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BENMMKOro obcsary gaHux, a MOXIMBOCTI obuymcnioBanbHOi
TEXHikv Bynu JocUTb 0BMEXEHMMU.

Lli npo6nemn 6yno BupiweHo K.Mopecko wnsaxom
BUKOPUCTaAHHS chneuianbHUX anropuTmiB AN OTpUMaHHS
ouiHOK KoediuieHTiB 3a MeTogoM Hanbinbloi npasao-
noaibHocTi. HasBa cTBOpeHOro Ang UbOro NPoOrpamHoro
3abes3neveHHs [8] cTama CWHOHIMOM camoro mnigxoay
MO ENOBaHHS.

MpakTuyHe 3acTOoCyBaHHs MoAeneln npusBeno A0 BU-
ABMEHHNA paay npobnem, sk NpuknagHoro, Tak i MeToaono-
rivHoro xapakrepy. OCHOBHUMMW 3 HUX € HACTYMHi: HENiHin-
HICTb 3B'AI3KIB MiXXK NATEHTHUMWU 3MIHHUMW; BKMOYEHHSA OO0
Moenen sIKiCHUX O3Hak; afeKBaTHICTb MEeTOAIB OLliHIOBaH-
HS NapameTpiB Modenen gaHUM OOCHioKYBaHUX NPOLIECIB;
BMOIp BMAY 3B'A3KIB MK NMaTEHTHMMM i CnOCTepexyBaHUMM
3MiHHMMMW; HEOAHOPIOHICTb CyKYNHOCTEW, 3a AKUMK OOCHi-
DKYHOTbCS MOAENi; 0COBNMBOCTI 3aCTOCYBaHHS B KOHKPET-
HUX NPUKNagHUX OOCNIMKEHHSIX.

HeobxigHicTb iX BMpilleHHs npu3Bena 4o NoAanbLIoro,
4emeepmozo i NOTOYHOro eTany po3BUTKY, — TEOPETUYHOIO
i MPaKTUYHOro y3aranbHEHHs1 Ta NoganbLIoro po3BuUTKy. B
ocTaHHi 15 pokie BiobyBaeTbcA noganbLIMn PO3BUTOK Me-
TOQOMNOrii, WO, BNacHe, i oTpumMarna ysararnbHIo4Jy Ha3By
"MOLentoBaHHA NaTteHTHMX 3MiHHMX". Lia meTogonoria mic-
TUTb MOZENOBAHHS CTPYKTYPHUMU PIBHAHHSAMU B CBOHO
yepry, SK CKNafoBy, i I'PYHTYETbCA Ha KOHLUENTyarbHOMY
BU3HAY€EHHI NaTeHTHOI 3MIHHOI AK Takol, ANd SKOi He iCHye
BMBipKkOBOI peanisauii WoHakMeHLLe as OKPeMUX CrocTe-
pexeHb y faHi Bmbipui [3, c. 612]. B uen nepiog, 3aiicHe-
HO Ik TEOPeTWYHI y3aranbHeHHsl i po3pobKkM MeTodomnoriy-
HOro xapakrtepy [9], TaK i BU3HA4YEHO MPAaKTUYHI LUNSAXU BU-
pilweHHs psagy npobnem [4]. MNoganbwnii po3BUTOK METOAIB
OLiHIOBAHHA Ta KpUTEpiiB NepeBipkM adekBaTHOCTI Moae-
nen [O3BOMWU y3aranbHUTW PS4 METORIB CTATUCTUYHOIO
aHanisy, Wo iCTOTHO NornMbIioe piBEHb PO3YMiHHS coLia-
TNbHO-EKOHOMIYHUX SBULL, NPK TX 3aCTOCYBaHHI.

YOK 311.216

Ha cyyacHomy eTani po3BuTKy 0O MoAenen NnaTeHTHUX
3MiHHUX BiAHOCATb HACTYMHi: MoAeni rONOBHUX KOMMOHEHT;
Mogferni po3BigyBanbHOro Ta NiATBEPAXYYOoro akTopHo-
ro aHanisy; mogeni CTPYKTYPHWUX PiBHsIHb 3 NMaTEeHTHUMMU
3MiHHMMM; PO3LWIMPEHi MOoAeni 3 B3aEMOIED €K30reHHUxX
O3HaK i naTeHTHi mMoaeni AuHamikn. IX BUKOpUCTaHHSA [0-
3BOMSE 34iNCHI0OBATU OOCMIAKEHHS LIMPOKOro Kona cknag-
HUX CoLianbHO-EKOHOMIYHUX SBULL | NPOLIECIB.

B cratTi gocnigkeHo icTopito pO3BUTKY MeToZosorii
MOAENOBAHHS NaTEHTHUX 3MIHHUX, BU3HAYEHO MOr0 OCHO-
BHi eTanu, BM3HaA4YeHO romnoBHi cy4acHi npobnemu. BusHa-
YEHHS1 LWNSXIB BUPILLEHHST LUMX npobrnem 003BOMWUTbL OTPU-
MaTu NoAanbLlUMN PO3BUTOK L METOAOMNOrii, WO CTBOPHOE
nepegymoBu ANs rmublIoro TeOpPeTUYHOro pPO3yMiHHA Ta
Binbll eheKTUBHOrO NPaKTUYHOro aHanidy npv AocniaXeH-
Hi EKOHOMIYHMX KaTeropin.
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Aemopom demasibHO po32siTHymo meopito memody Monme Kapno ma 30ilicHeHOIT npakmuyHy peani3ayiro 3acobamu cma-
mucmuyHoinpoepaMHoi mogu RAnsi eeponelicbKkux onyioHie sunyuweHux Ha iHoekc DAX.
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Aemopom demasibHO paccmMompeHo meopuro memoda MoHme Kapno u npoeedeHo eenpakmuyecKyro peanusayuro cpedcm-
eaMu crmamucmu4ecKo20 NPo2PaMMHO20 si3biKa R Onisi eeponelicKux onuuoOHOEebINyweHHbIX Ha uHdekc DAX.
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Author thoroughly examines Monte Carlo method theory and then implements it using statistical programming language R

for European DAX option.
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Recent decades global financial markets were followed
by rapid growth of credit derivatives' turnover. A vast
variety of products are present at the market, giving private
and institutional investors ability to flexibly hedge their
operations against different types of risks, which may
contain interest rate and exchange rate exposures,
uncertainty in future levelsof underlying asset's (stocks,
commaodities) prices etc.

Although, trading derivatives should be carried out
carefully, while it can bring together with incomes
considerably big losses, especially if a highly leveraged
capital was used.In order to minimize operational losses
and to prevent possible arbitrage opportunities, precise and
adequate tools for pricing derivatives are in need.

Considerable amounts of research were dedicated to
this question, which led to development of diverse

methodologies. Some of them, based on financial
theories and relatively strict assumptions, give closed-
form solutions (e.g. Black-Scholes model), while others
are rather numerical methods like binomial option pricing
model (Cox, Ross-Rubinstein), neural networks algorithm
or Monte Carlo method.

Latter has proved itself as a good approach in valuation
of derivative securities and a lot of researches were
focused on this question by such a scientists as John C.
Hull, Alan White, Michael C. Fu, Jian-Qiang Hu, John R.
Birge, Christian P. Robert, George Casella, George M.
Jabbour, Yi-Kang Liu.

Throughout the paper we would like to discuss the main
idea of Monte Carlo simulation approachand then move to
practical implementation in programming environment
R.Finally, using some real data of European options

© Vasylchenko I., 2011



~ 44 ~

B 1 C H U K KuiBcbkoro HauioHanbHoro yHisepcurety imeHi Tapaca LleBuyeHka

calculate respective prices and compare them with the
results of Black-Scholes model.

Monte Carlo method is a simulation technique that,
with the use of random numbers and probability, can give
solutions to a problem in case it is infeasible or
impossible to compute an exact result with a deterministic
algorithm. This method was devised by Stanislaw Ulam
and John von Neumann in 1940s during their work in
nuclear weapon projects and was primarily intended to
help them with their experiments in physics. Later on it
became widely used in mathematics (e.g. evaluation of
definitive integrals) and invariety of fields where modeled
phenomena have significant uncertainty of inputs (such
as risk modeling in business).

One of the first applications of this idea to derivative's
pricing was done by Phelim Boyle in 1977. In that particular
case these were European options, however later on
Monte Carlo method appeared to be especially useful in
valuation of exotic options (e.g. Asian options, Barrier
options, American options).

This simulation is classified as a sampling method
because the inputs are randomly generated from
probability distributions to simulate the process of sampling
from an actual population.

To explain givenstatement, let us first consider the case
of a general random variable x, whose expected value

E[x]=pand variance Var[x]=oc"are unknown. We are

interested in finding these values and we are able to
generate independent samples of x using some pseudo-
random number generator.

From the Law of Large Numbers we know, that
computing average value of relevantly large number of
samples can give us quite a good approximation to the

needed unknown parameter E[x]:u. So, for example,

given the independent random variables x,Xx,,X;,...X,
identically distributed with x, the value

1L
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can be a good approximation to p. It is easy to see that
this estimator is unbiased (while E[p,]=p . Following this

we can estimate variance, using estimated value p,, :
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Or for nonbiased case:
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Following Central Limit Theorem, we can state that:
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As a result we can build a 95% confidence interval for
unknown parameter p :
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Or replacing unknown o with an estimated value o,
we receive interval in which unknown value p lies with
probability 95%:

1,960, . 1,960,
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This analysis gives us some basic notion about Monte
Carlo method for approximating unknown parameter p.
Firstly we take n independent samples and calculate p,, .
Then by calculating o, we can build confidence intervals
of the true parameter p . As far as the number of samples

n grows, the more shrinks the confidence interval.
Similarly looks the problem of evaluating definite
integral. Monte Carlo approach can help us to find solution,
especially if closed-form formula is hard to compute or
even does not exist.
To illustrate it, let us assume that we need to calculate

such an integral:

I, = Lg(x)f(x)dx
whereg(x) is an arbitrary function and f(x) is some
density function. Basically this integral is a mean
E[g(x)], where x is distributed with probability density
function f(x) over a support A.

Analogously to previous example, this integral can be
evaluated by generating n sample values of x; having

f(x), then

correspondent values g(x,) and averaging them to

probability  density  function finding

produce the Monte Carlo estimate:
L1
|, =— X;
5= 29(x)

This results in such an unbiased variance estimator:
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and in the same way, Central Limit Theorem together with
the Law of Large numbers shows us that:

N (52
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Our error fg -1, of Monte Carlo integral value estimate
is also approximately normally distributed with mean 0 and

. 0'2 . . .
variance — , while latter converges to zero with a growing
n

sample size n.

Now we are ready to move on to option valuation
with the help of Monte Carlo simulation. Further on we
would talk about European call options, while they are
quite a good basic example, however similar logic is
applicable to more complex derivative products
asAmerican, Exotic options etc.

Option value of a European call at the present point of
time is the discounted payoff that we would receive at the
time of maturity and we can write it down as [5]:

C(S,t)=e"E[max(0,S; -K)|S, =S|
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Where 1t — time to maturity, r — risk-free rate, S; — stock price at the maturity time, K — option's strike price and S,

denotes the spot price at the given point of time.
Considering the fact, that conditional

distribution of S,

given S,=S is lognormal with parameters

Iog(S) + [b —%czjr and o’t, the above expectation we can rewrite in terms of integral in such a way:

1

SN

C(S1)= e’”'[:max(o, x-K)

exp<—
Prodex P 20%t

As one can see, this integral looks close to that we have been speaking about a previously: given the payoff function

g(x)=max(0,x—-K) and correspondent probability density function f(x)= exp

Thus it can be evaluated with the use of Monte Carlo.

Our algorithm can be described with such sequence of steps:
 generate n random sample values z, ~ N(0,1);

e calculate respective stock price at the maturity time
X r—i T+aﬁz,
Si= Soe[ 2} [5];

e find discounted payoff with given stock price
C=e" max(O,S§ —K) :

¢ calculate the expected value é,, = 12_"1 C, , which
n ==

would be our estimator for the price of the option at the
present point of time.

Above presented steps can be nicely calculated with
the use of statistical programming language R. Latter gains
recently a lot of attention and popularity among scientists
and statisticians,while it is light and free-to-use
environment.

Functions that we would need are included in fOptions
package which belongs to the R-metrics project [9].

Firstly we enter our input values that describe option,
whose price we want to estimate (we consider that there
are 252 trading days in a year):

S <<-4948.5; K <<- 4850
Time<<- 0.02778;, sigma <<-0.17529; r<<-0.02091
delta.t <<- 1/252; pathLength<<- floor (Time/delta.t)

Next, we generate samples of random numbers z; that

would drive the movement of our stock price till the maturity
time. In this code rmorm.pseudo generator is applied, that
gives us normal pseudo random numbers, however, also
low-discrepancy sequences can be used like Sobol or
Halton, which would result in quasi-Monte Carlo method [4].

Innovations = function(mcSteps, pathLength, init) {
innovations = rnorm.pseudo(mcSteps, pathLength, init)
innovations

}

2
Recalling the formula S} = Soe[r —G]T +c\/72, we
z

are ready to write down the function that would calculate
the random stock price paths:

]

 2rovix

26°t

wienerPath = function(random_sample) {
path = (r-sigma*sigma/2)*delta.t +
sigma®sqrt(delta.t)*random_sample

path

}

Also we need a function to calculate our payoffs for
every single path the stock price goes. While in this paper
we consider European calls, resulted code would look
somehow like this:

plainVanillaPayoff = function(path) {
ST = S*exp(sum(path))

payoff = exp(-r*Time)*max(ST-K, 0)
payoff

}

Now we move to the core function from this package,
which actually integrates all previous procedures together
and calculates the whole Monte Carlo mechanism.

mc = MonteCarloOption(delta.t = delta.t, pathLength =
pathLength, mcSteps = 5000, mcLoops = 1000, init =
TRUE,innovations.gen = Innovations, path.gen =
wienerPath, payoff.calc = plainVanillaPayoff, antithetic =
TRUE, standardization = FALSE, trace = TRUE)

In each loop random stock price paths are generated
(mcSteps in total) using standard normal random samples
z, we have drawn previously (called "innovations" in the

code). Payoffs are calculated for each of these paths, then
they are averaged and we get the option price for this
single loop. Such an algorithm is performed mcLoops
times, and the final option price would be the average of
the option price estimations obtained in each of the loops.
Parameter antithetic corresponds to the usage of
antithetic variates method. Normally the error has a square

(o)
Jn
large number of sample paths in order to get significantly
small errors. In order to overcome this problem antithetic
variates are used to reduce the variance that results in a
less number of simulations needed [1].

The evolution of the option price, depending on the
number of loops already processed, can be illustrated with

the Plot.1. One can observe, that the more loops we
execute, the more option price converges to the true value.

root convergence speed, which leads to a need of
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Plot.1. European DAX call option price evolution

In order to conduct comparison of this simulation
technique with Black-Scholes model we took some real
data, which was provided by the Center for Applied
Statistics and Economics at the Humboldt University of
Berlin [8]. Database contained several years of history of
the European style DAX call options that were traded at the

EUREX stock exchange.Among them we have randomly
chosen several to illustrate our question of interest.

For each of the options we calculated the Monte Carlo
price with parameters mcSteps=5000, mcLoops=1000an the
Black-Scholes price. Detailed information about the options as
far as calculated prices you can observe at the Table 1.

Table 1. Monte Carlo estimation of European DAX call options

Trading day | Volatility | Time to maturity | Strike price Spot price | Risk-free rate | Monte Carlo price | Black-Scholes price
02.09.2005 0.14102 0.03889 4850 4832.11348 0.02091 44.61098 47.00066
06.09.2005 0.13631 0.12521 5000 4960.53858 0.02095 81.91368 82.99559
09.09.2005 0.12953 0.01944 4950 4989.02479 0.02092 56.68247 59.99555
12.09.2005 0.55742 0.01111 4400 5029.90874 0.02091 629.9472 631.9995
19.09.2005 0.24552 0.08889 4500 4873.86792 0.02093 402.7712 405.0027
21.09.2005 0.14271 0.08333 5000 4899.53358 0.02092 42.72371 43.49781
27.09.2005 0.15029 0.06667 4950 4967.98185 0.02097 89.12414 89.80347
30.09.2005 0.14321 0.05833 5200 5040.84716 0.02101 17.75148 18.98607

Selected options have different parameters such as
time to maturity, volatility, strike price, spot price that
resulted in differences between their prices. Comparing
results from Black-Scholes model and Monte Carlo
simulation we can summarize that latter has given us
accurate values that are close to true ones and can serve
as a good approximations.
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0. lNopobeupb,

®deopocincbka ¢hiHaHCOBO-eKOHOMiIYHa akageMiss KuiBcbkoro yHiBepcuteTy pUHKOBUX BiAHOCUH

CTATUCTUYHE MOAEJNIOBAHHSA NOKA3HUKIB BIATBOPEHHA HACEJNEHHSA
ABTOHOMHOI PECNYBJIIKU KPUM

3a pe3synbmamamu MoOesiro8aHHS NMOKa3HUKi8 8i0meopeHHsI HacesleHHs1 eu3Ha4yeHo rnepiodu gpopmyeaHHs1 demozpaghiyHor
cumyauii e Kpumy. 3icmaeneHHss 6ema-koedgpiyiecHmie Ao380s1U/I0 OUiHUMU 8HECOK KOXHO20 ¢hakmopa e pe3ysibmamueHuli rno-

Ka3HUK 3a pi3Hux nepiodie ei0meopeHHs.

Kmoyoei crnoea: npupodHe sidmeopeHHs1 HacesleHHs, deMozpadhiyHi modesi, mpeHdoei moderii.

MocmpoeHbl Modenu, xapakmepu3syrowue o6wuli npupocm (CHUXXeHuUe) 4YUC/IeHHOCMU HacesleHUsl pe2uoHa (Ha npumepe
AemonHomHol Pecny6nuku KpbiMm) e 3aeucumMocmu om nepuoda eocrnpou3eodcmea: ycmolvyueo20 pa3eumusi, KpU3ucHO20 COo-
cmosiHusl u yny4weHusi. Paccyumano enusiHue kaxdoz2o ¢hakmopa e o6wuli npupocm (CHWXeHue).

Knroyeenle csioea: npupodHoe eocrnpou3sodcmeo HacesieHusl, 0emozpaghudeckue mooenu, mpeHdoebie Modesu.

The modeling of general growth of Crimean population is done during three periods of reproduction process development: of
the past development, crises state and the period of reproduction process improvement, every factor contribution into resulting

process is given.

Keywords: natural reconstruction of the population, demographic forecast, trend model.

B3aemosB'asku Mk gemorpadiyHnMm gBuLaMmn Ta npo-
uecamu, a, BignoBigHo, i Mk napameTpamu gemorpadivyHoi

cuTyauii B perioHi Hanexatb OO0 CTOXaCTUYHUX, 30Kpema,
KOpensAuifnHMX 3B'A3KiB, NPU SKUX 3MiHa CepeaHbOro 3Ha4YeH-
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