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Introduction

The wave equation is a typical linear hyperbolic second-order partial differential equation which naturally arises when
modeling various phenomena of continuum mechanics such as sound, light, water or other kind of waves in acoustics,
(electro)magnetics, elasticity and fluid dynamics, etc. [6, 13]. Providing a rather adequate description of physical processes,
partial differential equations, or equations with distributed parameters in general, have found numerous applications in me-
chanics, medicine, ecology, etc. Introducing after-effects such as delay into such equations has gained a lot of attention
over several past decades [2, 3, 7, 8]. Mathematical treatment of such systems requires additional carefulness since dis-
tributed systems with delay often turn out to be even ill-posed [4, 5, 12].

In the present paper, we consider an initial-boundary value problem for a general linear wave equation with pure delay
and constant coefficients in a bounded interval subject to non-homogeneous Dirichlet boundary conditions. To solve the
equation, we employ Fourier's separation method as well as the special functions referred to as delay sine and cosine func-
tions which were introduced in [9, 10]. We prove the existence of a unique classical solution on any finite time interval, show
its continuous dependence on the data, give its representation as a Fourier series and prove its absolute and uniform con-
vergences under certain conditions on the data.

1. Equation with pure delay

We consider the following linear wave equation in a bounded interval (0,/) with a single delay being a second order par-

tial difference-differential equation for an unknown function n

on(x,t om(x,t—
n(f, ) _ n(x,2 ),
ot Ox
subject to non-homogeneous Dirichlet boundary conditions and initial conditions
n(0,1)=6,(¢), n(L,1)=0,(t), t=-7,
n(x0)=y(x1), 0<x<l, —1<1<0. (1.2)
Since we are interested in studying classical solutions, the following compatibility conditions are required to assure for
the smoothness of solution on the boundary of space-time cylinder
n(x,2)=6,(¢), n(L,t)=0,(¢), —1<r<0.

Definition 1.1. Under a classical solution to the problem (1.1), (1.2) we understand a function n e C([O,l]x[—t,T]) which

an();t_T)+dn(x,t—t)+g(x,t) (1.1)
X

satisfies 6,n,0,m.0,me C([0,/]x[-7,0]) as well as 8,n.0,n.0,neC([0,/]x[0,T]) and, being plugged into Equations (1.1),
(1.2), turns them into identity.

Remark 1.2. The previous does not impose any continuity of time derivatives in ¢=0. If the continuity is desired, addi-
tional compatibility conditions on the data, including g(x,?), are required.

Let |/ denote the standard Sobolev norm (cf. [1]) and ||| denote the norm of corresponding

T H'HH“((O,I)) e HHH £2(0,1))

negative Sobolev space. We introduce the norm |||, = iHH:Z and define the Hilbert space X as a completion of Z*((0,))
k=0

'

with respect to |||, . Obviously, X =(D((0,/))) ,i.e., X can be continuously embedded into the space of distributions.

With this notation, we easily see that 4:=a’0>+b0, +d (with &, denoting the distributional derivative) is a bounded lin-
ear operator on X since

P ; .
4., = sup 4] = sup \/Zazﬁiu b0l < swp 3 (el + bl 4l )

Il = =1 Vi=o Iy =1k=0

< sun @Sl 83l a3 |3 s s b s D], o b
k=0 k=0 k=0

el =1 [l =1
First, we obtain an a priori estimate in the distributional space X .
Theorem 1.2. There exists a constant C >0, dependent only on «,b,d,/,t,T , such that the estimate

)= (e, +lw. ol )+

[+, +[0,0)f ) ae

2
T

[+ o

max(Hn(-,t)

t[0.7]

0 T
w0, +hv ol di+C(Jg.o
-1 0
holds true for any classical solution of Equations (1.1), (1.2).
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Proof. Let n be a classical solution to Equations (1.1), (1.2). We define
w(x,t) :=n(x,t) for —1<¢<0,
w(x,t) = n(x,6) -0, ()~ ;[92 (1)-8,(r)] for 1>0.
Then w(x,t) satisfies homogeneous Dirichlet boundary conditions and solves the equation
azw(x,t)
or’

= Aw(x,t—1)+ f(x,1) (1.3)
in the extrapolated space X with
f(x,t)=g(x, )+ b(ez(t) - el(t)) +6,()+ %(62(1‘) - el(t)) .
We multiply the equation with w,(-,7) in the scalar product of X and use Young's inequality to get the estimate
8, w0, = (Awt =0, w, (.0, +(f 0w (),

<t =0l + (1441, )l Gl + 1760
As in [11], we introduce the history variable
z(x,t,8) =w(x,t—s) for (x,z,5) € [0,1] X [O,T]x [0,17]

(1.4)

‘2
X

and obtain
Z,(‘,I,S) + Zs(',t,S) =0.

Multiplying these identities with w(-,#) in X and performing a partial integration, we find

| ds =|w(.)

6,}“2(-,t,s) ‘j{ —Hw(-,t—I)Hi. (1.5)

Adding Equations (1.4) and (1.5) to the trivial identity
8, w0 < w0

‘ids = —Ia‘, Hz(-,t,s)
0

2
X!

[ + w0

we obtain

[+ [+ GOl + 76l -

oI s (oo o

Thus, we have shown

0
[ + [Iwt.e.9)
-1

(1.6)

2
X

DEW =2+ |4l JEO+| G0
where

E(t) =] w(.1)

‘ids.

[+l o)

0
P+ Jlltes)
From Equation (1.6) we conclude

‘i{ds.

E@) < EQ)+(2+]4[} ) [EG)ds + [ ¢.9)
0 0
Using now the integral form of Gronwall's inequality, we obtain

E(t) < E(0)+ ij(-,s) [ ds+ jexp{(Z AL - s)}(E(O) + jH reof d&}ds

s[éE(0)+jf(-,s) i ds] (1.7)

for certain C > 0. Taking into account

& (|l +[0,0f +[0,)) <[nc.0) [ +lo,f +lo.0f ).

& (lreoll +le,@f +lo.of ) <lgeol, <.l eoll +le,@f +o.of )
for some constants ¢,c,,C,,C, >0 and exploiting the definition of E(¢), the proof is a direct consequence of Equation (1.7).
Corollary 1.2. Solutions of Equations (1.1), (1.2) are unique. The solution map
(\Vag>el’ez) —n
is well-defined, linear and continuous in the norms from Theorem 1.1.

Remark 1.3. It was essential to consider the weak space X . If the space corresponding to the usual wave equation is
used, i.e., (m,n,) e Hy((0,0))xL*((0,1)), there follows from [5] that Equation (1.1), (1.2) is an ill-posed problem due to the

lack of continuous dependence on the data even in the homogeneous case.

[ <G (v
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Next, we want to establish conditions on the data allowing for the existence of a classical solution. Performing the sub-
stitution

_b,

E(x,t)=e 2 &(x,1) (1.8)

with a new unknown function F,(x,t) (cp. [11]), the initial boundary value problem (1.1), (1.2) can be written in following
simplified form with a self-adjoint operator on the right-hand side

62§(x,t aé(x,t—t b’
Py ):a2 P )+c?,(x,t—r)+f(x,t), C:d_Taz (1.9)
complemented by the following boundary and initial conditions
b

1

£(0,0)=p, (1), m(2)=0,(2), &(Lt)=p, (1), my(1) =€ 0,(¢) t =2 — 71, (1.10)
b, SLEN

E(x,t)=0(x,1), d(x.0)=e> y(xt), f(x.1)=e* g(x,1), 0<x<l, —1<1<0. (1.11)

The solution will be determined in the form
E;(x,t) =&, (x,t) +§ (x,t) + G(x,t) .
Here, G(x,t) is an arbitrary function with 6,G,0,G,0,,G € C([O,l]x[—r,T]) satisfying the boundary conditions

G(x,0)=p, (1), G(x.0)=p,(1).
Assuming p,.u, € C*([-1.T]), we let

G(x,t):pl(t)-t-%[uz(t)—ul(t)]. (1.12)
- &,(x,t) solves the homogeneous equation

0%t (x,t) ¢ (x,t —‘c)
(031‘2 =g* = P +cE_,O(x,t—r) (1.13)
subject to homogeneous boundary and non-homogeneous initial conditions

£,(0,1)=0, & (Lt)=0, 1>,

éo(x,t) = <D(x,t) , <I)(x,t) = (I)(x,t) - G(x,t) , —1<t<0, 0<x</. (1.14)

In particular, with the function G(x,t) selected as in Equation (1.12), we obtain
cp(x,t):¢(x,t)-ul(t)_§[uz(t)_pl ()] (1.15)

- &,(x,t) solves the non-homogeneous equation
2 p—
0 E-’éfj‘”) ~»% ((;‘;Ci %) s e, (x.t =)+ F(x.t) (1.16)
with
o’ o’

F(x,t)=azyG(x,t—r)+cG(x,t—r)—¥G(x,t) (1.17)

subject to homogeneous boundary and initial conditions. For G(x,t) from Equation (1.12), we have

F(x,t) :f(x,t)-i—c{ul(t—r)+§[uz(t—r)—ul (t—r)]}— {u{'(r)+§[ug(z‘)—uf(rﬂ}. (1.18)

2. Homogeneous equation. In this section, we obtain a formal solution to the initial-boundary value problem (1.13) with
initial and boundary conditions given in Equations (1.10), (1.11). We exploit Fourier's separation method to determine

&,(x,7) in the product form & (x,1) =X (x)T(¢) . After plugging this ansatz into Equation (1.13), we find
X(x)T"(t) = azX"(x)T(t - r) + cX(x)T(t - ‘l:) .
Hence,
X(x)[T"(t) - cT(t - ‘E):| = azX"(x)T(t - 1:) .
By formally separating the variables, we deduce
X"(x) _ T"(t)—cT(t—7) ey
X(x) azT(t - 1:)
Thus, the equations can be decoupled as follows
T"(t) +(a27»2 —c)T(t -1)=0, X"(x) +k2X(x) =0. (2.1)
These are linear second order (delay) ordinary differential equations with constant coefficients.
Due to the zero boundary conditions for &, , the boundary conditions for the second equation in (2.1) will also be homo-
geneous, i.e.,

X(0)=0, X(/)=0.



~8~ B 1 C H U K KuiBcbkoro HauioHanbHoro yHieepcurety imeHi Tapaca LlleBueHka ISSN 1728-3817

Therefore, we obtain a Sturm-Liouville problem admitting nontrivial solutions only for the eigennumbers
2
AZ=A2= [%)  n=123,.
and the corresponding eigenfunctions

X (x) = sin%x , n=1273,...

- 2
(—a} -c>0,
l

2
o, = [%aj -c,n=123,.

Assuming

we denote

and consider the first equation in (2.1), i.e.,
T'(t)+ o T(t-1)=0, n=123,... (2.2)

The initial conditions for each of the equations in (2.2) can be obtained by expanding the initial data into a Fourier series
with respect to the eigenfunction basis of the second equation in (2.1)
D(x,0)= Z(I)”(t)sin%x , D, (x,0) = qu,(t)sin%x  n=12,.,
n=1

n=1

27 n 2 n
D, (t)== 5,6)=G(s,t) |sin—sds , @ (t)==|| o,(s,¢)— G, (s,¢) |sin—sds . 23
(0= 1600~ G Jsin T sds @1 () = 0 (52 =G ) Jsin ] 23
Let us further determine the solution of the Cauchy problem associated with each of the equations in (2.2) subject to the
initial conditions from (2.3).
First, we briefly present some useful results from the theory of second order delay differential equations with pure delay
obtained in [9]. The authors considered a linear homogeneous second order ordinary delay differential equation

.x.(t)+ o’x(t-1)=0,120,71>0,x(t)=p(r), —1<r<0. (2.4)

They introduced two special functions referred to as delay cosine and sine functions. Exploiting these functions, a
unique solution to the initial value problem (2.4) was obtained.
Definition 2.1. Delay cosine is the function given as

0, -0 <t < -7,
1, -1<t<0,
, 1 (2.5)
l- o —, 0<t<m,
2!
cost{m,t}z .
1_@2i+ 0)4M+... +
2! 41
i (k- <t< ke
F (-t [t - (k-Dr]
(2k)!
with 2k -order polynomials on each of the intervals (k — 1)t <t < kt continuously adjusted at the nodes

t=kt, k=0,1,2,....
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Figure 2.2. Delay cosine function
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Definition 2.1. Delay sine is the function given as

0, - < t< -7,
o((t+ 1), -1<¢t<0, (2.6)
[3
N g <
sin o1} - o(t+1)-o e 0<t<r,
3 _ _ 2k+1
m(,+r)_w3t_+...+(_1)kw“’*‘[t (k = D)) , (-t <t<kr
3! (2k +1)!

with  (2k +1) -order polynomials on each of the intervals (k£ — 1)t < ¢ < kt continuously adjusted at the nodes
t=kt, k=0,1,2,....
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Figure 2.2. Delay sine function

There has further been proved that delay cosine uniquely solves the linear homogeneous second order ordinary delay
differential equation with pure delay subject to the unit initial conditions x(#) =1, —1 < ¢ < 0, and the delay sine in its
turn solves Equation (2.4) subject to the initial conditions X(#) = ©® (1 + 1), —1 << 0.

Using the facts above, the unique solution of the Cauchy problem was represented in the integral form. In particular, the
solution X(?) to the homogeneous delay differential equation (2.4) with the initial conditions x(t)=B(1), —t <t < 0 for

an arbitrary € C*([-t,0]) was shown to be given as

0
x(t)=B(-1)cos, {o,t} + l[3'(—‘r)sinT {o,1}+ L I sin_{o,t —t—s}B"(s)ds . (2.7)
o) o
Turning back to the delay differential equation (2.2) with the initial conditions (1.4), we obtain their unique solution in the form
0
T, (1) = ®, (=%)co0s, {0, .t} +——®, (<2)sin, {o,.t} +— [ sin, {o,.0 -7 s} (s)ds. (2.8)
m)’l (D’l =T

Thus, assuming sufficient smoothness of the data to be specified later, the solution F,O(x,t) to the homogeneous equa-
tion (1.13) satisfying homogeneous boundary and non-homogeneous initial conditions &,(x,t) = CD(x,t) , —1<t<0,0<x</,
reads as

o

£, (50) = B0, (oo, o)+ (o, o)+

n=1 n

1§ nn
— | si JA—T—5; D" (s)ds psin—x 2.9
+0) JsmT{wH s} (s) v}sm ] x (2.9)

n -t

1
D, (t) = %_{[[d)(s,t) - G(s,t)]sin%sds , n=123...

3. Non-homogeneous equation. Next, we consider the non-homogeneous Equation (1.16) with the right-hand side
from Equation (1.18) subject to homogeneous initial and boundary conditions

0% (%,t) _ 208 (%1 -7) + &, (x,1—T)+ F(x,0) , F(x,1) =f(x,z)+c{ul(t—r)+§[u2(t—r)—ul(t—rﬂ}_

or’ ox’
)+ -]}
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The solution will be constructed as a Fourier series with respect to the eigenfunctions of the Sturm-Liouville problem
from the previous section, i.e.,

& (x.1) z sm—x (3.1)

n=1
Plugging (3.1) into Equation (1.6) and comparing the time- dependent Fourier coefficients, we obtain a system of count-
ably many second order delay differential equations

n

T/(t)+.T, (t-1)=F,(1), F,(t)= %j.F(s,t)sin%sds . (3.2).

In [9], the initial value problem for the non-homogeneous delay differential equation
x"(t)+0)2x(t—r)=f(z), t>0, t>0

with homogeneous initial conditions x(t) =0, —t <t <0 was shown to be uniquely solved by

t

x(t):J‘sinr{m,t—r—s}f(s)ds. (3.3)
0
Exploiting Equation (3.3), the equations in (3.2) subject to zero initial conditions are uniquely solved by

T,(t)=[sin {w,t =t —s}F,(s)ds, (3.4)
0
Therefore, the non-homogeneous partial delay differential equation with homogeneous initial and boundary conditions
formally reads as

él(x,t)—i{j-sint{mn,t T—s}F, ()ds}sml , Fn(t):%jF(s,t)sin%sds. (3.5)

n=l {0
General case solution. The solution in the general case can thus formally be represented as the following series

&(x,1)= i{d)” (—7)cos {o,,t}+ wiq); (—7)sin {o,,t}+

n=1 n
1%, " . TN
+—J.smt{o)”,t—t—s}GDn(s)ds sin—=-x+

n -t

+Z{J.sm o, —T—s} ”(s)ds}sinnlnx+G(x,t). (3.6)

Convergence of the Fourier series. Further, we present the conditions guaranteeing that the series converges to the
classical solution of Problem (1.9)—(1.11) in the sense of Definition 1.1.

Theorem 3.1. Let 7>0, t>0 and m:= {Z—‘ Further, let the data functions ¢(x,7), w,(¢), u,(¢?) and f(x,) be such
T

that their Fourier coefficients @, (¢) and F, () given in Equations (2.3) and (3.5) satisfy the conditions

hm(“b ‘+‘(I)' T)Dnz,ﬂum =0, lim max (I) (q)‘n2m+3+(x -0,

"o n—® se[-1,0]
lim max max El(t)‘n2k+3+q -0 3.7)
n—ok=l,--,m (k=1)t<t<max {kt,T}

2
for an arbitrary, but fixed a>0. Let [1 aj >c.

Then the classical solution to problem (1.9)—(1.11) can be represented as an absolutely and uniformly convergent Fou-
rier series given in Equation (3.6). The latter series is a twice continuously differentiable function with respect to both vari-
ables. Its derivatives of order less or equal two with respectto 0<x </, 0<t<T can be obtained by a term-wise differen-
tiation of the series and the resulting series are also absolutely and uniformly convergent.

Proof. We regroup the series from Equation (3.6) into the following sum

&(x,t) =S, (x,z) +S, (x,t) +8S, (x,z) + G(x,t) ,
where

o © ©

sl(x,t):zAn(z)sm%x, sz(x,t):zg,,(z)sin%x, S, (x,1)

n=1 n=1 n=1

I
¢
a
iy
—
g

!

A,(1)=®,(-7)cos {o,,t} + Lq)’n (—7)sin {o,.t},
o)

n

—J.sm o, —1—s}®!(s)ds, C,( —Jsm o,,l—t—s}F,(s)ds,

771 llr

2
®, = (%QJ —c,n=123,...
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1. First, we consider the coefficient functions 4, (¢) . For an arbitrary 7 e[0,7] with (k—1)t<¢<kt, we find

A,(t)=®,(-7)cos {w,.t} + O)L(D:l (-7)sin {o,,t} =

n>

iofme (e BT .

+ (t+r)—(77laj2t;!+...+(—l) ("Z” j[f(k)]k x @' (-1) .

(2k +1)!

If ®,(-t) and @/ (-t) are such that the condition
lim (“D ‘Jr‘(l)”( ‘c)‘) Hre =0

holds true, the series S, (x,7) as well as its derivatives of order less or equal 2 converge absolutely and uniformly. Note that
a single differentiation with respect to x corresponds, roughly speaking, to a multiplication with # .

2. Next, we consider the coefficients Bn(t) . For an arbitrary ¢ e [O,T] with (k—1)t<t<kt, we perform the substitution
t—t—s=¢& and exploit the mean value theorem to estimate

t

L [ sin {0,807 (1—t-&)dg

nt—t

« max. max (s-r)-[T‘l'laT;+._.+( )(l j L0

J=k—1,k t—1<s<t (2]+1)

|B,(0)|=

<rmax‘CD ‘

—1<s<

Applying the theorem on differentiation under the integral sign to B, (t) and taking into account that sin {Tna t} is twice

weakly differentiable for 1>0 , its derivatives are polynomials of order lower than those of sint{%a,t} and their convolu-

tion with @’ is continuous, analogous estimates can be obtained for B/(r) and B!(¢) which, in their turn, follow to be also

continuous functions.
Now, if the condition

lim max |®7 (s)|n****** =0

n—w se[-1,0]
is satisfied, the series S, (x,7) as well as its derivatives of order less or equal 2 converge absolutely and uniformly.
3. Finally, we look at the Fourier coefficients C, (t) . Again, for an arbitrary time moment ¢e [O,T] with
(k—Dt<t<kt, 0<k<m,we substitute r—1-& =5 . Once again, using the mean value theorem, we estimate

0] |- [ sin (T o=t

<1 max ‘d) ‘

1—1<s<

m Y [S ]ZH
X max max (s—r)—(*flj Tt (-1 ( j
=kl kt-t<s<t l 3! ) (2] +1)

As before, Cn(t) can be shown to be twice continuously differentiable. If now

lim max max ‘F ‘ w3

n—owk=1-.m (k- l)r<t<max MT

is satisfied, then both S3(x,t) its derivatives of order less or equal 2 converge absolutely and uniformly.

Since all three conditions are guaranteed by the assumptions of the Theorem due to & <n, the proof is finished. ot Re-
mark 3.2. From the practical point of view, the rapid decay condition on the Fourier coefficients of the data given in Equa-
tion (3.7) means a sufficiently high Sobolev regularity of the data and corresponding higher order compatibility conditions on
the boundary (cf. [11]).
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APPROACH FOR SOLVING OF TRANSPORTATION PROBLEM WITH FUZZY RESOURCES

In this paper, a method is proposed to find the fuzzy optimal solution of fuzzy transportation model by representing all the pa-
rameters as triangle fuzzy numbers. To illustrate the proposed method a fuzzy transportation problem is solved by using the pro-
posed method and the results are obtained. The proposed method is easy to understand, and to apply for finding the fuzzy opti-
mal solution of fuzzy transportation models in real life situations.

Keywords: fuzzy transportation problem, triangle fuzzy numbers, optimal solution.

INTRODUCTION

The transportation problem which, is one of network integer programming problems is a problem that deals with distrib-
uting any commodity from any group of 'sources' to any group of destinations or 'sinks' in the most cost effective way with a
given 'supply' and 'demand' constraints . Depending on the nature of the cost function, the transportation problem can be
categorized into linear and nonlinear transportation problem.

Transportation problem is a linear programming (LP) problem stemmed from a network structure consisting of a finite
number of nodes and arcs attached to them. In a typical problem a production is to be transported from m sources to n des-
tinations and their capacities are a4, a, ... am and b1 ,by, ... by, respectively. There is a penalty Cjjand variable X;; associated
with transporting unit of production and unknown quantity to be shipped from source i to destination j.

Efficient algorithms have been developed for solving the transportation problem when the cost coefficients and the sup-
ply and demand quantities are known exactly. However, there are cases that these parameters may not be presented in a
precise manner. For example, the unit shipping cost may vary in a time frame. The supplies and demands may be uncertain
due to some uncontrollable factors.

Bellman and Zadeh [1] proposed the concept of decision making in fuzzy environment. Lai and Hwang [2] considered
the situation where all parameters are fuzzy. In 1979, Isermann [3] introduced algorithm for solving this problem which pro-
vides effective solutions. The Ringuest and Rinks [4] proposed two iterative algorithms for solving linear, multi criteria trans-
portation problem. S.Chanas and D.Kuchta [6] the approach based on interval and fuzzy coefficients had been elaborated.
Tien Fuling [7] applied the method of interactive fuzzy multi-objective linear programming to transportation planning deci-
sions. A new approach called fuzzy modified computational procedure to find the optimal solution was discussed in [8]. The
new arithmetic operations of trapezoidal fuzzy numbers are employed to get the fuzzy optimal solutions. In this work, the
fuzzy transportation problems using triangle fuzzy numbers are discussed. Here after, we have to propose the method of
fuzzy modified distribution to be finding out the optimal solution for the total fuzzy transportation minimum cost.

There are also studies discussing the fuzzy transportation problem. Chanas et al. [6] investigate the transportation prob-
lem with fuzzy supplies and demands and solve them via the parametric programming technique in terms of the Bellman
and Zadeh criterion. Their method is to derive the solution which simultaneously satisfies the constraints and the goal to a
maximal degree. In this paper fuzzy transportation problem is discussed with constraints where the supply and demand are
triangle fuzzy numbers. This paper aims to find out the best compromise solution among the set of feasible solutions for
fuzzy transportation problem.
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