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Introduction 
The wave equation is a typical linear hyperbolic second-order partial differential equation which naturally arises when 

modeling various phenomena of continuum mechanics such as sound, light, water or other kind of waves in acoustics, 
(electro)magnetics, elasticity and fluid dynamics, etc. [6, 13]. Providing a rather adequate description of physical processes, 
partial differential equations, or equations with distributed parameters in general, have found numerous applications in me-
chanics, medicine, ecology, etc. Introducing after-effects such as delay into such equations has gained a lot of attention 
over several past decades [2, 3, 7, 8]. Mathematical treatment of such systems requires additional carefulness since dis-
tributed systems with delay often turn out to be even ill-posed [4, 5, 12]. 

In the present paper, we consider an initial-boundary value problem for a general linear wave equation with pure delay 
and constant coefficients in a bounded interval subject to non-homogeneous Dirichlet boundary conditions. To solve the 
equation, we employ Fourier's separation method as well as the special functions referred to as delay sine and cosine func-
tions which were introduced in [9, 10]. We prove the existence of a unique classical solution on any finite time interval, show 
its continuous dependence on the data, give its representation as a Fourier series and prove its absolute and uniform con-
vergences under certain conditions on the data.  

1. Equation with pure delay 
We consider the following linear wave equation in a bounded interval (0, )l  with a single delay being a second order par-

tial difference-differential equation for an unknown function   

       
2 2

2
2 2

, , ,
, ( , )

x t x t x t
a b d x t g x t

t x x

        
      

  
                                       (1.1) 

subject to non-homogeneous Dirichlet boundary conditions and initial conditions  
   10,t t   ,    2,l t t   , t   , 

     , ,x t x t   , 0 x l  , 0t   .                                                              (1.2) 

Since we are interested in studying classical solutions, the following compatibility conditions are required to assure for 
the smoothness of solution on the boundary of space-time cylinder  

   1,x t t   ,    2,l t t   , 0t   . 

Definition 1.1. Under a classical solution to the problem (1.1), (1.2) we understand a function     0, ,C l T    which 

satisfies     , , 0, ,0tt tx xx C l         as well as     , , 0, 0,tt tx xx C l T        and, being plugged into Equations (1.1), 

(1.2), turns them into identity. 
Remark 1.2. The previous does not impose any continuity of time derivatives in 0t  . If the continuity is desired, addi-

tional compatibility conditions on the data, including ( , )g x t , are required.  

Let ,2,2 ((0, ))
: kk H l

    denote the standard Sobolev norm (cf. [1]) and ,2,2 ((0, ))
: kk H l

    denote the norm of corresponding 

negative Sobolev space. We introduce the norm 
2

,2
0

:
X k

k






   and define the Hilbert space X  as a completion of  2 (0, )L l  

with respect to 
X

 . Obviously,   (0, )X D l


 , i.e., X  can be continuously embedded into the space of distributions. 

With this notation, we easily see that 2 2: x xA a b d      (with x  denoting the distributional derivative) is a bounded lin-

ear operator on X  since 
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First, we obtain an a priori estimate in the distributional space X . 
Theorem 1.2. There exists a constant 0C  , dependent only on , , , , ,a b d l T , such that the estimate 

     2 2 2 2

0,
max ( , ) ( , ) ( ,0) ( , )t tX X X Xt T

t t C t
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C t t dt C g t t t dt



             

holds true for any classical solution of Equations (1.1), (1.2). 
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Proof. Let   be a classical solution to Equations (1.1), (1.2). We define 

( , ) : ( , )w x t x t   for 0t   , 

     1 2 1( , ) : ( , ) x
w x t x t t t t

l
           for 0t  . 

Then ( , )w x t satisfies homogeneous Dirichlet boundary conditions and solves the equation 

   
2

2

,
, ( , )

w x t
Aw x t f x t

t


   


                                                                 (1.3) 

in the extrapolated space X  with 

   2 1 1 2 1( , ) ( , ) ( ) ( ) ( ) ( ) ( )dx
f x t g x t b t t t t t

l
           . 

We multiply the equation with ( , )tw t  in the scalar product of X  and use Young's inequality to get the estimate 
2( , ) ( , ), ( , ) ( , ), ( , )t t t tX X X

w t Aw t w t f t w t            

 2 2 2 2

( )
( , ) 1 ( , ) ( , )tX L X X X
w t A w t f t         .                                                      (1.4) 

As in [11], we introduce the history variable 
( , , ) : ( , )z x t s w x t s   for      ( , , ) 0, 0, 0,x t s l T     

and obtain 
( , , ) ( , , ) 0t sz t s z t s    . 

Multiplying these identities with ( , )w t  in X  and performing a partial integration, we find 

  22 2 2

0 0

( , , ) ( , , ) ( , ) ,t sX X X X
z t s ds z t s ds w t w t

 

             .                                            (1.5) 

Adding Equations (1.4) and (1.5) to the trivial identity 
2 2 2( , ) ( , ) ( , )t tX X X

w t w t w t      , 

we obtain 

 
0

2 2 2 2 2 2 2

( )
( , ) ( , ) ( , , ) 2 ( , ) ( , ) ( , )t t tX X X L X X X X
w t w t w t s ds A w t w t f t



               
  

 . 

Thus, we have shown 

 2 2

( )
( ) 2 ( ) ( , )t L X X
E t A E t f t     ,                                                              (1.6) 

where 
0

2 2 2( ) : ( , ) ( , ) ( , , )tX X X
E t w t w t z t s ds



      . 

From Equation (1.6) we conclude 

 2 2

( )
0 0

( ) (0) 2 ( ) ( , )
t t

L X X
E t E A E s ds f s ds      . 

Using now the integral form of Gronwall's inequality, we obtain 

  2 2 2

( )
0 0 0

( ) (0) ( , ) exp 2 ( ) (0) ( , )
t t s

X L X X
E t E f s ds A t s E f d ds

 
           

 
    

2
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(0) ( , )
T

X
CE f s ds
 

    
 

                                                                               (1.7) 

for certain 0.C   Taking into account 

   2 2 2 2 2 2 2
2 1 2 2 1 2( , ) ( ) ( ) ( , ) ( , ) ( ) ( )

X X X
c w t t t t C w t t t              ,   

   2 2 2 2 2 2 2
2 1 2 2 1 2( , ) ( ) ( ) ( , ) ( , ) ( ) ( )

X X X
c f t t t g t C f t t t              

for some constants 1 2 1 2, , , 0c c C C   and exploiting the definition of ( )E t , the proof is a direct consequence of Equation (1.7). 

Corollary 1.2. Solutions of Equations (1.1), (1.2) are unique. The solution map 

 1 2, , ,g     

is well-defined, linear and continuous in the norms from Theorem 1.1.  
Remark 1.3. It was essential to consider the weak space X . If the space corresponding to the usual wave equation is 

used, i.e.,    1 2
0( , ) (0, ) (0, )t H l L l    , there follows from [5] that Equation (1.1), (1.2) is an ill-posed problem due to the 

lack of continuous dependence on the data even in the homogeneous case. 
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Next, we want to establish conditions on the data allowing for the existence of a classical solution. Performing the sub-
stitution 

   22, ,
b
x

ax t e x t


                                                                                (1.8) 

with a new unknown function  ,x t  (cp. [11]), the initial boundary value problem (1.1), (1.2) can be written in following 

simplified form with a self-adjoint operator on the right-hand side 

     
2

2
2 2

, ,
, ( , )

x t x t
a c x t f x t

t x

    
     

 
, 

2

24
b

c d
a

                                              (1.9) 

complemented by the following boundary and initial conditions 

   10,t t   ,    1 1t t   ,    2,l t t   ,    22
2 2

b
l

at e t    t    ,                                (1.10)  

   , ,x t x t   ,    22, ,
b
x

ax t e x t   ,    22, ,
b
x

af x t e g x t , 0 x l  , 0t   .                          (1.11) 

    
The solution will be determined in the form 

       0 1, , , ,x t x t x t G x t      .  

Here,  ,G x t  is an arbitrary function with     , , 0, ,tt tx xxG G G C l T       satisfying the boundary conditions 

   1,0G x t  ,    2,G x l t  . 

Assuming   2
1 2, ,C T    , we let 

       1 2 1, x
G x t t t t

l
        .                                                               (1.12) 

–  0 ,x t  solves the homogeneous equation 

     
2

0 02
02 2

, ,
,

x t x t
a c x t

t x

    
    

 
                                                         (1.13) 

subject to homogeneous boundary and non-homogeneous initial conditions 

 0 0, 0t  ,  0 , 0l t  , t   , 

   0 , ,x t x t   ,      , , ,x t x t G x t    ,  0t   , 0 x l  .                                 (1.14) 

In particular, with the function  ,G x t  selected as in Equation (1.12), we obtain 

         1 2 1, , x
x t x t t t t

l
         .                                                        (1.15) 

–  1 ,x t  solves the non-homogeneous equation  

       
2

1 12
12 2

, ,
, ,

x t x t
a c x t F x t

t x

    
     

 
                                                    (1.16) 

with 

       
2 2

2
2 2, , , ,F x t a G x t cG x t G x t
x t

 
      

 
                                                   (1.17) 

subject to homogeneous boundary and initial conditions. For  ,G x t  from Equation (1.12), we have 

       1 2 1, ( , ) x
F x t f x t c t t t

l
                  

     1 2 1 .x
t t t

l
           

                        (1.18) 

2. Homogeneous equation. In this section, we obtain a formal solution to the initial-boundary value problem (1.13) with 
initial and boundary conditions given in Equations (1.10), (1.11). We exploit Fourier's separation method to determine 

 0 ,x t  in the product form      0 ,x t X x T t  . After plugging this ansatz into Equation (1.13), we find 

           2X x T t a X x T t cX x T t       . 

Hence, 

         2X x T t cT t a X x T t          . 

By formally separating the variables, we deduce 
 
 

   
 

2
2

X x T t cT t

X x a T t

    
  

 
. 

Thus, the equations can be decoupled as follows 

     2 2 0T t a c T t       ,     2 0X x X x    .                                                 (2.1) 

These are linear second order (delay) ordinary differential equations with constant coefficients. 
Due to the zero boundary conditions for 0  , the boundary conditions for the second equation in (2.1) will also be homo-

geneous, i.e.,  

 0 0X  ,   0X l  . 
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Therefore, we obtain a Sturm-Liouville problem admitting nontrivial solutions only for the eigennumbers 
2

2 2
n

n

l

      
 

, 1,2,3,...n   

and the corresponding eigenfunctions 

  sinn

n
X x x

l


 , 1,2,3,...n   

Assuming 
2

0a c
l

    
 

, 

we denote 
2

n

n
a c

l

    
 

, 1,2,3,...n   

and consider the first equation in (2.1), i.e., 

   2 0nT t T t      , 1,2,3,...n  .                                                            (2.2) 

The initial conditions for each of the equations in (2.2) can be obtained by expanding the initial data into a Fourier series 
with respect to the eigenfunction basis of the second equation in (2.1) 

   
1

, sinn
n

n
x t t x

l






   ,    

1
, sint n

n

n
x t t x

l





   , 1,2,...n  , 

     
0

2 , , sin
l

n

n
t s t G s t sds

l l


      ,      

0

2 , , sin
l

n t t

n
t s t G s t sds

l l

      .                           (2.3) 

Let us further determine the solution of the Cauchy problem associated with each of the equations in (2.2) subject to the 
initial conditions from (2.3).  

First, we briefly present some useful results from the theory of second order delay differential equations with pure delay 
obtained in [9]. The authors considered a linear homogeneous second order ordinary delay differential equation 

   2 0x t x t
 

     , 0t  , 0  ,    x t t  , 0t    .                        (2.4) 

They introduced two special functions referred to as delay cosine and sine functions. Exploiting these functions, a 
unique solution to the initial value problem (2.4) was obtained. 

Definition 2.1. Delay cosine is the function given as 

 

2
2

2 4
2 4

2
2

0 , ,
1 , 0 ,

1 , 0 ,
2 !

. . . . . .c o s ,
( )1

2 ! 4 ! ( 1 )
[ ( 1 ) ]( 1 ) ,

( 2 ) !

k
k k

t

t

t
t

t

t t

k t k
t k

k



     
    


    
  
        
           




        (2.5) 

with 2k -order polynomials on each of the intervals ( 1)k t k      continuously adjusted at the nodes 

, 0 ,1, 2 , ...t k k   . 

 
Figure 2.2. Delay cosine function 
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Definition 2.1. Delay sine is the function given as 
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(2.6) 

with (2 1)k  -order polynomials on each of the intervals ( 1)k t k      continuously adjusted at the nodes 

, 0 ,1, 2 , . . .t k k   . 

 
Figure 2.2. Delay sine function 

 
There has further been proved that delay cosine uniquely solves the linear homogeneous second order ordinary delay 

differential equation with pure delay subject to the unit initial conditions ( ) 1x t  , 0t    , and  the delay sine in its 

turn solves Equation (2.4) subject to the initial conditions ( ) ( )x t t    , 0t    . 
Using the facts above, the unique solution of the Cauchy problem was represented in the integral form. In particular, the 

solution ( )x t  to the homogeneous delay differential equation (2.4) with the initial conditions    x t t  , 0t     for 

an arbitrary   2 ,0C   was shown to be given as 

             
01 1cos , sin , sin ,x t t t t s s ds  


              
   .                            (2.7) 

Turning back to the delay differential equation (2.2) with the initial conditions (1.4), we obtain their unique solution in the form 

             
01 1cos , sin , sin ,n n n n n n n

n n

T t t t t s s ds  


              
   .                      (2.8) 

Thus, assuming sufficient smoothness of the data to be specified later, the solution  0 ,x t  to the homogeneous equa-

tion (1.13) satisfying homogeneous boundary and non-homogeneous initial conditions    , ,x t x t   , 0t   , 0 x l  , 

reads as 

         0
1

1, cos , sin ,n n n n
n n

x t t t


 


          


  

     
01 sin , sinn n

n

n
t s s ds x

l


       
 
 ,                                                        (2.9) 

     
0

2 , , sin
l

n

n
t s t G s t sds

l l


      , 1,2,3,...n  . 

3. Non-homogeneous equation. Next, we consider the non-homogeneous Equation (1.16) with the right-hand side 
from Equation (1.18) subject to homogeneous initial and boundary conditions  

       
2

1 12
12 2

, ,
, ,

x t x t
a c x t F x t

t x

    
     

 
,        1 2 1, ( , ) x
F x t f x t c t t t

l
                  

 

–      1 2 1 .x
t t t

l
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The solution will be constructed as a Fourier series with respect to the eigenfunctions of the Sturm-Liouville problem 
from the previous section, i.e., 

   1
1

, sinn
n

n
x t T t x

l






  .                                                                       (3.1) 

Plugging (3.1) into Equation (1.6) and comparing the time-dependent Fourier coefficients, we obtain a system of count-
ably many second order delay differential equations 

     2
n n n nT t T t F t      ,    

0

2 , sin
l

n

n
F t F s t sds

l l


  .                                              (3.2). 

In [9], the initial value problem for the non-homogeneous delay differential equation 

     2x t x t f t      , 0t  , 0   

with homogeneous initial conditions   0x t  , 0t    was shown to be uniquely solved by 

     
0

sin ,
t

x t t s f s ds     .                                                                 (3.3) 

Exploiting Equation (3.3), the equations in (3.2) subject to zero initial conditions are uniquely solved by 

     
0

sin ,
t

n n nT t t s F s ds     ,                                                               (3.4) 

Therefore, the non-homogeneous partial delay differential equation with homogeneous initial and boundary conditions 
formally reads as   

     1
1 0

, sin , sin
t

n n
n

n
x t t s F s ds x

l






         
  

  ,     
0

2 , sin
l

n

n
F t F s t sds

l l


  .                             (3.5) 

General case solution. The solution in the general case can thus formally be represented as the following series  

         
1

1, cos , sin ,n n n n
n n

x t t t


 


          


  

   
01 sin , sinn n

n

n
t s s ds x

l


       
 
  

     
1 0

sin , sin ,
t

n n
n

n
t s F s ds x G x t

l






         
  

  .                                                    (3.6) 

Convergence of the Fourier series. Further, we present the conditions guaranteeing that the series converges to the 
classical solution of Problem (1.9)–(1.11) in the sense of Definition 1.1. 

Theorem 3.1. Let 0T  , 0   and : T
m

    
. Further, let the data functions ( , )x t ,  1( )t , 2 ( )t  and ( , )f x t  be such 

that their Fourier coefficients  n t  and  nF t  given in Equations (2.3) and (3.5) satisfy the conditions 

   2 3lim ( ) 0m
n n

n
n  


      , 

 
  2 3

,0
lim max 0m

nn s
s n  

  
  , 

 
 

  2 3

1, , ( 1) max ,
lim max max 0k

nn k m k t k T
F t n  

     



                                                           (3.7) 

for an arbitrary, but fixed 0  . Let 
2

a c
l

   
 

. 

Then the classical solution to problem (1.9)–(1.11) can be represented as an absolutely and uniformly convergent Fou-
rier series given in Equation (3.6). The latter series is a twice continuously differentiable function with respect to both vari-
ables. Its derivatives of order less or equal two with respect to 0 x l  , 0 t T   can be obtained by a term-wise differen-
tiation of the series and the resulting series are also absolutely and uniformly convergent. 

Proof. We regroup the series from Equation (3.6) into the following sum 

         1 2 3, , , , ,x t S x t S x t S x t G x t     , 

where 

   1
1

, sinn
n

n
S x t A t x

l






 ,    2

1
, sinn

n

n
S x t B t x

l






  ,    3

1
, sinn

n

n
S x t C t x

l






 , 

         1cos , sin ,n n n n n
n

A t t t        


, 

     
01 sin ,n n n

n

B t t s s ds


     
  ,      

01 sin ,n n n
n

C t t s F s ds


    
  , 

2

n

n
a c

l

    
 

, 1,2,3,...n  .  
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1. First, we consider the coefficient functions  nA t . For an arbitrary  0,t T  with  1k t k     , we find 

         1cos , sin ,n n n n n
n

A t t t         


 

     
   

222 2 1
1 ... 1

2! 2 !

kk
k

n

t ktn n
a a

l l k

                       
     

 

     
   

2 12 23 1
... 1

3! 2 1 !

kk
k

n

t kn t n
t a a

l l k

                              
. 

If  n   and  n   are such that the condition 

   2 3lim ( ) 0k
n n

n
n  


       

holds true, the series  1 ,S x T  as well as its derivatives of order less or equal 2 converge absolutely and uniformly. Note that 

a single differentiation with respect to x  corresponds, roughly speaking, to a multiplication with n . 

2. Next, we consider the coefficients  nB t . For an arbitrary  0,t T  with ( 1)k t k     , we perform the substitution 

t s      and exploit the mean value theorem to estimate 

     
0

1( ) sin , max
t

n n n n
s

n t

B t t d s  


             
   

     
 

2 12 23

1,

1
max max ... 1

3! 2 1 !

jj
j

j k k t s t

s jn s n
s a a

l l j



   

                      
. 

Applying the theorem on differentiation under the integral sign to ( )nB t  and taking into account that sin ,n
a t

l

 
 
 

 is twice 

weakly differentiable for 0t   , its derivatives are polynomials of order lower than those of sin ,n
a t

l

 
 
 

 and their convolu-

tion with n  is continuous, analogous estimates can be obtained for ( )nB t  and ( )nB t  which, in their turn, follow to be also 

continuous functions. 
Now, if the condition 

 
  2 3

,0
lim max 0k

n
n s

s n  

  
   

is satisfied, the series  2 ,S x t  as well as its derivatives of order less or equal 2 converge absolutely and uniformly. 

3. Finally, we look at the Fourier coefficients   nC t . Again, for an arbitrary time moment  0,t T  with 

( 1)k t k     , 0 k m  , we substitute t s     . Once again, using the mean value theorem, we estimate 

     1 sin , max
t

n n n
t s t

n t

n
C t a F t d s

l  


             
    

     
 

2 12 23

1,

1
max max ... 1

3! 2 1 !

jj
j

j k k t s t

s jn s n
s a a

l l j



   

                      
. 

As before,  nC t  can be shown to be twice continuously differentiable. If now 

 
  2 3

1, , ( 1) max ,
lim max max 0k

n
n k m k t k T

F t n  

     



, 

is satisfied, then both  3 ,S x t  its derivatives of order less or equal 2 converge absolutely and uniformly. 

Since all three conditions are guaranteed by the assumptions of the Theorem due to k n , the proof is finished. □ Re-
mark 3.2. From the practical point of view, the rapid decay condition on the Fourier coefficients of the data given in Equa-
tion (3.7) means a sufficiently high Sobolev regularity of the data and corresponding higher order compatibility conditions on 
the boundary (cf. [11]). 
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ПРЕДСТАВЛЕННЯ КЛАСИЧНОГО РОЗВ'ЯЗКУ ЛІНІЙНОГО ХВИЛЬОВОГО РІВНЯННЯ  

З ЧИСТИМ ЗАПІЗНЮВАННЯМ 
Розглянуто лінійне диференціальне рівняння теплопровідності з запізнюванням. 
Ключові слова: динамічна система, різницеві рівняння, точки спокою, асимптотична стійкість, фазовий портрет. 
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ПРЕДСТАВЛЕНИЕ КЛАССИЧЕСКОГО РЕШЕНИЯ ЛИНЕЙНОГО ВОЛНОВОГО УРАВНЕНИЯ  

С ЧИСТЫМ ЗАПАЗДЫВАНИЕМ 
Рассмотрено линейное дифференциальное уравнение теплопроводности с запаздыванием. 
Ключевые слова: динамическая система, разностные уравнения, точки покоя, асимптотическая устойчивость, фазовый портрет. 
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APPROACH FOR SOLVING OF TRANSPORTATION PROBLEM WITH FUZZY RESOURCES 
 
In this paper, a method is proposed to find the fuzzy optimal solution of fuzzy transportation model by representing all the pa-

rameters as triangle fuzzy numbers. To illustrate the proposed method a fuzzy transportation problem is solved by using the pro-
posed method and the results are obtained. The proposed method is easy to understand, and to apply for finding the fuzzy opti-
mal solution of fuzzy transportation models in real life situations.  

Keywords: fuzzy transportation problem, triangle fuzzy numbers, optimal solution. 

 
INTRODUCTION 

The transportation problem which, is one of network integer programming problems is a problem that deals with distrib-
uting any commodity from any group of 'sources' to any group of destinations or 'sinks' in the most cost effective way with a 
given 'supply' and 'demand' constraints . Depending on the nature of the cost function, the transportation problem can be 
categorized into linear and nonlinear transportation problem. 

Transportation problem is a linear programming  (LP) problem stemmed from a network structure consisting of a finite 
number of nodes and arcs attached to them. In a typical problem a production is to be transported from m sources to n des-
tinations and their capacities are a1, a2, ... am and b1 ,b2, ... bn, respectively. There is a penalty Cij and variable Xij associated 
with transporting unit of production and unknown quantity to be shipped from source i to destination j. 

Efficient algorithms have been developed for solving the transportation problem when the cost coefficients and the sup-
ply and demand quantities are known exactly. However, there are cases that these parameters may not be presented in a 
precise manner. For example, the unit shipping cost may vary in a time frame. The supplies and demands may be uncertain 
due to some uncontrollable factors. 

Bellman and Zadeh [1] proposed the concept of decision making in fuzzy environment. Lai and Hwang [2] considered 
the situation where all parameters are fuzzy. In 1979, Isermann [3] introduced algorithm for solving this problem which pro-
vides effective solutions. The Ringuest and Rinks [4] proposed two iterative algorithms for solving linear, multi criteria trans-
portation problem. S.Chanas and D.Kuchta [6] the approach based on interval and fuzzy coefficients had been elaborated. 
Tien Fuling [7] applied the method of interactive fuzzy multi-objective linear programming to transportation planning deci-
sions. A new approach called fuzzy modified computational procedure to find the optimal solution was discussed in [8]. The 
new arithmetic operations of trapezoidal fuzzy numbers are employed to get the fuzzy optimal solutions. In this work, the 
fuzzy transportation problems using triangle fuzzy numbers are discussed. Here after, we have to propose the method of 
fuzzy modified distribution to be finding out the optimal solution for the total fuzzy transportation minimum cost. 

There are also studies discussing the fuzzy transportation problem. Chanas et al. [6] investigate the transportation prob-
lem with fuzzy supplies and demands and solve them via the parametric programming technique in terms of the Bellman 
and Zadeh criterion. Their method is to derive the solution which simultaneously satisfies the constraints and the goal to a 
maximal degree. In this paper fuzzy transportation problem is discussed with constraints where the supply and demand are 
triangle fuzzy numbers. This paper aims to find out the best compromise solution among the set of feasible solutions for 
fuzzy transportation problem. 
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