УДК 611.616.8-089 © Коллектив авторов, 2010

ОСОБЕННОСТИ МИНЕРАЛИЗАЦИИ КОСТЕЙ СКЕЛЕТА БЕЛЫХ КРЫС РАЗЛИЧНОГО ВОЗРАСТА ПОСЛЕ ВОЗДЕЙСТВИЯ УСЛОВИЙ ЭКСТРЕ-МАЛЬНОЙ ХРОНИЧЕСКОЙ ГИПЕРТЕРМИИ

Лузин В.И., Смоленчук С.М., Грищук М.Г., Бахилов К.В., Корявый Н.В.

Луганский государственный медицинский университет

Исследование проведено на 450 белых беспородных крысах-самцах трех возрастных групп: неполовозрелых (исходной массой 45-50 г), репродуктивного возраста (150-160 г) и периода старческих изменений (300-320 г). Во время эксперимента крысы содержались в стандартных условиях вивария в соответствии с правилами, принятыми Европейской конвенцией по защите позвоночных животных, используемых для экспериментальных и научных целей (Страсбург, 1986 г.). Животные были распределены на 6 групп: 1 (К) – группа интактных животных (группа сравнения). 2-5 – группы животных, которые на протяжении 60 суток ежедневно по 5 часов находились под влиянием повышенной температуры в специальной термической камере. 2 (Э) группа находились под влиянием температуры 44-45°С (режим экстремальной хронической гипертермии (ЭХГ)). 3 (Э+Ф) группа животных, подвергались сочетанному воздействию: режим ЭХГ на фоне динамической физической нагрузки (плавание в бассейне 15-20 минут); 4 (Э+Б) группе животных на фоне воздействия режима ЭХГ вводился предполагаемый корректор – кальцийсодержащий препарат отечественного производства «Биомин». «Биомин» применялся в терапевтической дозировке внутрижелудочно 1 раз в сутки за 1 час до помещения животных в условия гипертермии; 5 (КБ) группе животных вводился «Биомин» без последующего помещения в условия гипертермии. Во время проведения экспериментальных воздействий все животные имели свободный доступ к воде.

Животных выводили из эксперимента в соответствии с на 1, 7, 15, 30 и 60-е сутки после окончания 60-тидневного курса воздействий методом декапитации под эфирным наркозом. Для исследования выделяли и скелетировали большеберцовую и тазовую

кости, а также нижнюю челюсть (НЧ) и 3-й поясничный позвонок и исследовали их химический состав весовым методом. Полученные числовые значения обрабатывали методами вариационной статистики с использованием программы «Statistica-5.11».

Воздействие условий экстремальной хронической гипертермии в течение 60-ти дней сопровождалось дисбалансом химического состава всех исследуемых костей. Это проявлялось в увеличении содержания в них воды, а также уменьшении процентной доли органических и минеральных веществ. Для минерализованных тканей зубов НЧ дисбаланс химического состава проявлялся в первую очередь их деминерализацией. Максимальные отклонения для костного вещества были выявлены у неполовозрелых крыс, минимальные - у крыс старческого возраста. Для минерализованных тканей зубов минимальные отклонения химического состава регистрировались у половозрелых животных. Режим воздействия Э+Ф характеризовался усугублением дисбаланса химического состава всех исследуемых костей. В том случае, когда на фоне ЭХГ применялся «Биомин» (Э+Б), остеонегативное влияние условий эксперимента сглаживалось.

Период реадаптации после 60-ти дневного воздействия ЭХГ сопровождался постепенным сглаживанием отклонений в составе исследуемых костей. В наибольшей степени это проявлялось у неполовозрелых животных, у крыс периода старческих изменений восстановление состава костей практически не наблюдалось. После воздействия условий Э+Ф восстановление исследуемых показателей в скелете проявлялось в меньшей степени, чем при изолированном воздействии ЭХГ. После применения «Биомина» химический состав исследуемых костей восстанавливался быстрее.

УДК 591.441:547.533

© Лузин В.И., Шутов Е.Ю., Луговсков Д.А., Скоробогатов А.Н., 2010

РОСТ КОСТЕЙ СКЕЛЕТА ПРИ ВОЗДЕЙСТВИИ НА ОРГАНИЗМ ПАРОВ ТОЛУОЛА

Лузин В.И., Шутов Е.Ю., Луговсков Д.А., Скоробогатов А.Н.

Луганский государственный медицинский университет

Цель исследования: изучить рост и формообразование костей скелета после 60-дневного воздействия повторных динамических ингаляционных затравок толуолом — продуктом сгорания эпоксидных смол, при одновременном введении тиотриазолина как корректора.

Материал и методы исследования. Эксперимент был проведен на 120 белых беспородных половозрелых крысах в возрасте 10 недель исходной массой 120-150 г, распределенных на 4 группы. 1-я группа

– интактные животные (контроль), 2-я группа – крысы, которые ежедневно на протяжении 60 дней подвергались ингаляционной затравке толуолом в специально смонтированной камере в течение 4 часов, 3-я группа – крысы, которым вводился тиотразолин и 4-я група - крысы, которые наряду с 60-дневной затравкой толуолом отриполучали тиотриазолин. Животных выводили из эксперимента через 1, 7, 15, 30 и 60 дней после завершения затравки. Выделяли и очищали от мягких тканей большеберцовые, плечевые и тазовые

кости, а также верхнюю и нижнюю челюсти и третий поясничный позвонок, после чего проводили их остеометрию штангенциркулем с точностью до 0,05 мм.

Результаты. У интактных животных наблюдался непрывный и достаточно интенсивный прирост размеров всех исследуемых костей: продольные размеры увеличились за период наблюдения на 1,95-2,73%, увеличивались и поперечные размеры. После 60-дневного воздествия паров толуола (2-я группа) было выявлено отставание темпов роста всех исследуемых костей — они были на 2,13-5,37% меньше аналогичных показателей интактных животных. В условиях введения тиотриазолина (3-я группа) достоверные отклонения исследуемых параметров не были выявлены. Сочетание обоих факторов (паров толуола и триазолина, 4-я группа) в течение 60 дней в некоторой степени сглаживало ростоугнетающее влияние паров толуола.

Период реадаптации после 60-ти дневного воздействия паров толуола сопровождался нивелированием ростоугнетающего влияния условий эксперимента. К 60-му дню после окончания затравки толуолом размеры исследуемых костей уже не отличались достоверно от контрольных. В том случае, когда на фоне ингаляции паров толуола применялся тиотриазолин, восстановление ростовых процессов в скелете наступало уже с 30 дня реадаптации.

Выводы. Таким образом, ингаляция парами толуола в течение 60 дней оказывает ростоугнетающее влияние на процессы роста костей скелета у крыс репродуктивного возраста, которое в период реадаптации сглаживается лишь в поздние сроки эксперимента. Введение тиотриазолина на фоне затравки толуолом оказывает корригирующее влияние на исследуемые процесы.

УДК 611.134.9 © Коллектив авторов, 2010

РОСТ КОСТЕЙ СКЕЛЕТА ПРИ ИМПЛАНТАЦИИ В БОЛЬШЕБЕРЦОВЫЕ КОСТИ БИОГЕННОГО ГИДРОКСИЛАПАТИТА, НАСЫЩЕННОГО РАЗ-ЛИЧНЫМИ МЕТАЛЛАМИ

Лузин В.И., Лубенец А.А., Астраханцев Д.А., Верескун Р.В., Петросянц С.В., Новоскольцева И.Г., Стрий В.В., Рудой Б.С., Соляная М.В., Морозов В.Н., Голубков П.Э.

Луганский государственный медицинский университет

В эксперименте на 630 белых крысах-самцах репродуктивного возраста исходной массой 135-145 г исследовали влияние имплантации в проксимальный отдел диафиза большеберцовых костей биогенного гидроксилапатита, насыщенного марганцем, цинком, медью и железом в различных концентрациях на минерализацию и ростовые процессы скелета. Животные были разделены на следующие группы: 1-я группа – интактные животные, 2-я – крысы, которым на границе проксимального метафиза и дифиза большеберцовых костей стоматологическим бором во фронтальном направлении наносили сквозной дырчатый дефект диаметром 2,2 мм, при котором сохранялись и целостность кости и функциональная нагрузка на конечность, 3-я – животные, которым в область дефекта имплантировали блок гидроксилапатитного материала ОК-015 без насыщения солями металлов. 4-6-ю группы составили крысы, которым имплантировали ОК-015, насыщенный марганцем в концентрации 0,10%, 0,25% и 0,50%, 7-9-ю – ОК-015, насыщенный медью в концентрации 0,10%, 0,25% и 0,50%, 10-12-ю - ОК-015, насыщенный цинком в концентрации 0,20%, 0,50% и 1,00%, 13-15-ю – железом в концентрации 0,05%, 0,155 и 0,50%. По истечении 7, 15, 30, 60, 90 и 180 дней животных выводили из эксперимента под эфирным наркозом, выделыли и очищали от мягких тканей плечевые, бедренные, большеберцовые, теменные и тазовые кости, а также 3-й поясничный и 10-й грудной позвонки и нижняя и верхняя челюсти. Остеометрию выделенных костей проводили штангенциркулем с точностью до 0,05 мм по модифицированной методике (В.И.Лузин, 2010).

Установили, что в условиях эксперимента ростовые процессы костей скелета изменяются неодинаково для заинтересованного костного органа (большеберцовой кости) и остальных исследуемых костей. Во 2-й группе (незаполненный дефект) темпы роста большеберцовых костей (как продольного, так и аппозиционного) в период до 30го дня несколько ускорялись, что можно объяснить тем, что при сохранении функциональной нагрузки на конечность в области дефекта активизируется кровообращение и выделяются биологически активные вещества, которые стимулируют функциональную активность эпиффизарных хрящей и надкостницы. Для остальных костей было выявлено замедление темпов роста, сохраняющееся и после 30 дня эксперимента.

Имплантация ненасыщенного ОК-015 сопровождалась аналогичными изменениями, которые манифестировали ранее, но и нивелировались быстрее. Вероятно, это связано с тем, что в области дефекта присутствует ОК-015, из которого при резорбции высвобождаются ионы кальция и фосфора. В результате сглаживается мобилизация кальция из депо (костей скелета). Насыщение имплантата вышеперечисленными микроэлементами сопровождалось изменениями активности роста исследуемых костей, выраженность и направленность которых зависела от вида и концентрации химического элемента в имплантате. Следует отметить, что в условиях нашего эксперимента ростовые процессы в скелете изменялись сходно, с описанными в литературе для гипермироэлементозов с традиционными путями поступления в организм (с водой и пищей).