

Білощицький Андрій Олександрович Доктор технічних наук за спеціальністю 05.13.22 «Управління проектами і програмами».
Професор по кафедрі інформаційних технологій.
Завідувач кафедри інформаційних технологій Київського національного університету будівництва і архітектури (м. Київ)

Тема дисертації: Методологія проектно-векторного управління освітніми середовищами

Робота виконана на кафедрі основ інформатики Київського національного університету будівництва і архітектури Міністерства освіти і науки, молоді та спорту України

Науковий консультант доктор технічних наук, професор *Лізунов Петро Петрович*, Київський національний університет будівництва і архітектури, Міністерства освіти і науки, молоді та спорт України, м. Київ, проректор з наукової роботи, завідувач кафедри основ інформатики

Офіційні опоненти:

доктор технічних наук, професор, академік Національної академії педагогічних наук України **Биков Валерій Юхимович**, Інститут інформаційних технологій і засобів навчання Національної академії педагогічних наук України, м. Київ, директор

доктор технічних наук, професор **Чернов Сергій Костянтинович**, Національний університет кораблебудування ім. адмірала Макарова, Міністерства освіти і науки, молоді та спорт України, м. Миколаїв, завідувач кафедри управління проектами

доктор технічних наук, доцент **Бушуєва Наталія Сергіївна**, Київський національний університет будівництва і архітектури, Міністерства освіти і науки, молоді та спорт України, м. Київ, професор кафедри управління проектами

Захист відбудеться «17» січня 2013 р. о 13 00 годині на засіданні спеціалізованої вченої ради Д 26.056.01 при Київському національному університеті будівництва і архітектури за адресою:

03680, м. Київ-37, просп. Повітрофлотський, 31, ауд. 466.

Дисертаційна робота присвячена розв'язку важливої науково-технічної проблеми підвищення ефективності і якості управління навчальними закладами на основі розробки і використання орієнтованої на освітні середовища методології управління проектами.

Обґрунтоване застосування векторної парадигми до побудови методології управління проектами в освітніх середовищах. Класифіковано проекти освітніх середовищ, що дозволило виділити та формалізувати інформаційно-продуктові проекти, як основи в діяльності навчальних закладів. Створено понятійний базис методології проектно-векторного управління освітніми середовищами. Формалізовано виміри ПВП, в яких знайшли відображення цінності освітніх

середовищ, і які характеризують розвиток проектів через рух об'єктів і суб'єктів цих проектів в проектно-векторному просторі.

Розроблено математичну модель управління проектами освітніх середовищ, оригінальність якої забезпечується представленням сутностей проектів, продуктів, інструментів і суб'єктів освітніх середовищ, як об'єктів проектновекторного простору які рухаються від початкової точки (зародження проекту) до його завершення.

Розроблено нові методи управління інформаційно-продуктовими проектами через визначення оптимальної траєкторії руху об'єктів освітніх середовищ у проектно-векторному просторі.

Створено науково-методичні основи та розроблено структуру методології проектно-векторного управління освітніми середовищами. Запропоновано компоненти суб'єктивно-інформаційної і технічної складових методології проектно-векторного vправління . освітніми середовищами. Розроблено структуру системи управління проектами освітніх середовиш.

Робота впроваджена в освітніх закладах України.

Ключові слова: методологія проектно-векторного управління, управління проектами в освіті, освітнє середовище, управління освітніми середовищами.

УДК 005:37

ORCID: orcid.org/0000-0001-9548-1959

A.A. Белощицкий (Biloshchytskyi Andrii)

МЕТОДЫ УПРАВЛЕНИЯ ИНФОРМАЦИОННО-ПРОДУКТОВЫМИ ПРОЕКТАМИ В ПРОЕКТНО-ВЕКТОРНОМ ПРОСТРАНСТВЕ

Предложен метод определения наиболее вероятных значений неизвестных координат объектов в расширяющемся проектно-векторном пространстве по координатам заданных измерений, а также предложен ориентированный на специфику образовательных сред метод расчета рациональной траектории движения в проектно-векторном пространстве. Метод базируется на представлении целей проекта конечными точками движения и позволяет определить рациональную траекторию движения объектов и субъектов проектов в проектно-векторном пространстве. Рис.3, ист. 17.

Ключевые слова: управление проектами, метод целедостижения, проекты образовательных сред, проектно-векторное пространство

Актуальность темы. Актуальность темы научного исследования вытекает из нерешенных проблем, которые стоят перед Украиной на пути ее интеграции в мировую экономику, что невозможно осуществить без специалистов с высоким уровнем квалификации. Необходимые для этого изменения в системе образования Украины заключаются в таких организационных, технологических, функциональных усовершенствованиях, которые позволят выйти на уровень ведущих европейских учебных заведений. Создание в образовательных средах современных систем управления требует существенного развития теоретических основ и методов управления проектами. Для обеспечения эффективности процессов подготовки специалистов необходимо осуществить структурную перестройку всего механизма управленческой деятельности в образовательных средах. Такая перестройка связана с необходимостью перехода на использование методологии управления

проектами при организации управленческой деятельности во всех заведениях, занятых подготовкой специалистов или задействованных в такой подготовке.

Данная статья рассматривает методы улучшения образования в условиях Украины. Для этого предлагается в целом следующая логическая схема исследования (рис. 1). Развитие образования невозможно без совершенствования образовательных сред. Совершенствование образовательных сред невозможно без повышения эффективности управления образовательными средами по всей вертикали образовательных сред, начиная с Министерства образования и науки Украины и всех ведомств, связанных с образованием, и законодательных органов, имеющих отношение к образованию и заканчивая вузами, техникумами и школами. Повышение эффективности управления образовательными средами невозможно без создания новых методологий управления проектами образовательных сред. Одно из ключевых позиций данной методологии занимает определение траектории движения объектов (развитие) в проектно-векторном пространстве с наименьшим сопротивлением.

Рис.1. Схема исследования

Анализ основных исследований публикаций. Исходя ИЗ сформулированной выше проблемы, авторами выполнен анализ работ, посвященных формальному отслеживанию уровня достижения целей по ходу реализации проектов в образовательной сфере. Достаточное количество работ определению как целей развития образовательной посвящено государства в целом, так и определению целей отдельных направлений деятельности [1-15]. Много работ посвящено анализу проектно-ориентированной деятельности в высших учебных заведениях [3-5]. Из их анализа следует, что повышение эффективности управления образовательной сферой невозможно без применения инструментов проектного менеджмента. А для этого необходима образовательную разработка ориентированных на cdepy (точнее. характер информационно-продуктовый проектов В этой ccpepe) научнометодических основ методологии управления образовательными проектами [16]. Этот вопрос не нашел достаточного отражения в современных исследованиях, опубликованных в научной и технической литературе, хотя его актуальность подтверждается потребностью организаций образовательной сферы высокоэффективных инструментах управления проектами.

Нерешенная ранее часть проблемы. Несмотря на полученные научные и практические результаты в сфере управления проектами, вопрос создания

ориентированных на образовательные среды моделей и методов целедостижения не нашел достаточного отражения в современных публикациях. Наличие нерешенной части проблемы в этой сфере выдвигает объективную потребность в разработке методов целедостижения проектов образовательных сред.

Цель статьи. Целью статьи является разработка ориентированного на образовательные среды метода выработки рациональной траектории движения по достижению целей проектов на любой стадии их реализации через представление этих целей как конечных точек движения заинтересованных сторон проекта в проектно-векторном пространстве.

Изложение основного Концептуальной материала. основой разрабатываемого метода определения оптимальной (или рациональной) траектории движения к достижению целей является представление о соответствии развития проектов образовательных сред движению их сущностей в некотором абстрактном расширяющемся пространстве [17]. Такое пространство получило название проектно-векторного (ПВП) [16]. В таком представлении реализация проекта – это движение в ПВП, в котором можно выделить измерения стоимость, качество, организация, время, информация по проекту и т.д. Тогда цель проекта представима некоторыми достижимыми для субъектов и объектов проектов координатами конечных точек движения. И необходимо разработать метод определения оптимальной (или рациональной) траектории движения к этим точкам.

Проблематика разработки этого метода связана с определением такой траектории движения, которая будет минимально затратная по времени и финансовым ресурсам. К сожалению, это не прямая линия, связывающая исходную и конечные точки движения. Поскольку на движущийся объект/субъект воздействуют другие объекты/субъекты, и это воздействие или способствует, или препятствует движению. Поэтому траектория должна проходить через те области ПВП, которые способствуют движению к целевым точкам, и обходить те, в которых есть препятствующие объекты (рис. 2). Перебор всех вариантов движения огромен и неподвластен даже современным компьютерам, поэтому найти оптимальное решение будет невозможно. Заменим его поиском рационального решения. Воспользуемся для этого методом Монте-Карло. При этом распределение вероятностей при выборе к смещению объектов и субъектов ПВП будем рассчитывать через приоритет субъектов и влияние объектов на смещение этих субъектов.

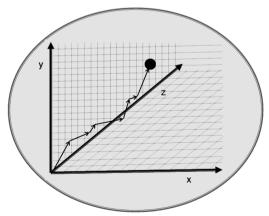


Рис. 2. Нахождение оптимальной траектории движения

Конечные (целевые) точки движения субъектов ПВП можно представить следующим образом:

$$\begin{split} &\forall \Pi_{k}, C_{j}: A_{k}^{(j)} \left(\overline{T_{k}^{\partial up}} \right) = \\ &= \left[x_{k1}^{(j)} \left(\overline{T_{k}^{\partial up}} \right), x_{k2}^{(j)} \left(\overline{T_{k}^{\partial up}} \right), \dots, x_{kp}^{(j)} \left(\overline{T_{k}^{\partial up}} \right) \right], \end{split}$$

где $x_{kl}^{(j)}(\overline{T_k^{\partial up}}),...,x_{kp}^{(j)}(\overline{T_k^{\partial up}})$ – конечные координаты субъекта ПВП C_j^k проекта Π_k в планируемый момент завершения проекта $\overline{T_k^{\partial up}}$.

В методе расчета траектории движения дополнительной информацией является взаимосвязь объектов и субъектов ПВП в проектно-векторном пространстве. Эта взаимосвязь (точнее взаимодействие) определяет, сколько энергии (денег) надо дополнительно истратить, чтобы некоторый субъект сместился на одну единицу расстояния в проектно-векторном пространстве с учетом воздействия других объектов и субъектов. В рамках методологии управления проектами это определяет что надо сделать в проекте, чтобы удовлетворить заинтересованные стороны. И, соответственно, сколько и каких ресурсов надо использовать для достижения этого. Иными словами, движение заинтересованных сторон в проектновекторном пространстве должно быть увязано с движением разнообразных объектов таким образом, чтобы существующие в ПВП взаимодействия способствовали достижению целей (движению к конечным точкам), а не препятствовали ему.

Для решения этой задачи зададимся структурой взаимодействий объектов и субъектов в проектно-векторном пространстве. Пусть $F\left[Q_j\left(\mathbf{A}_k^{(j)}(t)\right)/Q_i\left(\mathbf{A}_k^{(j)}(t)\right)\right]$ – воздействие Q_i объекта/субъекта с координатами $\mathbf{A}_k^{(i)}(t)$ на объекта / субъекта Q_j с координатами $\mathbf{A}_k^{(j)}(t)$. Это воздействие приводит либо к сопротивлению движению объекта/субъекта ПВП, либо к содействию этому движению. Введем ряд определений

Определение 1.

В воздействии $F[Q_j(\mathbf{A}_k^{(j)}(t))/Q_i(\mathbf{A}_k^{(i)}(t))]$ объект Q_i будем называть источником воздействия.

Определение 2.

В воздействии $F[Q_j(\mathbf{A}_{\mathbf{k}}^{(j)}(t))/Q_i(\mathbf{A}_{\mathbf{k}}^{(i)}(t))]$ объект Q_j будем называть результатом приемником воздействия.

Определение 3.

Коэффициент взаимодействия объектов / субъектов ПВП $\varphi \left[Q_j\left(\mathbf{A}_k^{(j)}(t)\right)/Q_i\left(\mathbf{A}_k^{(j)}(t)\right)\right]$ отражает необходимую величину энергетических расходов (затрат) для смещения приемника с координатами воздействия на единицу расстояния, если источник воздействия имеет следующие координаты в проектно-векторном пространстве:

$$\varphi \left[Q_{j} \left(A_{k}^{(j)}(t) \right) / Q_{i} \left(A_{k}^{i}(t) \right) \right] =$$

$$= f \left(F \left[Q_{j} \left(A_{k}^{j}(t) \right) / Q_{i} \left(A_{k}^{i}(t) \right) \right] \right),$$

объектов/субъектов ПВП, отражающий возможность движения объекта/ субъекта ПВП Q_j проекта Π_k в направлении N_i (показывает величину затрат, необходимых для преодоления единицы расстояния по данному направлению в условиях воздействия объекта Q_i).

Коэффициент взаимодействия объектов может принимать разные значения в зависимости от координат воздействующего объекта.

Следствие 1. Величина воздействия на объект/субъект Q_j с координатами $A_k^{(j)}(t)$ зависит от координат $A_k^{(j)}(t)$ источника воздействия Q_i .

Из этого следствия можно сделать один очень важный вывод. Для того, чтобы воздействие на субъектов (именно на субъектов, как на сущность ПВП, по которым оценивается результативность проекта) было таким, что содействует их движению к целевой точке, в ПВП необходимо «выбрать» выгодные координаты для источников воздействия. То-есть, если «затраты» на приведение к новым координатам источника воздействия меньше «затрат» на приведение к целевым координатам приемника воздействия, то вначале необходимо «привести» в движение источник воздействия, перевести его в новые координаты, а потом уже переводить в новые координаты приемник воздействия.

НАПРИМЕР. Планируя некий вузовский проект, можем разработать календарно-сетевой график и его расчет с помощью Excel и вести потом вручную все функции по мониторингу этого плана. Или можем сначала закупить определенный продукт (например, MS Project) и делать все автоматически. В первом случаи мы не тратим ни какой энергии, у нас нет сопротивления (нет необходимости нечего покупать), мы просто движемся в определенном направлении. Но с другой стороны сопротивление в направлении плана контроля будет намного медленнее, чем если бы у нас был некий продукт. Покупая некий продукт, мы попадаем в зону значительного сопротивления, потому что мы не движемся к цели. Но с другой стороны, купив продукт (отклонившись от траектории движения), мы потом более быстрыми темпами начнем двигаться к цели, так как не придется многие вещи переделывать.

Поэтому, если

$$\varphi \left[Q_{j} \left(x_{kp}^{(j)}(\Delta t) \right) / Q_{i} \left(x_{kp}^{(i)}(\Delta t) \right) \right] > \gamma_{p}^{jk} \cdot \left(\Delta x_{kp}^{(i)}(\Delta t) \right)^{3} +$$

$$+ \varphi \left[Q_{j} \left(x_{kp}^{(j)}(\Delta t) \right) / Q_{i} \left(x_{kp}^{(i)}(\Delta t) + \Delta x_{kp}^{(i)}(\Delta t) \right) \right],$$

то необходимо вначале обеспечить движение объекта Q_i , что упростит получение целевого значения субъектом Q_i .

Таким образом в основе метода расчета оптимальной траектории движения будет последовательный пересчет взаимодействия субъектов и объектов ПВП между собой, выбор оптимальных направлений смещения для этих объектов за некоторый интервал (квант) времени, их смещение и снова пересчет взаимодействий.

Исходными данными для определения оптимальной траектории движения будут:

– множество отношений к проекту (субъектов ПВП) у заинтересованных сторон, движение которых в проектно-векторном пространстве соответствует степени удовлетворения от проекта, продукта или инструмента;

- множество объектов, размещение которых способствует или не способствует повышению удовлетворенности субъектов ПВП от проекта;
- направление непринужденного сопротивления движению субъектов и объектов ПВП в проектно-векторном пространстве, порождаемое зависимостью от других объектов этого пространства;
- энергетическая зависимость перемещения субъектов и объектов ПВП, определяющая сколько надо ресурсов для перемещения объекта или субъекта в проектно-векторном пространстве на некоторое расстояние.

Задачей метода является нахождения временного ряда координат для каждого из объектов и субъектов ПВП:

$$\begin{aligned} &t_{1}:x_{k1}^{(j)}(t_{1}),...,x_{kp}^{(j)}(t_{1});\\ &.....\\ &t_{i}:x_{k1}^{(j)}(t_{i}),...,x_{kp}^{(j)}(t_{i});\\ &....\\ &t_{fin}:x_{k1}^{(j)}(t_{fin}),...,x_{kp}^{(j)}(t_{fin}), \end{aligned}$$

где t_1 ,..., t_i ,..., t_{fin} — моменты времени (t_{fin} — момент завершения проекта); $\mathbf{x}_{\mathbf{k}\mathbf{l}}^{(j)}(t_{\mathbf{i}})$,..., $\mathbf{x}_{\mathbf{k}\mathbf{p}}^{(j)}(t_{\mathbf{i}})$ — координаты объекта Q_j проекта Π_k в момент времени $t_{\mathbf{i}}$.

Вычисление текущих координат в процессе движения субъектов и объектов проектно-векторного пространства осуществляется в соответствии с векторным методом целедостижения проектов в образовательных средах. Рассмотрим схему реализации этого метода.

1. Определение ограничений на движение объектов проектновекторного пространства.

К таким ограничениям относятся:

перечень объектов и субъектов ПВП:

$$\Pi_k : \Gamma_k^C = \{C_{ik}\}, j = \overline{1, n_k^C}, \Gamma_k^O = \{O_{ik}\}, j = \overline{1, n_k^O},$$

где $\mathbf{n}_k^{\,C}$ – количество субъектов проектно-векторного пространства; $\mathbf{n}_k^{\,O}$ – количество объектов проектно-векторного пространства;

- предельное время расширения «Вселенной проектов» Π_k (T_k^{oup});
- потенциальная энергия объектов проектно-векторного пространства (ресурс, выделенный проекту Π_k) (E_k);
- интервал времени пересчета состояния ПВП Δt (квант времени) и шаг смещения объектов и субъектов ПВП Δx (квант пространства).

2. Определение законов движения в проектно-векторном пространстве.

Законы движения отражают величины взаимодействия объектов и субъектов ПВП. К параметрам, отражающим взаимодействие объектов/субъектов ПВП, относятся:

 $-\gamma_i^{jk}$ – коэффициент сопротивления движению субъекта ПВП C_j проекта Π_k в направлении N_i (показывает величину затрат, необходимых для преодоления единицы расстояния по данному направлению);

– коэффициент взаимодействия объектов/ субъектов ПВП φ_{jip}^* (см. определения 1-3). Устанавливается экспертно

$$\varphi_{jip}^* = \varphi^e \left[Q_j \left(\mathbf{x}_{kp}^{(j)}(t) \right) / Q_i \left(\mathbf{x}_{kp}^{(i)}(t) \right) \right],$$

где $\varphi^e \left[Q_j \left(\mathbf{x}_{kp}^{(j)}(t) \right) / Q_i \left(\mathbf{x}_{kp}^{(j)}(t) \right) \right]$ — установленный экспертами коэффициент взаимодействия объектов/ субъектов ПВП.

3. Определение влияния объектов ПВП.

Определяется важность объектов для того, чтобы установить очередность смещения в ПВП. Важность объектов отражает их воздействие на другие объекты/субъекты ПВП. Ведь местоположение (координаты) сильно воздействующего объекта ПВП определит, насколько быстро будут смещаться субъекты, являющиеся носителями целей и ценностей проектов

$$\theta_{jkp} = \sum_{i=1}^{K} \varphi_{jip}^* / K,$$

где θ_{jkp} — коэффициент, определяющий среднюю величину воздействия объекта ПВП Q_j проекта Π_k по направлению N_p ; K — количество объектов/субъектов, на которые воздействует объект ПВП Q_i проекта Π_k .

Также важно учесть воздействие на каждый из субъектов/объектов ПВП. Это воздействие определяется через коэффициент

$$ho_{ikp} = \sum_{j=1}^K \varphi_{jip}^* / K,$$

где ho_{ikp} – коэффициент, определяющий среднюю величину воздействия на объект/субъект Q_i проекта Π_k другими объектами и субъектами ПВП по направлению N_p .

4. Определение целей субъектов ПВП (конечных координат движения).

Конечные координаты соответствуют целям реализации проекта субъектами. Они могут быть представлены в виде

$$\Pi_k : \forall C_{jk} : x_{k1}^{(j)}(t_{max}), ..., x_{kp}^{(j)}(t_{max}),$$

где C_{jk} — субъект ПВП проекта Π_k ; $x_{kl}^{(j)}(t_{max}),...,x_{kp}^{(j)}(t_{max})$ — конечные координаты субъекта C_j^k проекта Π_k в момент завершения проекта t_{max} .

5. Определение важности субъектов ПВП.

Определяется важность субъектов ПВП для согласования цели проектов с целями наиболее значимых заинтересованных сторон: σ_{jk} – коэффициент, определяющей приоритетность целей субъекта ПВП C_{jk} проекта Π_k .

6. Определение условий достижения целей субъектов ПВП (ограничений).

Конечные координаты движения не должны быть меньше директивно заданных и должны быть достигнуты до планируемого срока завершения

проекта. Кроме того, расходы на проект (энергетические затраты) не должны превосходить плановые

1. $t_{\text{max}} \leq t_{\text{fin}}$;

2.
$$\forall i = \overline{1, p} : X_{ki}^{(j)}(\overline{T_k^{\partial up}}) \le X_{ki}^{(j)}(t_{\text{max}});$$

3.
$$E_{\phi a \kappa m}^{k} \leq E_{n \lambda a \mu}^{k},$$

где $E_{\phi^{a\kappa m}}^{k}$ – фактически израсходованная энергия (ресурс) объектов проекта Π_{k} ; $E_{n_{n_{n_n}}}^{k}$ – плановая (выделенная) энергия для проекта Π_{k} .

7. Установление начальных условий расчета траекторий движения. К начальным условиям относятся:

- 1. Момент времени старта проекта (старт движения) t_0 .
- 2. Начальная точка движения объектов и субъектов ПВП. Принимается:

$$\Pi_k: \forall Q_i: x_{k1}^{(j)}(t_0), ..., x_{kp}^{(j)}(t_0),$$

где $x_{kl}^{(j)}(t_0),...,x_{kp}^{(j)}(t_0)$ — начальные координаты объекта/субъекта ПВП Q_j проекта П $_k$.

3. Максимально отдаленная от начальной конечная точка движения субъектов ПВП. Принимается:

$$\Pi_k: \forall C_{jk}: x_{k1}^{(j)}(t_{fin}) + x', ..., x_{kp}^{(j)}(t_{fin}) + x',$$

где х' – погрешность в оценке конечных координат движения субъектов ПВП.

- 4. Количество вариантов моделирования движения в ПВП $N_{\scriptscriptstyle v}^{\rm max}.$
- **8. Расчет удельных усилий движения по направлениям и субъектам.** Заданы:
- 1. γ_i^{jk} коэффициент сопротивления движению субъекта ПВП C_j проекта Π_k в направлении N_i (показывает величину затрат, необходимых для преодоления единицы расстояния по данному направлению).
- 2. σ_{jk} коэффициент, определяющей приоритетность целей субъекта C_{jk} проекта Π_k .
- 3. $\lambda_{\rm p}$ приоритетность движения в направлении $N_{\rm p}$ (насколько важно движение именно в этом направлении).

Рассчитываются необходимые удельные усилия при движении по всем направлениям проектно-векторного пространства всех субъектов проектов. Это удельное усилие равняется отношению сопротивления движения к приоритетам субъектов и направлений

$$K_{i}^{jk} = \frac{\gamma_{i}^{jk}}{\lambda_{i} \cdot \sigma_{ik}},$$

где $K_i^{\ jk}$ – коэффициент отражающий удельные затраты на перемещения в направлении N_p на единицу приоритета целей субъектов ПВП и приоритета направления (насколько легко и необходимо двигаться именно в этом направлении).

Общее сопротивление (по направлению N_i) равно сумме коэффициента удельного усилия субъектов при движении по направлениям $K_i^{\ jk}$ и коэффициента, отражающего величину воздействия других объектов и субъектов ПВП $\rho_{\imath ki}$

$$\delta_{jki} = K_i^{jk} + \rho_{jki},$$

где δ_{jki} – обобщенный коэффициент сопротивления движению объекта Q_j проекта Π_k по направлению N_i .

9. Моделирование движения объектов и субъектов в ПВП.

Для нахождения рациональной траектории движения субъектов ПВП будет осуществлено моделирование вариантов движения, которые будут задаваться приоритетностью и взаимодействием объектов ПВП. Лучшие варианты будут предложены менеджменту проекта для выбора лучшего на их взгляд решения.

Начальный вариант моделирования устанавливается равным 0

$$N_{..} = 0$$
,

где N _ - номер варианта моделирования.

9.1. Переход к очередному варианту моделирования. Устанавливается очередной номер варианта моделирования

$$N_{v} = N_{v} + 1.$$

Если $N_{_{\mathrm{V}}} > N_{_{\mathrm{V}}}^{\mathrm{max}}$, переход к п.10.

Устанавливается шаг движения

$$N_{d} = 0$$
,

где $N_{_{\rm d}}$ – номер шага движения.

Задаются начальные координаты объектов/субъектов ПВП и начальный момент времени t_0 :

$$\Pi_k : \forall Q_i : x_{k1}^{(j)}(t_0), ..., x_{kp}^{(j)}(t_0),$$

где $x_{k1}^{(j)}(t_0),...,x_{kn}^{(j)}(t_0)$ – начальные координаты объекта Q_j проекта Π_k .

Фиксируются начальные энергетические характеристики (расходы) проектов:

$$\forall \Pi_{\mathbf{k}}: E_{\phi a \kappa m}^{\mathbf{k}} = e_0^{\mathbf{k}},$$

где $e_0^{^{\mathrm{k}}}$ – начальные расходы на проект Π_k (понесенные до начала проекта Π_k).

9.2. Переход к очередному шагу движения

$$N_d = N_d + 1$$
.

Расчет очередного момента времени

$$t_{N_{d}} = (N_{d} - 1) \cdot \Delta t + t_{0}.$$

Если координаты всех субъектов превосходят целевые или фактически затраченная энергия (расходы) больше плановой, переход к п.9.1.

9.3. Расчет усилий при движении по направлениям в момент времени $t_{\mathrm{N_d}}$. Направление движения субъектов оценивается по удельным усилиям для смещения субъекта в каждом направлении, приоритетности этого направления и величины воздействия на субъект по этому направлению. Определяется через δ_{jki} . Для того, чтобы уменьшить затраты на движение субъектов, возможно найдется такой объект ПВП, смещение которого уменьшит затраты на субъекты ПВП. Причем уменьшит более значительно, чем затраты на движение объекта ПВП. То есть, если для направления N_i :

$$\begin{split} &\Pi_{k}: Q^{*} = \{Q_{s}\}, s = \overline{1, K^{*}}, K^{*} > 0 \wedge \delta_{jki}^{s} < \delta_{jki}: \\ &\delta_{jki}^{s} = K_{i}^{jk} + \rho_{jki}^{s} \left(x_{k1}^{(j)}(t_{N_{d}}) = x_{k1}^{(j)}(t_{N_{d-1}}) + \Delta x, ..., x_{kp}^{(j)}(t_{N_{d}}) = x_{kp}^{(j)}(t_{N_{d-1}}) + \Delta x\right); \\ &\delta_{jki} = K_{i}^{jk} + \rho_{jki} \left(x_{k1}^{(j)}(t_{N_{d}}) = x_{k1}^{(j)}(t_{N_{d-1}}) + \Delta x, ..., x_{kp}^{(j)}(t_{N_{d}}) = x_{kp}^{(j)}(t_{N_{d-1}}) + \Delta x\right); \\ &\delta_{ski} = K_{i}^{sk} + \rho_{ski} \left(x_{k1}^{(s)}(t_{N_{s}}) = x_{k1}^{(s)}(t_{N_{s-1}}) + \Delta x, ..., x_{kp}^{(s)}(t_{N_{d}}) = x_{kp}^{(s)}(t_{N_{d-1}}) + \Delta x\right), \end{split}$$

где K^* — количество объектов, смещение которых приводит к уменьшению затрат на смещение субъектов в ПВП; Q_s — объекты, смещение которых приводит к уменьшению затрат на смещение субъектов в ПВП; δ_{jki} — обобщенный коэффициент сопротивления движению субъекта C_j проекта Π_k по направлению N_i при условии, что координаты объекта Q_s не изменились; δ^s_{jki} — обобщенный коэффициент сопротивления движению субъекта C_j проекта Π_k по направлению N_i при условии, что вначале сместился объект Q_s ; δ_{ski} — обобщенный коэффициент сопротивления движению объекта Q_s .

Если затраты на смещение объекта меньше чем компенсация затрат из-за уменьшения воздействия этого объекта на субъекты $\delta^s_{jki}\cdot(\Delta x)^3+\delta_{ski}\cdot(\Delta x)^3<\delta_{jki}\cdot(\Delta x)^3\Rightarrow\delta^s_{jki}+\delta_{ski}<\delta_{jki}$ (1), то возникает необходимость в первоочередном смещении объекта с последующим пересчетом возможностей смещения субъектов ПВП.

Выполнение этих условий возможно, если увеличение координаты некоторым объектом до значения, превосходящего координату субъекта ПВП, меняет знак коэффициента взаимодействия объектов/ субъектов ПВП с «минус» на «плюс». То есть, «объект притягивает субъект».

9.4. Выбор смещающихся объектов/субъектов. Если $K^{*}=0$, то:

– если в этом шаге движения есть смещенные на Δx объекты, то переход к п.9.2. В противном случае осуществляется выбор к смещению среди субъектов ПВП. Выбор субъекта осуществляется случайно в соответствии с распределением вероятностей на основании формулы

$$p_{jk} = \frac{\sigma_{jk}}{\sum_{l} \sigma_{lk}},$$

где p_{jk} – вероятность выбора к смещению по направлению N_i субъекта C_j проекта Π_k ;

— иначе выбираются к смещению те объекты ПВП $Q_U^* = \{Q_b^U\}, b = \overline{1,U}, Q_U^* \subseteq Q^*$, перемещение которых на величину Δx уменьшает сопротивление ПВП относительно субъектов проектов (в соответствии с формулой (1)). Если множество Q_U^* пустое - переход к п.9.2. Выбор объекта осуществляется случайно в соответствии с распределением вероятностей на основании формулы

$$p_{jki} = \frac{\theta_{jki}}{\sum_{b=1}^{U} \theta_{bki}},$$

где p_{jki} – вероятность выбора к смещению по направлению N_i объекта Q_j проекта Π_k ;

9.5. Расчет смещения. Если

$$E_{\text{план}}^{k} - E_{dakm}^{k} \ge \delta_{ikn} \cdot (\Delta x)^{3}$$
,

то принимается:

$$\begin{split} \mathbf{x}_{\mathrm{kp}}^{(\mathrm{j})}(t_{\mathrm{N}_{\mathrm{d}}}) &= \mathbf{x}_{\mathrm{kp}}^{(\mathrm{j})}(t_{\mathrm{N}_{\mathrm{d-1}}}) + \Delta \mathbf{x};\\ E_{\mathrm{dakm}}^{\mathrm{k}} &= E_{\mathrm{dakm}}^{\mathrm{k}} + \mathcal{S}_{\mathrm{jkp}} \cdot \left(\Delta \mathbf{x}\right)^{\!\!3}. \end{split}$$

Иначе

$$X_{kp}^{(j)}(t_{N_d}) = X_{kp}^{(j)}(t_{N_{d-1}}).$$

Возврат к п.9.3

10. Оценка полученных целевых координат движения в ПВП.

Осуществляется экспертная оценка полученных вариантов траектории движения. Если значения не удовлетворяют менеджмент проектов, то корректируются исходные данные и все повторяется с п.1. Если удовлетворяют – завершение.

Кроме определения траектории движения объекта с наименьшим сопротивлением в ПВП есть еще одна необходимость в разработке метода определения неизвестных координат объекта ПВП по известным. В общем

случае задача определения наиболее вероятных значений координат в расширяющемся проектно-векторном пространстве по неопределенным вначале измерениям формулируется следующим образом. Пусть в проектно-векторном пространстве задана часть координат вектора, отражающего движение одного из объектов этого пространства (например, организационный вектор). На основании экспертной оценки возможности и взаимосвязи движения по различным направлениям необходимо определить наиболее вероятную координату объекта проектно-векторного пространства. Иными словами необходимо оценить неизвестные координаты этого объекта.

То есть, это определение тех значений координат, которые скрываются за этой целевой точкой (какие инструменты нам лучше всего использовать, форму управления проектом, какую команду проекта необходимо привлечь, какие затраты мы понесем при использовании тех или иных инструментов для выполнения данного проекта).

Задача в рамках данного подхода формулируется таким образом. Заказчик определил нужные координаты по каким-то измерениям. Исходя из этих координат мы должны определить неизвестные координаты (при этом определить таким образом чтобы сопротивление движению объектов в ПВП к конечной точке было минимальным) (рис. 3).

НАПРИМЕР. Заказчик определяет основные параметры проекта, а мы должны определить другие. Заказчик не определяет покупать нам ПП Примавера, MS Project или вообще планировать без использования этих средств, где снимать офис, какой режим мониторинга избирать. Вот эти неизвестные параметры мы определяем сами, исходя из тех средств и целей, которые перед нами поставлены.

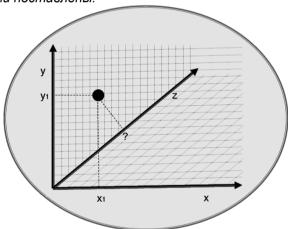


Рис. 3. Определение неизвестных координат объекта ПВП по известным

Задаются известные координаты и измерения $x_{k1}^{(j)}(t),...,x_{ki}^{(j)}(t),...,x_{kw}^{(j)}(t)$, по которым необходимо найти наиболее соответствующее им значение неизвестных координат, принадлежащих множествам

$$X_{k(w+1)}^{(j)},...,X_{ku}^{(j)},...,X_{kp}^{(j)} \ \ Y_{k(w+1)}^{(j)}(t) \in X_{k(w+1)}^{(j)},...,y_{ku}^{(j)}(t) \in X_{ku}^{(j)},...,y_{kp}^{(j)}(t) \in X_{kp}^{(j)},$$

где $y_{ku}^{(j)}(t)$ – искомое значение координаты объекта Q_j проекта Π_k по оси N_u в проектно-векторном пространстве в момент времени t.

Пусть заданы
$$\exists x_{ki}^{(j)}(t) \in X_{ki}^{j}, \forall y_{ku}^{(j)}(t) \in X_{ku}^{j}(t) \ \exists f (y_{ku}^{(j)} / x_{ki}^{(j)}),$$

где $f(\mathbf{x}_{\mathrm{ku}}^{(j)}/\mathbf{x}_{\mathrm{ki}}^{(j)})$ — нормированная экспертная оценка зависимости координат объекта Q_j проекта Π_k при движении по измерениям N_u и N_i проектно-векторного пространства; $\overline{f_u}(\mathbf{x}_{\mathrm{ki}}^{(j)})$ — усредненная экспертная оценка значения координаты объекта Q_j проекта Π_k по измерению N_u проектно-векторного пространства. При заданном значении координаты по измерению N_i , получим

$$\forall \mathbf{x}_{ki}^{(j)}(t) \in \mathbf{X}_{ki}^{j}, N_{u} : \overline{f}_{u}(\mathbf{x}_{ki}^{(j)}) = \frac{1}{\sum_{y_{ki}^{(j)} \in \mathbf{X}_{ki}^{j}}^{p} \eta \left(f(\mathbf{y}_{ku}^{(j)} / \mathbf{x}_{ki}^{(j)}(t)) \right)}.$$

По измерениям, для которых не определены координаты, исключаются точки, для которых экспертная оценка сопротивления движению максимальна (нельзя быть в этой точке). Если таких точек нет, то происходит пересмотр исходных данных. Если в оставшемся множестве единственная точка – она и есть искомой. Если нет, то происходит отбор точки с минимальным сопротивлением движению.

1. Из множества всех значений координат по измерению N_u исключаются те, для которых экспертная оценка равна 0. Таким образом, будет сформировано новое подмножество возможных значений координаты

$$Y_{ku}^{j} \subseteq X_{ku}^{j} : y_{ku}^{(j)} \in Y_{ku}^{j} \ ecnu \ \forall 1 \le i \le d \ f(y_{ku}^{(j)} / x_{ki}^{(j)}(t)) > 0,$$

где $Y_{\mathrm{ku}}^{\mathrm{j}}$ – подмножество возможных значений координаты по измерению N_u .

- 2. Если подмножество $Y_{\rm ku}^{\rm j}$ пустое, пересмотр экспертных оценок.
- 3. Если подмножество $Y_{\mathrm{ku}}^{\mathrm{j}}$ состоит из одного элемента выбор соответствующей ему координаты.
 - 4. Отбор однозначно определенных координат. Если

$$\begin{split} \exists \ \mathbf{y}_{ku}^{(j)} \in Y_{ku}^{j}, \mathbf{y}_{ks}^{(j)} \in Y_{ks}^{j}, \mathbf{x}_{ki}^{(j)}(t) \in X_{ki}^{j}, \mathbf{x}_{kr}^{(j)}(t) \in X_{kr}^{j} \implies \\ f(\mathbf{y}_{ku}^{(j)} / \mathbf{x}_{ki}^{(j)}(t)) = 1, f(\mathbf{y}_{ks}^{(j)} / \mathbf{x}_{kr}^{(j)}(t)) = 1, \end{split}$$

то нужен пересмотр экспертных оценок. Ведь однозначный экспертный отбор при разных исходных данных (по разным осям) разных результирующих координат свидетельствует об ошибочности исходных данных.

Если и это не привело к успеху, то осуществояется расчет интегрированной оценки по всем координатам. И потом, отклонение от этой интегрированной оценки.

5. Отбор однозначно определенных координат. Если

$$\exists \ \mathbf{y}_{ku}^{(j)} \in Y_{ku}^{j}, \mathbf{x}_{ki}^{(j)}(t) \in X_{ki}^{j} \ \forall s \neq u \ \mathbf{y}_{ks}^{(j)} \in Y_{ks}^{j}, \mathbf{x}_{kr}^{(j)}(t) \in X_{kr}^{j} \implies f(\mathbf{y}_{ku}^{(j)} / \mathbf{x}_{ki}^{(j)}(t)) = 1, f(\mathbf{y}_{ks}^{(j)} / \mathbf{x}_{kr}^{(j)}(t)) < 1,$$

то выбор координаты $y_{\mathrm{ku}}^{(\mathrm{j})} \in Y_{\mathrm{ku}}^{\mathrm{j}}$

- 6. Если предыдущие сравнения не привели к выбору координаты и не привели к пересмотру экспертных данных расчет интегрированной оценки каждой из возможных координат по измерениям $N_1,...,N_{w}$
- 6.1. Вычисление величины отклонения экспертной оценки по каждому измерению от усредненной экспертной оценки по каждой из известных координат

$$\begin{split} &\forall y_{ku_{r}}^{(j)} \in Y_{ku}^{j}, x_{ki}^{(j)}(t) \in X_{ki}^{j} : d\left(y_{ku_{r}}^{(j)} / x_{ki}^{(j)}(t)\right) = \\ &= \frac{1}{2} \cdot \sqrt{\frac{d\left(y_{ku_{r}}^{(j)} / x_{ki}^{(j)}(t)\right) \cdot \left(1 - \overline{f}\left(x_{ki}^{(j)}(t)\right)\right) + \left(1 - d\left(y_{ku_{r}}^{(j)} / x_{ki}^{(j)}(t)\right)\right) \cdot \overline{f}\left(x_{ki}^{(j)}(t)\right)}{\left(1 - d\left(y_{ku_{r}}^{(j)} / x_{ki}^{(j)}(t)\right)\right) \cdot \overline{f}\left(x_{ki}^{(j)}(t)\right)} - \frac{1}{2}, \end{split}$$

где $d\left(\mathbf{y}_{\mathbf{k}\mathbf{u}_r}^{(j)} / \mathbf{x}_{\mathbf{k}i}^{(j)}(t)\right)$ – отклонения экспертной оценки координат по измерению N_u от усредненной экспертной оценки для координаты $\mathbf{x}_{\mathbf{k}i}^{(j)}(t)$.

На основе записанного решающего правила осуществляется выбор искомой координаты.

6.2. Вычисление суммарного отклонения экспертной оценки от усредненной экспертной оценки для каждой из возможных координат по измерениям $N_{\mathrm{w+1}},...,N_{\mathrm{p}}$

$$\forall \mathbf{y}_{k\mathbf{u}_{r}}^{(j)} \in Y_{k\mathbf{u}}^{j} : D(\mathbf{y}_{k\mathbf{u}_{r}}^{(j)}) = \sum_{i=1}^{d} d(\mathbf{y}_{k\mathbf{u}_{r}}^{(j)} / \mathbf{x}_{ki}^{(j)}(t)),$$

где $D\!\!\left(\mathbf{y}_{\mathrm{ku}}^{(\mathrm{j})}\right)\!\!$ — суммарное отклонение экспертной оценки от усредненной экспертной оценки для координаты $y_{ku}^{(j)}$.

6.3. Из равнозначности координат следует, что чем больше отклонение экспертной оценки от усредненной (в большую сторону), тем выше суммарная экспертная оценка этой координаты. Поэтому решающее правило выбора может быть записано

$$\forall w+1 \leq u \leq p$$
 выбор $\mathbf{y}_{ku_{r}}^{(j)} \in Y_{ku}^{(j)} \Rightarrow \forall \mathbf{y}_{ku_{r}}^{(j)} \in Y_{ku}^{(j)} : D(\mathbf{y}_{ku_{r}}^{(j)}) \geq D(\mathbf{y}_{ku_{r}}^{(j)})$

7. Полученные неизвестные координаты вектора в вербальном формате представляются команде для принятия к работе.

Выводы и перспективы дальнейших исследований. В статье предложены метод расчета рациональной траектории движения к целевым точкам ПВП, а также предложен метод определения наиболее вероятных значений неизвестных координат объектов в расширяющемся проектновекторном пространстве по координатам заданных измерений. Показано, что проблематика разработки этих методов связана с расчетом такой траектории движения в проектно-векторном пространстве, которая обеспечит достижение целей проекта с минимальными затратами времени и финансовых ресурсов. Реализация этих методов позволит в динамике вырабатывать пути достижения целей проектов образовательных сред в реальных условиях, которые описываются системой воздействий на движение объектов и субъектов ПВП в «расширяющейся Вселенной проектов».

ЛИТЕРАТУРА

- 1. Биков В.Ю. Моделі організаційних систем відкритої освіти / В.Ю. Биков // Монографія. К.: Атака, 2009.- 684 с.
- 2. Преображенский Б.Г. Синергетический подход к анализу и синтезу образовательных систем / Б.Г. Преображенский, Т.О. Толстых // Университетское управление. Екатеринбург: Вестник УГУ, 2004. №3 (31). С. 7-12.
- 3. Коляда О.П. Проектно-ориентированная формализация стратегического компонента функциональной деятельности высшего учебного заведения / О.П. Коляда // Управління проектами та розвиток виробництва. Збірник наукових праць №3 (27) 2008. С. 81-87.
- 4. Рач В.А. Проектно-орієнтовані моделі управління та оцінки діяльності вищих навчальних закладів / В.А.Рач, А.Ю. Борзенко-Мірошніченко // Управління проектами та розвиток виробництва. Зб. наук. праць №1 (29) 2009. С.81-89.
- 5. Тесл Ю.М. Модель мультипроекту модернізації системи управління якістю підготовки спеціалістів в ВНЗ всіх видів акредитації / Ю.М. Тесля, І.О. Потай // Управління проектами та розвиток виробництва. Зб. наук. праць №2 (18) 2006. С.72-85.
- 6. Колеснікова, К.В. Розвиток теорії проектного управління: обґрунтування закону ініціації проектів // Управління розвитком складних систем. 2013. № 17. С. 24 31.
- 7. Гогунский, В. Д. Обоснование закона о конкурентных свойствах проектов [Текст] / В.Д. Гогунский, С. В. Руденко, П. А. Тесленко // Управління розвитком складних систем. К.: КНУБА, 2012. Вип. 8. С. 14 16.
- 8. Колеснікова, К.В. Розвиток теорії проектного управління: обгрунтування закону К.В. Кошкіна щодо завершення проектів [Текст] // Управління розвитком складних систем. 2013. № 16. С. 38 45.
- 9. Масленникова, К. С. Складники поведінкової компетенції учасників команди проекту на засадах компетентністного підходу [Текст] / Е. С. Масленникова, К. В. Колеснікова // Управління розвитком складних систем. 2013. №14. С. 48 51.
- 10. Рач, В. А. Контекстно-личностное оценивание компетентности проектных менеджеров с использованием теории нечетких множеств [Текст] / В. А. Рач, О. В. Бирюков // Управління проектами та розвиток виробництва : зб. наук. пр. Луганськ : СНУ ім. В. Даля. 2009. № 1 (29). С. 151 169.
- 11. ГОСТ Р ИСО/МЭК 31010—2011. Менеджмент риска. Методы оценки риска [ISO/IEC 31010:2009. Risk management Risk assessment techniques (IDT)]. М. : Стандартинформ, 2012. 74 с.
- 12. Целенаправленная разработка и менеджмент проектов. Темпус, European Training Foundation, 1997. 84 с.
- 13. Gogunsky, V. D. Markov model of risk in projects of safety / V.D. Gogunsky, Yu.S. Chernega, E.S. Rudenko // Тр. Одес. политехн. ун-та.— 2013. Вып. 2 (41). С. 271 276.
- 14. Белощицкий, А. А. Управление проблемами в методологии проектно-векторного управления образовательными середами [Текст] // Управління розвитком складних систем. 2012. № 9. С. 104 107.
- 15. Чернега, Ю. С. Разработка модели деятельности инженера по охране труда с использованием цепей Маркова [Текст] / Ю. С. Чернега, В. Д. Гогунский // Восточно-Европейский журнал передовых технологий. 2014. № 5/3 (71). С. 39 43. DOI 10.15587/ 1729-4061.2014.28023.
- 16. Лизунов П. П. Проектно-векторное управление высшими учебными заведениями [Текст] / П. П. Лизунов, А. А. Белощицкий, С. В. Белощицкая // Управління розвитком складних систем. 2011. № 6. С. 135 139.
- 17. Тесля Ю.Н. Расширяющаяся Вселенная проектов / Ю.Н. Тесля, А.О. Белощицкий // Вісник ЧДТУ, 2011. №4. С. 67-71.