

= 𝐶, 𝐶 ∈ R. (30)

We now consider the properties of a solution of
Eq. (28) depending on the selection of the value 𝐶.

Let the solution satisfy the boundary conditions
(29) and (30) with 𝐶 > 0.

In Fig. 1, we see that, as 𝑟 increases, the inter-
quark potential 𝑢 (𝑟) tends to infinity. Consequent-
ly, the considered model describes the quark con-
finement.

If 𝐶 < 0, the potential 𝑢 (𝑟) tends to some negative
constant value. Thus, the eigenvalue of the squared
internal Hamiltonian will definitely be negative. Since
this eigenvalue is a coefficient at the squared field de-
scribing the bound state of two gauge bosons, this
corresponds to the mechanism of spontaneous sym-
metry breaking. In this case, the result of numerical
calculations of the 𝑢 (𝑟) dependence on 𝑟 is presented
in Fig. 2.

5. Conclusions

In the proposed model, the strong interaction be-
tween the quarks in hadrons can be caused by the
exchange of the bound states of gluons – the glue-
balls. The field 𝑉 (𝑋,y), according to glueballs, can
be represented as a sum of two terms,𝑉0 (y) and
𝑉1 (𝑋,y). The field 𝑉0 (y) is not quantized and de-
scribes the strong interaction of quarks and gluons
inside mesons and glueballs. This field satisfies the
dynamic equation which describes the confiment of
quarks and gluons under certain boundary conditions
and spontaneous symmetry breaking – under another
ones. When the bare mass of a glueball has a zero
value, all solutions of this equation, irrespective of the
boundary conditions, will lead to the confiment. The
field 𝑉1 (𝑋,y) can be quantized. Though we did not
consider the quantization procedure for multiparticle
fields in this work, it is not different from the proce-
dure described in work [17]. The operators obtained
after the quantization will describe the processes of
creation and annihilation of glueballs, as shown in
[17]. Accordingly, the considered meson field quanti-
zation leads to the operators of creation and annihila-
tion of the mesons. The meson interaction due to the
interaction of constituent quarks can be described as
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the exchange by scalar glueballs. This approach dif-
fers from the one-particle field approach, because, in
our model, the energy-momentum conservation law
holds true precisely for hadrons, and not for the con-
stituent particles.
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БАГАТОЧАСТИНКОВI ПОЛЯ
НА ПIДМНОЖИНI ОДНОЧАСНОСТI

Р е з ю м е

В роботi пропонується модель для опису процесiв розсiя-
ння гадронiв як зв’язаних станiв конституентних кваркiв.
На пiдмножинi одночасностi розглядається побудова дина-
мiчних рiвнянь для багаточастинкових полiв за допомогою
методу Лагранжа, аналогiчно тому, як це робиться для
“звичайних” одночастинкових полiв. Розглянуто калiбру-
вальнi поля, якi вiдновлюють локальну внутрiшню симе-
трiю на пiдмножинi одночасностi. Для багаточастинкових
полiв, що описують мезони як зв’язанi стани кварка i анти-
кварка i є двоiндексними тензорами вiдносно локальної ка-
лiбрувальної групи, запропоновано модель з двома рiзними
калiбрувальними полями, кожне з яких пов’язане зi своїм
iндексом. Такi поля перетворюються за однаковим законом
при локальному калiбрувальному перетвореннi i задоволь-
няють однаковим динамiчним рiвнянням, але на них накла-
даються рiзнi крайовi умови. При певних крайових умовах
цi рiвняння описують такi фiзичнi явища, як конфайнмент
i асимптотичну свободу кольорових об’єктiв, а при iнших
крайових умовах – механiзм спонтанного порушення симе-
трiї. Цi динамiчнi рiвняння дозволяють в межах однiєї й
тiєї ж моделi описати як утримання кваркiв всерединi га-
дронiв, так i їх взаємодiю в процесах розсiяння гадронiв,
шляхом обмiну зв’язаними станами глюонiв – глюболами.
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