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PHARMACOKINETIC MODEL OF INTRAVENOUS MEDICATION ADMINISTRATION

Model of intravenous medication administration is considered, i.e. Cauchy initial problem for a nonlinear differential equation.
It is shown that, under certain assumption, there exists positive bounded solution of the considered model. In the proof of the
main result, we apply the topological retract method. An illustrative example is solved for particular function describing elimina-
tion rate of medication from the compartment using programming system MATLAB.
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1. Introduction

Drugs are introduced into the body by several routes. The intramuscular route is preferred to the subcutaneous route
when larger volumes of a drug product are needed. When given intravenously, a drug is immediately delivered to the blood-
stream and tends to take effect more quickly than when given by any other route. Some drugs must be given by continuous
infusion to keep their effect constant.

Living organism is so much complex system that the study of the movement of the active substance in the body requires
some degree of simplification. This can be achieved by creating a substitute system or model. In the pharmacokinetic are
known compartmental models based on the existence of certain barriers, which must be overcome by molecules of the ac-
tive substance, and which restrict their movement to the part of the organism. Decisive process for the movement of the
medicament is the diffusion of molecules through the biological barriers what facilitates the mathematical description of the
fate of the drug in the body. Most of pharmacokinetic processes conform to the rules of the kinetics of chemical reactions
first order, for which is the speed of process in any moment proportional to the concentration of the active substance. We
can imagine the compartment as a single entity having a capacity in which the drug is homogeneously dispersed. Supply of
drug into the compartment and its removal are characterized by rate constants. In practice, for most drugs are used one-
compartment or two-compartment models [3].

We will focus on solving one-compartment pharmacokinetic model of intravenous administration of treatment medica-
tion. In the simplest case, this model is in the form of differential equation

¥ (8)==py(2)+ o, M
where p is the rate constant of medicament elimination and y, is a constant rate of infusion. Function y(t) indicates
the quantity of active substance in the compartment in time ¢ .

¥o drug P
infusion in the body | elimination

Fig. 1: Block diagram of one-compartment pharmacokinetic model

In generally, the rate of active substance elimination does not have to be constant, it can vary with time. This case de-
scribes real process more accurately.

Let us consider an initial Cauchy problem

v =-p(t)y+, )
»(0)=0, (3)
where ¢>0,y, >0 and p(z) is continuous function on /; = (0,62), 8, >0, which satisfies the inequality

0<p, < p(t) <p.
The solution of Cauchy initial problem can be written in the form

-jp(:)‘k
y(z‘)zy0 e’ -1

We can see that this solution contains definite integral of the function p(z) . It is known that there exist such functions which in-

tegrals we cannot describe by elementary functions. The solution of Cauchy problem (2), (3) cannot be written without integral of
these functions. In this case others accesses to the searching for quantity of medicament in the compartment are needed.

2.  Preliminaries

In the proof of the main result the topological method of Wazewski is used. Therefore we give a short summary of it. Let
us consider the system of differential equations

v =f(xy), (4)
with known vector function f of two variables and unknown function y of one variable x. It will be assumed below that the
right-hand side of the system (4) is a continuous function defined on the open (x,y) -set Q. [1, p. 927]

Definition 1 [2, p. 281]. An open subset Q° of the set Q is called a (u,v) -subset of Q with respect to the system (4) if
the following conditions are satisfied:
1. There exist functions v,(x,y)eC'(Q),i=1.....[; u,(x,y) e C'(Q), j=1,...,m, such that

Q = {(X,y) v (x,) <0, u,(x,y) < Oﬁ)ralli,j}_
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2. v, (x,y) < 0holds forthederivatives of the functionsv, (x,y),a =1,...,/, along the trajectories of (4) on the set
vV, = {(x,y) W, = O,V,(x,y) <0,u, (x,y) <0 foralli, jand o,i # OL}.
3. iy(x,y)>0holds forthederivatives of the functionsu(x,y),B =1,...,m, along the trajectories of (4) on the set
U, = {(x,y) Uy = O,u/(x,y) < O,V,(x,y) <0 foralli,jandB,j # B}

The number [orthe number m can be zero in this definition.
Definition 2 [4, p. 595]. The point (x,,y,) € Qm690 is called an egress point (or ingress point) of Q° with respect to the

system (2) if, for every solution of the problem y(xo) =Y there exists an
&> 0suchthat(x,y(x)) e Q’ forx,—e<x<x,(x,<x<x,+e&). An egress point (ingress point) (x,,y,)of Q" is called a strict
egress point (strict ingress point) of Qif (x, y(x)) ¢ Q° ontheinterval x, < x < x, +&,(x, — €, <x<x,) forasmall ¢ >0. The set
of all points of egress (strict egress) is denoted by Q° (Qfe). Finally, the point (x,,y,) € Q~3Q° is called an outward tan-
gency point of Q" with respect to the system (2) if, for every solution of the problem y(xo)zyo, there exists an

&> 0suchthat(x,y(x)) Q" for x,—e<x<x,+& x#x,

The points distinguished in the above definition can be visualized in Figure 2, where the fragments of trajectories of
some planar equation near the boundary of the square are shown. The open vertical sides of the square consist of strict
egress points, the open horizontal sides consist of strict ingress points and the four vertices form the set of outward tan-
gency points [4, p. 595].

Fig. 2: Ingress, egress and outward tangency points

Lemma 1 [2, p. 281]. Let Q" be a (u,v) -subset of Q with respect to the system (4). Then
m /
oL == UUg N UV,
le o=1

The following theorem formulates sufficient conditions for the existence of at least one solution, having its graph in Q°
[1, p. 928].
Theorem 1 (Theorem of Wazewski) [2, p. 282]. Let Q° be some (u,v)-subset of Q with respect to the system (4). Let

S be a nonempty compact subset of Q°_ Q¢ such that the set S~Q. is not a retract of Qf. Then there is at least one
point (x,,v,)e SR’ such that the graph of a solution y(x) of the Cauchy problem y(x,)=y, liesin Q° on its right-hand

maximal interval of existence.

3. Main resulit

Now, we consider one-compartment pharmacokinetic model of intravenous medication administration in the case when
the rate of active substance elimination can vary with time.

Theorem 2 Let p(1) be a continuous function on I, =(0.8,), 8, >0, and let the function p(t) be bounded by positive
constants p,, p,, i.e. the inequality 0< p, < p(t)< p, holds. Let y, be a positive constant. Then there exist a positive solu-

tion of the problem (2), (3) on an interval I, c I, . Moreover, the solution satisfies the inequality

Yo o lim y () < Yo
b Do

on the interval /; .
Proof: Let the functions ¢(8¢), ¢(kr) be defined on the interval /; in the form

o(8r)=—20e ™ + 20,
Py P

o(kt)=—22et 4 20
Do Po
where dand k are constants satisfying the inequality
0<d<p, <1<k

With regard to this it is easy to verity, that the functions ¢(87), ¢(kr) satisfy the inequality
¢(8t) <p(kt).
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Let us define domain Q, in the form

Q,= {(t,y) eRxR:1€(0,8;),0(5¢) < y(r) <(p(kt)},83 >0,
and the auxiliary functions
u(t,y) = (v = 0(81))(y—o(k)),
v(t,y)=v(t)=t-3,.

Then

Q, = {(t,y) cRxR: u(t,y) < O,V(t,y) < O},
Next, we will show that all the points of the set

U= {(t,y) e RxR :u(t,y) :O,v(t,y) SO}
are the points of strict ingress of the set Q, with respect to the equation (2) and all the points of the set

V:{(z,y) e RxR:u(1,y)<0,v(,y) =O}
are the points of strict egress of set Q, with respect to the equation (2).
For verifying this, we compute the full derivative of the function u(¢,y) along the trajectories of the equation (2) on corre-
sponding set U at first. We get
du . .
o = =80 () (y (k) + (y = 0(8)) (v ~ke'(k))
If (z,y)eU, then either y=o(8t)or y = (kt).
In the first case we have

%/“,y)gu. ot = (~P(£) Y + ¥, = 80'(81) ) (9 (81) (k) <.

Thus, if y=¢(8t) then all the points (t,y)e U are points of strict ingress.

In the second case, i.e., if y=¢(kt), we get

ot st = (0(K) = 9(30))p(0)y + ¥, ~ ke (k) <0,

This means that if y=¢(kt) then all the points (t,y)e U are also points of strict ingress. Therefore, in both considered

cases we have obtained
du

E (ty)eU <0.

Now let us compute the full derivative of the function v(¢,y) along the trajectories of the equation (2) on corresponding
set V. We have
dv =1>0.
dr

Thus, all the points (¢,y) eV are points of strict egress. So the set Q, is the (u,v) -set and therefore we can apply the
theorem of Wazewski. This means that the domain Q, contains the graph of the solution of considered problem (2), (3) and
this solution is bounded, i.e.

oy Yo o y(t) <« Yoty Yo
P P Do Do
If we pass to the limit for 1 — ~ we get

Yo o lirny(t)
p Po
On the basis of the last inequality, we can conclude that the level of the medicament in the compartment after long-

lasting infusion will be close to the value, which is always greater than the ratio of infusion rate y, and p, of the function

<

p(t) and less than the ratio of y, and lower limit p, of the same function p(r).

4. Examples
Let us consider a nonlinear Cauchy problem:

y = pOy(t)+ o,
»(07)=o.
with
p(z):o.ée’fl +0.2, ¥y >0.
Let the function p(¢) be bounded for >0, i.e.
02<p(t)<08, Vt>0.

This problem has, by Theorem 2, one positive solution, which is bounded on 7 =(0, «) (see figure 3).
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Fig. 3. The level of the medicament for 0 <#<30 and §=0.1,k=2,y,=0.1 §=0.Lk=2,y,=0.10or §=0.1,k=1.2,y,=3

We can make conclusion: In the case when the rate of active substance elimination is described by bounded function

0<p, < p(t)S p,» the level of the medicament in the compartment after long-lasting infusion is between values %0 and 2o
b Dy

Moreover, if the function p(¢) is the exponential function of the form mentioned above, the level of the medicament in the
to the value 2o For two considered values of the parameters

y2!
8=0.1,k=2,y,=0.1;6=0.Lk =1.2,y, =3 the limit value is 0.125 or 3.75 respectively.

compartment  convergent
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PAPMAKOKIHETUMHA MOAENb BHYTPUBEHHOIO BBEOEHHA NIKIB
Po3sansidaembcsi Modenb eHympueeHHO20 esedeHHs npenapamy nobydoeaHa Ha euxidHil 3aedayi Kowi Ansa HeniHiliHo2o0 dugpepeHyianbHO20
pieHsiHHSA. lMoka3aHo, wjo npu Aesikux yMoeax icHye no3umueHe o6MexXeHHs1 po3e'sa3Ky po3ansiHymoi moderni. [lpu doka3i ocHO8HO20 pe3ynbmamy,
Mu 3acmoco8yeMo MemoO mornosio2idYHuUx 8ioMoesieHHs1. Hao4yHuli npuknad supiwyembcsi 05151 KOHKPemHoi hyHKUii, Wo onucye weudkicmb suse-
OeHHSs nikapcbKo20o 3acoby 3 eidciKy, 3acmocyeaewu cucmemu npoepamyeaHHsi MATLAB.
Knroyoei cnoea: gpapmakokiHemuyHi Mmodesi, 8HympiwHb08€HHO, JliKu.
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OAPMAKOKUHETUYECKAA MOLEJIb BHYTPUBEHHOIO BBEAEHUA NEKAPCTB

Paccmampueaemcsi modesib 6HympueeHHo20 eeedeHusi npenapama nocmpoeHa Ha ucxodHoli 3aedayu Kowu dns HenuHeliHoz2o dugbghe-
peHyuanbHo20 ypasHeHus. [TokazaHo, YmMoO Npu HEKOMOPLIX YCI08USIX Cyu,ecmayem MoJsioxumesibHoe O2paHUYeHUsl peuleHusi paccMampuea-
emoli modenu. lpu dokazamesibcmee OCHOBHO20 pe3y/ibmama, Mbl IPUMEHsieM Memod mornoJsioeuyecko2o omka3a. HaensaoHbil npumep pe-
waemcsi Ana KoHkpemHol ¢hyHKYuu, onucklearowjeli ckopocms ebieedeHusi JiekapcmeeHHoO20 cpedcmea U3 omceka, NpUMeHU8 cucmemsbl

npozpammuposaHusi MATLAB.
Knioyeenie crnosa: ¢hapmakokuHemuyeckue Modesnu, 8HympuseHHOo, Jiekapcmea.
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AWHAMIKA HENIHIMHOI MOAENI CUCTEMM nonynauli necni

B po6omi npoeedeHo docnidxeHHsI HesiHiliHOiI modeni nonynsayii Jlecni. Modenb 3anucaHa y eeKmMopHO-Mampu4yHOMYy eu-
2na0i pisHuyesux pieHsIHb. 3pPo6/1eHO NPUNyWeHHs1 NPO HeiHilHul ennue winsHocmi nonynsyii Ha duHamiky cucmemu. Bu3Ha-
4eHO moYKu crokoro. [locnidxeHo ennue napamempie cucmemu Ha ii "2py6icmsb".

Knroyoei cnoea: duHamiyHa cucmema, pisHuuesi pieHsIHHsI, MOYKU CMOKOI, acuMnmomud4Ha cmilikicms, ¢hazoeuli nopmpem.

BcTtyn
B HacTynHih poboTi NPOAOBXKYETLCA AOCTIMKEHHA ANHaMikM Mogerni nonynsauii Jlecni, wo nposoannack B podotax [1-3].
PosrnsaHyTa HeniHinKHa (kBasiniHinHa) mogens. Mogudikyemo fiHinHa mogens AuHamikn nonynsuii Jlecni, wo 6yna 3anuca-
Ha y BEKTOPHMN-MaTpU4HOMY BUMAAI B poboTi [8], MoandikyeTbCa HACTYNHUM YnHOM. [Ana obniky BAAMBY LWiNbHOCTI nomny-
nadii Ha 11 NNoAYicTb, BBEAEHA BENMYMHA, WO € 3BaXKEHMM PO3MIpOM nonynsuii [4-5]

w(x)=2ajxj , (0.1)
j=1
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