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EFFECTS OF SUPERSTATISTICS
ON THE LOCATION OF THE EFFECTIVE
QCD CRITICAL END POINT

Effects of the partial thermalization during the chiral symmetry restoration at the finite tem-
perature and quark chemical potential are considered for the position of the critical end point
in an effective description of the QCD phase diagram. We find that these effects cause the
critical end point to be displaced toward larger values of the temperature and lower values of
the quark chemical potential, as compared to the case where the system can be regarded as
completely thermalized. These effects may be important for relativistic heavy ion collisions,
where the number of subsystems making up the whole interaction volume can be linked to the
finite number of participants in the reaction.
K e yw o r d s: superstatistics, QCD phase diagram, critical end point, relativistic heavy-ion
collisions.

The usual thermal description of a relativistic heavy-
ion collision assumes that the produced matter
reaches equilibrium, characterized by values of the
temperature 𝑇 and the baryon chemical potential 𝜇,
common within the whole interaction volume, after
some time from the beginning of the reaction. The
system evolution is subsequently described by the
time evolution of the temperature down to a ki-
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netic freeze-out, where particle spectra are estab-
lished. This implicitly assumes the validity of the
Gibbs–Boltzmann statistics and system’s adiabatic
evolution.

For expansion rates not too large compared to the
interaction rate, the adiabatic evolution can perhaps
be safely assumed. However, the Gibbs–Boltzmann
statistics can be applied only to systems in the ther-
modynamical limit, namely, long after the relaxation
time has elapsed and the randomization has been
achieved within system’s volume. In the case of a rela-
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tivistic heavy-ion collision, the reaction starts off from
nucleon-nucleon interactions. This means that the en-
tire reaction volume is made, at the beginning, of a
superposition of interacting pairs of nucleons. If the
thermalization is achieved, it seems natural to assume
that it starts off in each of the interacting nucleon pair
subsystems and later spreads to the entire volume. In
this scenario, the temperature and chemical potential
within each subsystem may not be the same for other
subsystems. Thus, a superposition of statistics, one
in the usual Gibbs–Boltzmann sense for particles in
each subsystem and another one, for the probabil-
ity to find particular values for 𝑇 and 𝜇 for different
subsystem, seems appropriate. This is described by
the so-called superstatistics scenario which describes
a nonextensive behavior that naturally arises due to
fluctuations in 𝑇 or 𝜇 over the system’s volume. This
feature could be of particular relevance, when study-
ing the position of the critical end point (CEP) in
the QCD phase diagram, where one resorts to mea-
suring ratios of fluctuations in conserved charges with
the expectation that the volume factor cancels out in
the ratio. If the thermalization is not complete, this
expectation cannot hold, and a more sophisticated
treatment is called for.

From the theoretical side, efforts to locate the CEP
employing several techniques [1–20] were recently car-
ried out. In all of these cases, the full thermaliza-
tion over the whole reaction volume has been as-
sumed. From the experimental side, the STAR BES-
I program has recently studied heavy-ion collisions
in the energy range 200 GeV >

√
𝑠𝑁𝑁 > 7.7 GeV

[21]. Future experiments [22–24] will continue to tho-
roughly explore the QCD phase diagram, using dif-
ferent system sizes and varying the temperature and
baryon density using different collision energies down
to about

√
𝑠𝑁𝑁 ≃ 5 GeV.

The superstatistics scenario has been explored in
the context of relativistic heavy-ion collisions in many
papers, e.g. Refs. [25–41] and references therein, with
a particular focus on the study of imprints of the su-
perstatistics on the particle production, using a par-
ticular version, the so-called Tsallis statistics [42]. Its
use in the context of the computation of the rapidity
distribution profile for the stopping in heavy ion colli-
sions has been recently questioned in Ref. [43]. It has
also been implemented to study generalized entropies
and generalized Newton’s law in Refs. [44–47]. The
superstatistics concept has been nicely described in

Refs. [48, 49]. In this work, we summarize the find-
ings of Ref. [50] describing the implications of the
superstatistics, when applied to temperature fluctua-
tions for the location of the CEP in the QCD phase
diagram.

For a system that has not yet reached a full equi-
librium and contains space-time fluctuations of an in-
tensive parameter 𝛽, such as the inverse temperature
or chemical potential, one can still think of dividing
the full volume into spatial subsystems, where 𝛽 is
approximately constant. Within each subsystem, one
can apply the ordinary Gibbs–Boltzmann statistics,
namely, one can use the ordinary density matrix giv-
ing rise to the Boltzmann factor 𝑒−𝛽�̂� , where �̂� cor-
responds to the Hamiltonian for the states in each
subsystem. The whole system can thus be described
in terms of a space-time average over the different val-
ues that 𝛽 could take for the different subsystems. In
this way, one obtains a superposition of two statistics,
one referring to the Boltzmann factor 𝑒−𝛽�̂� and the
other for 𝛽, hence, the name superstatistics.

To implement the scenario, one defines an averaged
Boltzmann factor

𝐵(�̂�) =

∞∫︁
0

𝑓(𝛽)𝑒−𝛽�̂�𝑑𝛽, (1)

where 𝑓(𝛽) is the probability distribution of 𝛽. The
partition function then becomes

𝑍 = Tr[𝐵(�̂�)] =

∞∫︁
0

𝐵(𝐸)𝑑𝐸, (2)

where the last equality holds for a suitably chosen set
of eigenstates of the Hamiltonian.

When all the subsystems can be described with the
same probability distribution [44], a possible choice to
distribute the random variable 𝛽 is the 𝜒2 distribu-
tion,

𝑓(𝛽) =
1

Γ(𝑁/2)

(︂
𝑁

2𝛽0

)︂𝑁/2

𝛽𝑁/2−1𝑒−𝑁𝛽/2𝛽0 , (3)

where Γ is the Gamma function, 𝑁 represents the
number of subsystems that make up the whole sys-
tem, and

𝛽0 ≡
∞∫︁
0

𝛽𝑓(𝛽)𝑑𝛽 = ⟨𝛽⟩ (4)
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is the average of the distribution. The 𝜒2 is the dis-
tribution that emerges for a random variable that is
made up of the sum of the squares of random vari-
ables 𝑋𝑖, each of which is distributed with a Gaus-
sian probability distribution with vanishing average
and unit variance. This means that if we take

𝛽 =

𝑁∑︁
𝑖=1

𝑋2
𝑖 , (5)

then 𝛽 is distributed according to Eq. (3). Moreover,
its variance is given by

⟨𝛽2⟩ − 𝛽2
0 =

2

𝑁
𝛽2
0 . (6)

Given that 𝛽 is a positive definite quantity, thinking
of it as being the sum of positive definite random
variables is an adequate model. Note, however, that
these variables do not necessarily correspond to the
inverse temperature in each of the subsystems. Ne-
vertheless, since the use of the 𝜒2 distribution allows
for an analytical treatment, we hereby take this as
the distribution to model the possible values of 𝛽.

To add superstatistics effects to the dynamics of
a given system, we first find the effective Boltzmann
factor. This is achieved by taking Eq. (3) and substi-
tuting it into Eq. (1). The integration over 𝛽 leads to

𝐵(�̂�) =

(︂
1 +

2

𝑁
𝛽0�̂�

)︂−𝑁
2

. (7)

Note that, in the limit as 𝑁 → ∞, Eq. (7) becomes
the ordinary Boltzmann factor. For large, but finite
𝑁 , Eq. (7) can be expanded as

𝐵(�̂�)=

[︃
1+

1

2

(︂
2

𝑁

)︂
𝛽2
0�̂�

2− 1

3

(︂
2

𝑁

)︂2
𝛽3
0�̂�

3+ ...

]︃
𝑒−𝛽0�̂� .

(8)

Working up to first order in 1/𝑁 , Eq. (8) can be writ-
ten as [48]

𝐵(�̂�) = 𝑒−𝛽�̂�

(︃
1 +

𝛽2𝐻2

𝑁
+ ...

)︃
=

=

[︃
1 +

𝛽2
0

𝑁

(︂
𝜕

𝜕𝛽0

)︂2
+ ...

]︃
𝑒−𝛽0�̂� . (9)

Therefore, the partition function to the first order in
1/𝑁 is given by

𝑍 =

[︃
1 +

𝛽2
0

𝑁

(︂
𝜕

𝜕𝛽0

)︂2
+ ...

]︃
𝑍0 (10)

with

𝑍0 = 𝑒−V𝛽0𝑉
eff
, (11)

where V and 𝑉 eff are the system’s volume and effec-
tive potential, respectively. After a bit of a straight-
forward algebra, we write the expression for the par-
tition function in terms of 𝑇0 = 1/𝛽0 as

𝑍 =

[︃
1 +

𝛽2
0

𝑁

(︂
𝜕

𝜕𝛽0

)︂2
+ ...

]︃
𝑍0 =

= 𝑍0

[︂
1 +

2𝑇0
𝑁𝑍0

(︂
𝜕𝑍0

𝜕𝑇0
+
𝑇0
2

𝜕2𝑍0

𝜕𝑇 2
0

)︂]︂
, (12)

and, therefore,

ln[𝑍] = ln[𝑍0] + ln

[︂
1 +

2𝑇0
𝑁𝑍0

(︂
𝜕𝑍0

𝜕𝑇0
+
𝑇0
2

𝜕2𝑍0

𝜕𝑇 2
0

)︂]︂
.

(13)

To explore the QCD phase diagram from the point
of view of chiral symmetry restoration, we use an ef-
fective model that accounts for the physics of sponta-
neous symmetry breaking at finite temperature and
density: the linear sigma model. In order to account
for the fermion degrees of freedom around the phase
transition, we also include quarks in this model and
work with the linear sigma model with quarks. The
Lagrangian in the case where only the two lightest
quark flavors are included is given by

ℒ =
1

2
(𝜕𝜇𝜎)

2 +
1

2
(𝜕𝜇𝜋)

2 +
𝑎2

2
(𝜎2 + 𝜋2)+

+
𝜆

4
(𝜎2 + 𝜋2)2 + 𝑖𝜓𝛾𝜇𝜕𝜇𝜓 − 𝑔𝜓(𝜎 + 𝑖𝛾5𝜏 𝜋)𝜓, (14)

where 𝜓 is an SU(2) isospin doublet, 𝜋 = (𝜋1, 𝜋2, 𝜋3)
is an isospin triplet, 𝜎 is an isospin singlet, 𝜆 is the
boson’s self-coupling, 𝑔 is the fermion-boson coupling,
and 𝑎2 > 0 is the squared mass parameter.

To allow for an spontaneous symmetry breaking,
we let the 𝜎 field develop a vacuum expectation
value 𝑣

𝜎 → 𝜎 + 𝑣, (15)

which serves as the order parameter to identify the
phase transitions. After this shift, the Lagrangian can
be rewritten as

ℒ =
1

2
(𝜕𝜇𝜎)

2 − 1

2

(︀
3𝜆𝑣2 − 𝑎2

)︀
𝜎2 +
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+
1

2
(𝜕𝜇𝜋)

2 − 1

2

(︀
𝜆𝑣2 − 𝑎2

)︀
𝜋2 +

𝑎2

2
𝑣2 +

− 𝜆

4
𝑣4 + 𝑖𝜓𝛾𝜇𝜕𝜇𝜓 − 𝑔𝑣𝜓𝜓 + ℒ𝑏

𝐼 + ℒ𝑓
𝐼 , (16)

where the sigma, three pions, and the quarks have
masses given by

𝑚2
𝜎 = 3𝜆𝑣2 − 𝑎2,

𝑚2
𝜋 = 𝜆𝑣2 − 𝑎2,

𝑚𝑓 = 𝑔𝑣,

(17)

respectively, and ℒ𝑏
𝐼 and ℒ𝑓

𝐼 are given by

ℒ𝑏
𝐼 = −𝜆

4
(𝜎2 + 𝜋2)2

ℒ𝑓
𝐼 = −𝑔𝜓(𝜎 + 𝑖𝛾5𝜏 𝜋)𝜓.

(18)

Equation (18) describes the interactions among the
𝜎, 𝜋, and 𝜓 fields after the symmetry breaking.

In order to analyze the chiral symmetry restora-
tion, we compute the effective potential at finite tem-
perature and density. In order to account for plasma
screening effects, we also work up to the contribu-
tion of ring diagrams. All matter terms are computed
in the high-temperature approximation. The effective
potential is given by [20]

𝑉 eff(𝑣, 𝑇0, 𝜇𝑞) = − (𝑎2 + 𝛿𝑎2)

2
𝑣2 +

(𝜆+ 𝛿𝜆)

4
𝑣4 +

+
∑︁
𝑏=𝜎,�̄�

{︃
− 𝑚4

𝑏

64𝜋2

[︃
ln

(︂
𝑎2

4𝜋𝑇 2
0

)︂
− 𝛾𝐸 +

1

2

]︃
−

− 𝜋2𝑇 4
0

90
+
𝑚2

𝑏𝑇
2
0

24
− (𝑚2

𝑏 +Π(𝑇0, 𝜇𝑞))
3/2𝑇0

12𝜋

}︃
+

+
∑︁

𝑓=𝑢,𝑑

{︃
𝑚4

𝑓

16𝜋2

[︃
ln

(︂
𝑎2

4𝜋𝑇 2
0

)︂
− 𝛾𝐸 +

1

2
−

−𝜓0

(︂
1

2
+

i𝜇𝑞

2𝜋𝑇0

)︂
− 𝜓0

(︂
1

2
− i𝜇𝑞

2𝜋𝑇0

)︂]︃
−

− 8𝑚2
𝑓𝑇

2
0

[︁
Li2(−𝑒𝜇𝑞/𝑇0) + Li2(−𝑒−𝜇𝑞/𝑇0)

]︁
+

+32𝑇 4
0

[︁
Li4(−𝑒𝜇𝑞/𝑇0) + Li4(−𝑒−𝜇𝑞/𝑇0)

]︁}︃
, (19)

where 𝜇𝑞 is the quark chemical potential, and 𝛿𝑎2

and 𝛿𝜆 represent the counterterms which ensure that

the one-loop vacuum corrections do not shift the po-
sition of the minimum or the vacuum mass of the
sigma. These counterterms are given by

𝛿𝑎2 = −𝑎2 (8𝑔
4 − 12𝜆2 − 3𝜆2 ln[2])

32𝜋𝜆
,

𝛿𝜆 =
(16 + 8 ln[𝑔2/𝜆])𝑔4 − (18 + 9 ln[2])𝜆2

64𝜋2
.

(20)

The self-energy at finite temperature and quark
chemical potential, Π(𝑇0, 𝜇𝑞), includes the contribu-
tion from both bosons and fermions. In the high tem-
perature approximation, it is given by [20]

Π(𝑇0, 𝜇𝑞) = −𝑁𝑓𝑁𝑐𝑔
2𝑇

2
0

𝜋2

[︁
Li2(−𝑒𝜇𝑞/𝑇0)+

+Li2(−𝑒−𝜇𝑞/𝑇0)
]︁
+
𝜆𝑇 2

0

2
. (21)

To implement superstatistics corrections, we substi-
tute Eq. (19) into Eq. (11). The partition function
is obtained from Eq. (12) and the effective potential
including superstatistics effects is obtained from the
logarithm of this partition function,

𝑉 eff
sup = − 1

V𝛽
ln[𝑍]. (22)

As a consequence, the effective potential of Eq. (22)
has four free parameters. Three of them come from
the original model, namely, 𝜆, 𝑔 and 𝑎. The remain-
ing one corresponds to the superstatistics correction,
𝑁 . In the absence of superstatistics, the effective po-
tential in Eq. (19) allows for the second- and first-
order phase transitions, depending on the values of
𝜆, 𝑔 and 𝑎, as well as of 𝑇0 and 𝜇𝑞. For given val-
ues of 𝜆, 𝑔, and 𝑎, we now proceed to analyze the
phase structure that emerges, when varying 𝑁 , pay-
ing particular attention to the displacement of the
CEP location in the 𝑇0, 𝜇𝑞 plane.

The figure shows the effective QCD phase diagram
calculated with 𝑎 = 133 MeV, 𝑔 = 0.51, and 𝜆 =0.36
for different values of the number of subsystems mak-
ing up the whole system, 𝑁 . For the different curves,
the star shows the position of the CEP. Note that
this position moves to larger values of 𝑇 and lower
values of 𝜇𝑞, with respect to the CEP position for
𝑁 = ∞, that is, without superstatistics effects, as 𝑁
decreases. Note also that, for these findings, we have
not considered fluctuations in the chemical poten-
tial. Those have been included to study the CEP po-
sition in the Nambu–Jona-Lasinio model in Ref. [53].
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Our findings show that fermions become more rel-
evant for lower values of the baryon chemical poten-
tial, than they do in the case of the homogeneous sys-
tem. To picture this result, as above, let (𝜇0

𝑐 , 𝑇
0
𝑐 ) and

(𝜇𝑐, 𝑇𝑐) be the critical values for the baryon chemical
potential and temperature at the onset of first-order
phase transitions for the homogeneous and fluctuat-
ing systems, respectively. The parameter that deter-
mines, when fermions become relevant, is the combi-
nation 𝜇0

𝑐/𝑇
0
𝑐 . Since our calculation for a single-boson

degrees of freedom shows that the critical tempera-
ture decreases with decreasing the number of subsys-
tems (see Ref. [50]), this means that, for the boson-
fermion fluctuating system, fermions become relevant
for 𝜇𝑐/𝑇𝑐 ≃ 𝜇0

𝑐/𝑇
0
𝑐 and, thus, for 𝜇𝑐 < 𝜇0

𝑐 .
To apply these considerations to the context of rel-

ativistic heavy-ion collisions, we recall that temper-
ature fluctuations are related to the system’s heat
capacity by

(1− 𝜉)

𝐶𝑣
=

⟨(𝑇 − 𝑇0)
2⟩

𝑇 2
0

, (23)

where the factor (1 − 𝜉) accounts for deviations [54]
from the Gaussian [55] distribution for the random
variable 𝑇 . The right-hand side of Eq. (23) can be
written in terms of fluctuations in 𝛽 as

⟨(𝑇 − 𝑇0)
2⟩

𝑇 2
0

⟨𝑇 2⟩ − 𝑇 2
0

𝑇 2
0

=
𝛽2
0 − ⟨𝛽2⟩
⟨𝛽2⟩

=

=

(︁
𝛽2
0

⟨𝛽2⟩

)︁2
⟨𝛽2⟩ − 𝛽2

0

𝛽2
0

. (24)

Note that, according to Eq. (6),(︃
𝛽2
0

⟨𝛽2⟩

)︃2
=

(︂
1

1 + 2/𝑁

)︂2
≃ 1− 4/𝑁. (25)

Therefore, for 𝑁 finite, but large,

⟨(𝑇 − 𝑇0)
2⟩

𝑇 2
0

≃ ⟨𝛽2⟩ − 𝛽2
0

𝛽2
0

. (26)

Using Eqs. (6) and (26), we obtain

⟨(𝑇 − 𝑇0)
2⟩

𝑇 2
0

=
2

𝑁
. (27)

This means that the heat capacity is related to the
number of subsystems by
(1− 𝜉)

𝐶𝑣
=

2

𝑁
. (28)

Effective QCD phase diagram calculated with 𝑎 = 133 MeV,
𝑔 = 0.51, and 𝜆 = 0.36 for different values of 𝑁 . The star shows
the position of the CEP which moves toward larger values of
𝑇 and lower values of 𝜇𝑞 , as 𝑁 decreases

To introduce the specific heat 𝑐𝑣 for a relativistic
heavy-ion collision, it is natural to divide 𝐶𝑣 by the
number of participants 𝑁𝑝 in the reaction. Therefore,
Eq. (28) can be written as

2

𝑁
=

(1− 𝜉)

𝑁𝑝𝑐𝑣
. (29)

In Ref. [54], 𝜉 is estimated as 𝜉 = 𝑁𝑝/𝐴, where 𝐴
is the smallest mass number of the colliding nuclei.
Equation (29) provides the link between the num-
ber of subsystems in a general superstatistics frame-
work and a relativistic heavy-ion collision. It has been
shown [56] that, at least for Gaussian fluctuations, 𝑐𝑣
is a function of the collision energy. Therefore, in or-
der to make a thorough exploration of the phase dia-
gram, as the collision energy changes, we need to ac-
count for this dependence, as well as to work with val-
ues of the model parameters 𝜆, 𝑔, and 𝑎, appropriate
to the description of the QCD phase transition. Work
along these lines is currently underway and will be re-
ported elsewhere.
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ВПЛИВ СУПЕРСТАТИСТИКИ
НА ПОЛОЖЕННЯ КРИТИЧНОЇ КIНЦЕВОЇ
ТОЧКИ В ЕФЕКТИВНIЙ КХД

Р е з ю м е

В рамках ефективної моделi фазової дiаграми КХД розгля-
дається вплив часткової термалiзацiї пiд час вiдновлення
кiральної симетрiї при скiнченних температурi i хiмiчному
потенцiалi кваркiв на положення критичної кiнцевої точки.
Ми показали, що цi ефекти спричиняють змiщення крити-
чної точки в бiк бiльших температур та менших значень
хiмiчного потенцiалу кваркiв по вiдношенню до повнiстю
термалiзованої системи. Цi ефекти можуть бути важливи-
ми для зiткнень релятивiстських важких iонiв, де число
пiдсистем, що заповнюють весь об’єм, можна пов’язати зi
скiнченним числом частинок в реакцiї.
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